Incidence, risk factors, and outcomes of second neoplasms in patients with acute promyelocytic leukemia: the PETHEMA-PALG experience
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38110588
PubMed Central
PMC10799093
DOI
10.1007/s00277-023-05582-y
PII: 10.1007/s00277-023-05582-y
Knihovny.cz E-zdroje
- Klíčová slova
- Acute promyelocytic leukemia, Chemotherapy based and chemotherapy free regimens, Outcomes, Risk factors, Second neoplasms,
- MeSH
- akutní promyelocytární leukemie * diagnóza farmakoterapie epidemiologie MeSH
- dospělí MeSH
- incidence MeSH
- lidé MeSH
- patologická kompletní odpověď MeSH
- protokoly protinádorové kombinované chemoterapie terapeutické užití MeSH
- retrospektivní studie MeSH
- rizikové faktory MeSH
- sekundární malignity * farmakoterapie MeSH
- tretinoin MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- tretinoin MeSH
The most important challenges in acute promyelocytic leukemia (APL) is preventing early death and reducing long-term events, such as second neoplasms (s-NPLs). We performed a retrospective analysis of 2670 unselected APL patients, treated with PETHEMA "chemotherapy based" and "chemotherapy free" protocols. Only de novo APL patients who achieved complete remission (CR) and completed the three consolidation cycles were enrolled into the analysis. Out of 2670 APL patients, there were 118 (4.4%) who developed s-NPLs with the median latency period (between first CR and diagnosis of s-NPL) of 48.0 months (range 2.8-231.1): 43.3 (range: 2.8-113.9) for s-MDS/AML and 61.7 (range: 7.1-231.1) for solid tumour. The 5-year CI of all s-NPLs was of 4.43% and 10 years of 7.92%. Among s-NPLs, there were 58 cases of s-MDS/AML, 3 cases of other hematological neoplasms, 57 solid tumours and 1 non-identified neoplasm. The most frequent solid tumour was colorectal, lung and breast cancer. Overall, the 2-year OS from diagnosis of s-NPLs was 40.6%, with a median OS of 11.1 months. Multivariate analysis identified age of 35 years (hazard ratio = 0.2584; p < 0.0001) as an independent prognostic factor for s-NPLs. There were no significant differences in CI of s-NPLs at 5 years between chemotherapy-based vs chemotherapy-free regimens (hazard ratio = 1.09; p = 0.932). Larger series with longer follow-up are required to confirm the potential impact of ATO+ATRA regimens to reduce the incidence of s-NPLs after front-line therapy for APL.
Centro Hospitalar Săo Joăo Porto Portugal
Collegium Medicum Jagiellonian University Krakow Poland
Department of Hematology and Transplantology Gdynia Poland
Faculty of Pure and Applied Mathematics Wrocław University of Science and Technology Wroclaw Poland
Hospital 12 de Octubre Madrid Spain
Hospital Central de Asturias Oviedo Spain
Hospital Clínico San Carlos Madrid Spain
Hospital de Cruces Barakaldo Spain
Hospital de Santa Maria Lisboa Portugal
Hospital Dr Peset Valencia Spain
Hospital General de Albacete Albacete Spain
Hospital Insular de Las Palmas Las Palmas de Gran Canaria Spain
Hospital Maciel Montevideo Uruguay
Hospital Morales Meseguer Murcia Spain
Hospital Puerta de Hierro Madrid Spain
Hospital San Pedro de Alcántara Caceres Spain
Hospital Sant Pau Barcelona Spain
Hospital Tornú Buenos Aires Argentina
Hospital U Germans Trias i Pujol ICO Badalona Spain
Hospital U Vall D'Hebron Barcelona Spain
Hospital U Virgen del Rocio Sevilla Spain
Hospital Universitario de Gran Canaria Doctor Negrin Las Palmas de Gran Canaria Spain
Hospital Universitario i Politècnico la Fe Valencia Spain
Medical University of Lodz Lodz Poland
Rydygiera Hospital Torun Poland
University Hospital Brno Masaryk University Brno Czechia
Zobrazit více v PubMed
Lo-Coco F, Ammatuna E, Montesinos P, et al. Acute promyelocytic leukemia: recent advances in diagnosis and management. Semin Oncol. 2008;35:401–409. doi: 10.1053/j.seminoncol.2008.04.010. PubMed DOI
Sanz MA, Grimwade D, Tallman MS, et al. Management of acute promyelocytic leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood. 2009;113:1875–1891. doi: 10.1182/blood-2008-04-150250. PubMed DOI
Fenaux P, Chastang C, Chevret S, et al. A randomized comparison of all trans retinoic acid (ATRA) followed by chemotherapy and ATRA plus chemotherapy and the role of maintenance therapy in newly diagnosed acute promyelocytic leukemia. The European APL Group. Blood. 1999;14:1192–1200. doi: 10.1182/blood.V94.4.1192. PubMed DOI
Sanz MA, Martin G, Gonzalez M, et al. Risk adapted treatment of acute promyelocytic leukemia with all trans retinoic acid and anthracycline monochemotherapy: a multicenter study by the PETHEMA group. Blood. 2004;103:1237–1243. doi: 10.1182/blood-2003-07-2462. PubMed DOI
Sanz MA, Montesinos P, Rayon C, et al. Risk adapted treatment of acute promyelocytic leukemia based on all-trans retinoic acid and anthracycline with addition of cytarabine in consolidation therapy for high-risk patients: further improvements in treatment outcome. Blood. 2010;115:5137–5146. doi: 10.1182/blood-2010-01-266007. PubMed DOI
Mandelli F, Diverio D, Avvisati G, et al. Molecular remission in PML/RAR alpha-positive acute promyelocytic leukemia by combined all-trans retinoic acid and idarubicin (AIDA) therapy. Gruppo Italiano-Malattie Ematologiche Maligne dell'Adulto and Associazione Italiana di Ematologia ed Oncologia Pediatrica Cooperative Groups. Blood. 1997;90:1014–1021. PubMed
Lengfelder E, Haferlach C, Saussele S, et al. High dose ara-C in the treatment of newly diagnosed acute promyelocytic leukemia: long-term results of the German AMLCG. Leukemia 2009;23:2248-58. Lo CoCo Blood. 2010;116:3171–3179. PubMed
Tallman MS, Andersen JW, Schiffer CA, et al. All-trans-retinoic acid in acute promyelocytic leukemia. N Engl J Med. 1997;337:1021–1028. doi: 10.1056/NEJM199710093371501. PubMed DOI
Huang ME, Ye YC, Chen SR, et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood. 1988;72:572. doi: 10.1182/blood.V72.2.567.567. PubMed DOI
Estey E, Garcia-Manero G, Ferrajoli A, et al. Use of all-trans retinoic acid plus arsenic trioxide as an alternative to chemotherapy in untreated acute promyelocytic leukemia. Blood. 2006;107:3469–3473. doi: 10.1182/blood-2005-10-4006. PubMed DOI
Lo-Coco F, Avvisati G, Vignetti M, et al. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med. 2013;369:111–121. doi: 10.1056/NEJMoa1300874. PubMed DOI
Platzbecker U, Avvisati G, Cicconi L, et al. Improved outcomes with retinoic acid and arsenic trioxide compared with retinoic acid and chemotherapy in non-high-risk acute promyelocytic leukemia: final results of the randomized Italian-German APL0406 trial. J Clin Oncol. 2017;35:605–612. doi: 10.1200/JCO.2016.67.1982. PubMed DOI
Pagano L, Gimema F, Pulsoni A, et al. Second malignancy after treatment of adult acute myeloid leukemia: cohort study on adult patients enrolled in the GIMEMA trials. Leukemia. 2004;18:651–653. doi: 10.1038/sj.leu.2403276. PubMed DOI
Montesinos P, González JD, González J, et al. Therapy-related myeloid neoplasms in patients with acute promyelocytic leukemia treated with all-trans-retinoic acid and anthracycline-based chemotherapy. J Clin Oncol. 2010;28:3872–3879. doi: 10.1200/JCO.2010.29.2268. PubMed DOI
Zompi S, Viguié F. Therapy-related acute myeloid leukemia and myelodysplasia after successful treatment of acute promyelocytic leukemia. Leuk Lymphoma. 2002;43:275–280. doi: 10.1080/10428190290006044. PubMed DOI
Batzios C, Hayes LA, He SZ, Quach H, McQuilten ZK, Wall M, Campbell LJ. Secondary clonal cytogenetic abnormalities following successful treatment of acute promyelocytic leukemia. Am J Hematol. 2009;84:715–719. doi: 10.1002/ajh.21528. PubMed DOI
Lobe I, Rigal-Huguet F, Vekhoff A, Desablens B, Bordessoule D, Mounier C, Ferrant A, Sanz M, Fey M, Chomienne C, Chevret S, Degos L, Fenaux P, European APL group experience Myelodysplastic syndrome after acute promyelocytic leukemia: the European APL group experience. Leukemia. 2003;17:1600–1604. doi: 10.1038/sj.leu.2403034. PubMed DOI
Latagliata R, Petti MC, Fenu S, et al. Therapy-related myelodysplastic syndrome-acute myelogenous leukemia in patients treated for acute promyelocytic leukemia: an emerging problem. Blood. 2002;99:822–824. doi: 10.1182/blood.V99.3.822. PubMed DOI
Lenzi L, Lee-Jones L, Mostofa MA, de Andrade DP, Ribeiro RC, Figueiredo BC. Second primary malignancy after acute promyelocytic leukemia: a population-based study. Cancers (Basel) 2020;12:3610. doi: 10.3390/cancers12123610. PubMed DOI PMC
Kayser S, Rahmé R, Martínez-Cuadrón D, et al. Outcome of older (≥70 years) APL patients frontline treated with or without arsenic trioxide-an International Collaborative Study. Leukemia. 2020;34:2333–2341. doi: 10.1038/s41375-020-0758-4. PubMed DOI PMC
Norsworthy KJ, Avagyan A, Bird ST, et al. Second cancers in adults with acute promyelocytic leukemia treated with or without arsenic trioxide: a SEER-medicare analysis. Leukemia. 2020;34:3082–3084. doi: 10.1038/s41375-020-0905-y. PubMed DOI
Eghtedar A, Rodriguez I, Kantarjian H, O'Brien S, Daver N, Garcia-Manero G, Ferrajoli A, Kadia T, Pierce S, Cortes J, Ravandi F. Incidence of secondary neoplasms in patients with acute promyelocytic leukemia treated with all-trans retinoic acid plus chemotherapy or with all-trans retinoic acid plus arsenic trioxide. Leuk Lymphoma. 2015;56:1342–1345. doi: 10.3109/10428194.2014.953143. PubMed DOI PMC
Giri S, Pathak R, Aryal MR, et al. Second primary malignancy in acute promyelocytic leukemia: a surveillance, epidemiology and end results database study. Futur Oncol. 2017;13:1455–1457. doi: 10.2217/fon-2017-0077. PubMed DOI
Pedersen-Bjergaard J, Andersen MK, Christiansen DH. Therapy-related acute myeloid leukemia and myelodysplasia after high-dose chemotherapy and autologous stem cell transplantation. Blood. 2000;95:3273–3279. doi: 10.1182/blood.V95.11.3273. PubMed DOI
Pedersen-Bjergaard J, Philip P, Larsen SO et al (1993) Therapy-related myelodysplasia and acute myeloid leukemia. Cytogenetic characteristics of 115 consecutive cases and risk in seven cohorts of patients treated intensively for malignant diseases in the Copenhagen series. Leukemia 7:1975–1986 PubMed
Chen QY, DesMarais T, Costa M. Metals and mechanisms of carcinogenesis. Annu Rev Pharmacol Toxicol. 2019;59:537–554. doi: 10.1146/annurev-pharmtox-010818-021031. PubMed DOI PMC
Liu G, Song Y, Li C, et al. Arsenic compounds: the wide application and mechanisms applied in acute promyelocytic leukemia and carcinogenic toxicology. Eur J Med Chem. 2021;221:113519. doi: 10.1016/j.ejmech.2021.113519. PubMed DOI
Treatment of acute promyelocytic leukemia PETHEMA LPA 2012, PETHEMA/PALG protocol PubMed
Treatment of acute promyelocytic leukemia PETHEMA LPA 2017, PETHEMA/PALG protocol PubMed
Cheson BD, Bennett JM, Kopecky KJ, et al. Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J Clin Oncol. 2003;21:4642–4649. doi: 10.1200/JCO.2003.04.036. PubMed DOI
Sanz MA, Fenaux P, Tallman MS, et al. Management of acute promyelocytic leukemia: updated recommendations from an expert panel of the European LeukemiaNet. Blood. 2019;133:1630–1643. doi: 10.1182/blood-2019-01-894980. PubMed DOI PMC
Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–2405. doi: 10.1182/blood-2016-03-643544. PubMed DOI
Labrador J, Luño E, Vellenga E, et al. Clinical significance of complex karyotype at diagnosis in pediatric and adult patients with de novo acute promyelocytic leukemia treated with ATRA and chemotherapy. Leuk Lymphoma. 2019;60:1146–1155. doi: 10.1080/10428194.2018.1522438. PubMed DOI
Kaplan EL, Meier P. Nonparametric estimations from incomplete observations. J Am Stat Assoc. 1958;53:457–481. doi: 10.1080/01621459.1958.10501452. DOI
Mantel N. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother Rep. 1966;50:163–170. PubMed
Gray RJ. A class of K-sample test for comparing the cumulative incidence of a competing risk. Ann Stat. 1988;16:1141–1154. doi: 10.1214/aos/1176350951. DOI
Aalen O (1978) Nonparametric estimation of partial transition probabilities in multiple decrement models. Ann Stat 6:534–545
Cox DR. Regression models and life tables (with discussion) J R Stat Soc B. 1972;34:187–220.
Morton LM, Onel K, Curtis RE et al (2014) The rising incidence of second cancers: patterns of occurrence and identification of risk factors for children and adults. Am Soc Clin Oncol Educ Book:e57–e67 PubMed
Andersen MK, Pedersen-Bjergaard J. Therapy-related MDS and AML in acute promyelocytic leukemia. Blood. 2002;100:1928–1929. doi: 10.1182/blood-2002-03-0962. PubMed DOI
Cervera J, Montesinos P, Hernández-Rivas JM, et al. Additional chromosome abnormalities in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and chemotherapy. Haematologica. 2010;95:424–431. doi: 10.3324/haematol.2009.013243. PubMed DOI PMC
Sessarego M, Fugazza G, Balleari E, et al. High frequency of trisomy 8 in acute promyelocytic leukemia: a fluorescence in situ hybridization study. Cancer Genet Cytogenet. 1997;97:161–164. doi: 10.1016/S0165-4608(96)00323-8. PubMed DOI
Sobas M, Rodriguez-Veiga R, Vellenga E, et al. PETHEMA, HOVON, PALG, GATLA cooperative groups. Characteristics and outcome of adult patients with acute promyelocytic leukemia and increased body mass index treated with the PETHEMA Protocols. Eur J Haematol. 2020;104(3):162–169. doi: 10.1111/ejh.13346. PubMed DOI