Nutrition in Critically Ill Children with AKI on Continuous RRT: Consensus Recommendations
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38112754
PubMed Central
PMC10914214
DOI
10.34067/kid.0000000000000339
PII: 02200512-202402000-00017
Knihovny.cz E-zdroje
- MeSH
- akutní poškození ledvin * terapie MeSH
- dítě MeSH
- konsensus MeSH
- kontinuální metody náhrady funkce ledvin * MeSH
- kritický stav terapie MeSH
- lidé MeSH
- nutriční stav MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Nutrition plays a vital role in the outcome of critically ill children, particularly those with AKI. Currently, there are no established guidelines for children with AKI treated with continuous RRT (CRRT). A thorough understanding of the metabolic changes and nutritional challenges in AKI and CRRT is required. Our objective was to create clinical practice points for nutritional assessment and management in critically ill children with AKI receiving CRRT. METHODS: PubMed, MEDLINE, Cochrane, and Embase databases were searched for articles related to the topic. Expertise of the authors and a consensus of the workgroup were additional sources of data in the article. Available articles on nutrition therapy in pediatric patients receiving CRRT through January 2023. RESULTS: On the basis of the literature review, the current evidence base was examined by a panel of experts in pediatric nephrology and nutrition. The panel used the literature review as well as their expertise to formulate clinical practice points. The modified Delphi method was used to identify and refine clinical practice points. CONCLUSIONS: Forty-four clinical practice points are provided on nutrition assessment, determining energy needs, and nutrient intake in children with AKI and on CRRT on the basis of the existing literature and expert opinions of a multidisciplinary panel.
Akron Children's Hospital Akron Ohio
Akron Nephrology Associates Cleveland Clinic Akron General Medical Center Akron Ohio
Children's Healthcare of Atlanta Atlanta Georgia
Department of Medicine University of Tennessee at Knoxville Knoxville Tennessee
Department of Pediatric Nephrology Kidney Institute Medanta The Medicity Gurgaon India
Department of Pediatrics Yong Loo Lin School of Medicine National University of Singapore Singapore
Division of Pediatric Nephrology East Tennessee Children's Hospital Knoxville Tennessee
ECU Health Greenville North Carolina
Johns Hopkins Bayview Medical Center Baltimore Maryland
Nell Hodgson Woodruff School of Nursing Emory University Atlanta Georgia
Pediatrics Department College of Medicine King Saud University Riyadh Kingdom of Saudi Arabia
Section of Pediatric Nephrology Children's Hospital Colorado University of Colorado Aurora Colorado
UCL Department of Renal Medicine Royal Free Hospital University College London London United Kingdom
Zobrazit více v PubMed
Castillo A Santiago MJ López-Herce J, et al. . Nutritional status and clinical outcome of children on continuous renal replacement therapy: a prospective observational study. BMC Nephrol. 2012;13(1):125. doi:10.1186/1471-2369-13-125 PubMed DOI PMC
Martinez EE, Mehta NM. The science and art of pediatric critical care nutrition. Curr Opin Crit Care. 2016;22(4):316–324. doi:10.1097/mcc.0000000000000316 PubMed DOI
Mitting R, Marino L, Macrae D, Shastri N, Meyer R, Pathan N. Nutritional status and clinical outcome in postterm neonates undergoing surgery for congenital heart disease. Pediatr Crit Care Med. 2015;16(5):448–452. doi:10.1097/PCC.0000000000000402 PubMed DOI
Lambe C, Hubert P, Jouvet P, Cosnes J, Colomb V. A nutritional support team in the pediatric intensive care unit: changes and factors impeding appropriate nutrition. Clin Nutr. 2007;26(3):355–363. doi:10.1016/j.clnu.2007.02.004 PubMed DOI
Sethi SK, Maxvold N, Bunchman T, Jha P, Kher V, Raina R. Nutritional management in the critically ill child with acute kidney injury: a review. Pediatr Nephrol. 2017;32(4):589–601. doi:10.1007/s00467-016-3402-9 PubMed DOI
Kyle UG, Akcan-Arikan A, Orellana RA, Coss-Bu JA. Nutrition support among critically ill children with AKI. Clin J Am Soc Nephrol. 2013;8(4):568–574. doi:10.2215/CJN.05790612 PubMed DOI PMC
Mehta NM Skillman HE Irving SY, et al. . Guidelines for the provision and assessment of nutrition support therapy in the pediatric critically ill patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition. JPEN J Parenter enteral Nutr. 2017;41(5):706–742. doi:10.1177/0148607117711387 PubMed DOI
Zappitelli M, Bunchman TE. Nutrition in a child with acute kidney injury and on CRRT. In: Deep A, Goldstein SL, eds. Critical Care Nephrology and Renal Replacement Therapy in Children. Springer International Publishing; 2018:181–194.
Mehta N, Jaksic T. The critically ill child. In: Duggan C, Watkins JB, Walker WA, eds. Nutrition in Pediatrics. BC Decker; 2008.
Sutherland SM, Alexander SR. Continuous renal replacement therapy in children. Pediatr Nephrol. 2012;27(11):2007–2016. doi:10.1007/s00467-011-2080-x PubMed DOI
Onichimowski D, Goraj R, Jalali R, Grabala J, Mayzner-Zawadzka E, Czuczwar M. Practical issues of nutrition during continuous renal replacement therapy. Anaesthesiol Intensive Ther. 2017;49(4):309–316. doi:10.5603/AIT.a2017.0052 PubMed DOI
Jonckheer J, Vergaelen K, Spapen H, Malbrain M, De Waele E. Modification of nutrition therapy during continuous renal replacement therapy in critically ill pediatric patients: a narrative review and recommendations. Nutr Clin Pract. 2019;34(1):37–47. doi:10.1002/ncp.10231 PubMed DOI PMC
Kyle UG, Akcan-Arikan A, Silva JC, Goldsworthy M, Shekerdemian LS, Coss-Bu JA. Protein feeding in pediatric acute kidney injury is not associated with a delay in renal recovery. J Ren Nutr. 2017;27(1):8–15. doi:10.1053/j.jrn.2016.09.009 PubMed DOI
Zappitelli M, Juarez M, Castillo L, Coss-Bu J, Goldstein SL. Continuous renal replacement therapy amino acid, trace metal and folate clearance in critically ill children. Intensive Care Med. 2009;35(4):698–706. doi:10.1007/s00134-009-1420-9 PubMed DOI
Vega MW, Juarez M, Lee JY, Srivaths P, Williams E, Akcan Arikan A. Quality improvement bedside rounding audits enhance protein provision for pediatric patients receiving continuous renal replacement therapy. Pediatr Crit Care Med. 2018;19(11):1054–1058. doi:10.1097/PCC.0000000000001698 PubMed DOI
Schröder CH, de Boer AW, Giesen A-M, Monnens LA, Blom H. Treatment of hyperhomocysteinemia in children on dialysis by folic acid. Pediatr Nephrol. 1999;13(7):583–585. doi:10.1007/s004670050748 PubMed DOI
Merouani A, Lambert M, Delvin EE, Genest J, Jr., Robitaille P, Rozen R. Plasma homocysteine concentration in children with chronic renal failure. Pediatr Nephrol. 2001;16(10):805–811. doi:10.1007/s004670100648 PubMed DOI
Kang H Lee B Hahn H, et al. . Reduction of plasma homocysteine by folic acid in children with chronic renal failure. Pediatr Nephrol. 2002;17(7):511–514. doi:10.1007/s00467-002-0864-8 PubMed DOI
Behnke B, Kemper M, Kruse H-P, Müller-Wiefel DE. Bone alkaline phosphatase in children with chronic renal failure. Nephrol Dial Transplant. 1998;13(3):662–667. doi:10.1093/ndt/13.3.662 PubMed DOI
Baskın E Ozen S Karçaaltıncaba M, et al. . Beneficial role of intravenous calcitriol on bone mineral density in children with severe secondary hyperparathyroidism. Int Urol Nephrol. 2004;36(1):113–118. doi:10.1023/b:urol.0000032691.62102.1d PubMed DOI
Santiago MJ López-Herce J Urbano J, et al. . Complications of continuous renal replacement therapy in critically ill children: a prospective observational evaluation study. Crit Care. 2009;13(6):R184. doi:10.1186/cc8172 PubMed DOI PMC
Ahlenstiel T, Pape L, Ehrich JH, Kuhlmann MK. Self-adjustment of phosphate binder dose to meal phosphorus content improves management of hyperphosphataemia in children with chronic kidney disease. Nephrol Dial Transplant. 2010;25(10):3241–3249. doi:10.1093/ndt/gfq161 PubMed DOI
Aygun F, Aygun D, Erbek Alp F, Zubarıoglu T, Zeybek C, Cam H. The impact of continuous renal replacement therapy for metabolic disorders in infants. Pediatr Neonatal. 2018;59(1):85–90. doi:10.1016/j.pedneo.2017.04.004 PubMed DOI
Maxvold NJ, Smoyer WE, Custer JR, Bunchman TE. Amino acid loss and nitrogen balance in critically ill children with acute renal failure: a prospective comparison between classic hemofiltration and hemofiltration with dialysis. Crit Care Med. 2000;28(4):1161–1165. doi:10.1097/00003246-200004000-00041 PubMed DOI
Kuttnig M, Zobel G, Ring E, Grubbauer H, Kurz R. Nitrogen and amino acid balance during total parenteral nutrition and continuous arteriovenous hemofiltration in critically ill anuric children. Child Nephrol Urol. 1991;11(2):74–78. PMID: 1756524. PubMed
Phan V Clermont M-J Merouani A, et al. . Duration of extracorporeal therapy in acute maple syrup urine disease: a kinetic model. Pediatr Nephrol. 2006;21(5):698–704. doi:10.1007/s00467-006-0044-3 PubMed DOI
Aygun F, Varol F, Aktuglu-Zeybek C, Kiykim E, Cam H. Continuous renal replacement therapy with high flow rate can effectively, safely, and quickly reduce plasma ammonia and leucine levels in children. Children (Basel). 2019;6(4):53. doi:10.3390/children6040053 PubMed DOI PMC
Akduman H Okulu E Eminoğlu FT, et al. . Continuous venovenous hemodiafiltration in the treatment of newborns with an inborn metabolic disease: a single center experience. Turk J Med Sci. 2020;50(1):12–17. doi:10.3906/sag-1811-8 PubMed DOI PMC
Lion RP Vega MR Smith EO, et al. . The effect of continuous venovenous hemodiafiltration on amino acid delivery, clearance, and removal in children. Pediatr Nephrol. 2022;37(2):433–441. doi:10.1007/s00467-021-05162-0 PubMed DOI
Sgambat K, Moudgil A. Carnitine deficiency in children receiving continuous renal replacement therapy. Hemodial Int. 2016;20(1):63–67. doi:10.1111/hdi.12341 PubMed DOI
Sgambat K, Clauss S, Moudgil A. Effect of levocarnitine supplementation on myocardial strain in children with acute kidney injury receiving continuous kidney replacement therapy: a pilot study. Pediatr Nephrol. 2021;36(6):1607–1616. doi:10.1007/s00467-020-04862-3 PubMed DOI
Warady BA, Kriley M, Alon U, Hellerstein S. Vitamin status of infants receiving long-term peritoneal dialysis. Pediatr Nephrol. 1994;8(3):354–356. doi:10.1007/bf00866365 PubMed DOI
Pasko DA, Churchwell MD, Btaiche IF, Jain JC, Mueller BA.; Renal Replacement Therapy Kinetics Study Group. Continuous venovenous hemodiafiltration trace element clearance in pediatric patients: a case series. Pediatr Nephrol. 2009;24(4):807–813. doi:10.1007/s00467-008-1083-8 PubMed DOI
Rianthavorn P, Boonyapapong P. Ergocalciferol decreases erythropoietin resistance in children with chronic kidney disease stage 5. Pediatr Nephrol. 2013;28(8):1261–1266. doi:10.1007/s00467-013-2431-x PubMed DOI
Escobedo-Monge MF Ayala-Macedo G Sakihara G, et al. . Effects of zinc supplementation on nutritional status in children with chronic kidney disease: a randomized trial. Nutrients. 2019;11(11):2671. doi:10.3390/nu11112671 PubMed DOI PMC
López-Herce J Sánchez C Carrillo A, et al. . Transpyloric enteral nutrition in the critically ill child with renal failure. Intensive Care Med. 2006;32(10):1599–1605. doi:10.1007/s00134-006-0271-x PubMed DOI
Wong Vega M, Juarez Calderon M, Tufan Pekkucuksen N, Srivaths P, Akcan Arikan A. Feeding modality is a barrier to adequate protein provision in children receiving continuous renal replacement therapy (CRRT). Pediatr Nephrol. 2019;34(6):1147–1150. doi:10.1007/s00467-019-04211-z PubMed DOI
Skillman HE, Wischmeyer PE. Nutrition therapy in critically ill infants and children. JPEN J Parenter Enteral Nutr. 2008;32(5):520–534. doi:10.1177/0148607108322398 PubMed DOI
Ostermann M Summers J Lei K, et al. . Micronutrients in critically ill patients with severe acute kidney injury – a prospective study. Sci Rep. 2020;10(1):1505. doi:10.1038/s41598-020-58115-2 PubMed DOI PMC
Pereira DS, da Silva VM, Luz GD, Silva FM, Dalle Molle R. Nutrition risk prevalence and screening tools' validity in pediatric patients: a systematic review. JPEN J Parenter Enteral Nutr. 2023;47(2):184–206. doi:10.1002/jpen.2462 PubMed DOI
Becker PJ, Brunet-Wood MK. Pediatric malnutrition screening and assessment tools: analyzing the gaps. Nutr Clin Pract. 2022;37(5):1088–1104. doi:10.1002/ncp.10793 PubMed DOI
Green Corkins K, Teague EE. Pediatric nutrition assessment: anthropometrics to zinc. Nutr Clin Pract. 2017;32(1):40–51. doi:10.1177/0884533616679639 PubMed DOI
Green Corkins K. Nutrition-focused physical examination in pediatric patients. Nutr Clin Pract. 2015;30(2):203–209. doi:10.1177/0884533615572654 PubMed DOI
World Health Organization. Weight Velocity. Accessed January 5 2023. https://www.who.int/tools/child-growth-standards/standards/weight-velocity
Mehta NM Corkins MR Lyman B, et al. . Defining pediatric malnutrition: a paradigm shift toward etiology-related definitions. JPEN J Parenter Enteral Nutr. 2013;37(4):460–481. doi:10.1177/0148607113479972 PubMed DOI
Bouma S. Diagnosing pediatric malnutrition: paradigm shifts of etiology-related definitions and appraisal of the indicators. Nutr Clin Pract. 2017;32(1):52–67. doi:10.1177/0884533616671861 PubMed DOI
Chou JH, Roumiantsev S, Singh R. PediTools electronic growth chart calculators: applications in clinical care, research, and quality improvement. J Med Internet Res. 2020;22(1):e16204. doi:10.2196/16204 PubMed DOI PMC
Evans DC Corkins MR Malone A, et al. . The use of visceral proteins as nutrition markers: an ASPEN position paper. Nutr Clin Pract. 2021;36(1):22–28. doi:10.1002/ncp.10588 PubMed DOI
Tekgüç H, Özel D, Sanaldi H, Akbaş H, Dursun O. Prealbumin and retinol binding proteins are not useable for nutrition follow-up in pediatric intensive care units. Pediatr Gastroenterol Hepatol Nutr. 2018;21(4):321–328. doi:10.5223/pghn.2018.21.4.321 PubMed DOI PMC
Ostermann M, Lumlertgul N, Mehta R. Nutritional assessment and support during continuous renal replacement therapy. Semin Dial. 2021;34(6):449–456. doi:10.1111/sdi.12973 PubMed DOI
Perez Valdivieso JR, Bes-Rastrollo M, Monedero P, de Irala J, Lavilla FJ. Impact of prealbumin levels on mortality in patients with acute kidney injury: an observational cohort study. J Ren Nutr. 2008;18(3):262–268. doi:10.1053/j.jrn.2007.11.003 PubMed DOI
Guimarães SM, Lima EQ, Cipullo JP, Lobo SM, Burdmann EA. Low insulin-like growth factor-1 and hypocholesterolemia as mortality predictors in acute kidney injury in the intensive care unit. Crit Care Med. 2008;36(12):3165–3170. doi:10.1097/CCM.0b013e318186ab70 PubMed DOI
Khor BH, Tiong HC, Tan SC, Abdul Rahman R, Abdul Gafor AH. Protein-energy wasting assessment and clinical outcomes in patients with acute kidney injury: a systematic review with meta-analysis. Nutrients. 2020;12(9):2809. doi:10.3390/nu12092809 PubMed DOI PMC
Keller U. Nutritional laboratory markers in malnutrition. J Clin Med. 2019;8(6):775. doi:10.3390/jcm8060775 PubMed DOI PMC
Sabatino A Regolisti G Bozzoli L, et al. . Reliability of bedside ultrasound for measurement of quadriceps muscle thickness in critically ill patients with acute kidney injury. Clin Nutr. 2017;36(6):1710–1715. doi:10.1016/j.clnu.2016.09.029 PubMed DOI
Gerovasili V Tripodaki E Karatzanos E, et al. . Short-term systemic effect of electrical muscle stimulation in critically ill patients. Chest. 2009;136(5):1249–1256. doi:10.1378/chest.08-2888 PubMed DOI
Branson RD, Johannigman JA. The measurement of energy expenditure. Nutr Clin Pract. 2004;19(6):622–636. doi:10.1177/0115426504019006622 PubMed DOI
May AG, Sen A, Cove ME, Kellum JA, Federspiel WJ. Extracorporeal CO(2) removal by hemodialysis: in vitro model and feasibility. Intensive Care Med Exp. 2017;5(1):20. doi:10.1186/s40635-017-0132-7 PubMed DOI PMC
Jonckheer J, Spapen H, Malbrain M, Oschima T, De Waele E. Energy expenditure and caloric targets during continuous renal replacement therapy under regional citrate anticoagulation. A viewpoint. Clin Nutr. 2020;39(2):353–357. doi:10.1016/j.clnu.2019.02.034 PubMed DOI
Moonen HPFX, Beckers KJH, van Zanten ARH. Energy expenditure and indirect calorimetry in critical illness and convalescence: current evidence and practical considerations. J Intensive Care. 2021;9(1):8. doi:10.1186/s40560-021-00524-0 PubMed DOI PMC
Honoré PM De Waele E Jacobs R, et al. . Nutritional and metabolic alterations during continuous renal replacement therapy. Blood Purif. 2013;35(4):279–284. doi:10.1159/000350610 PubMed DOI
Jonckheer J, Demol J, Lanckmans K, Malbrain M, Spapen H, De Waele E. MECCIAS trial: metabolic consequences of continuous veno-venous hemofiltration on indirect calorimetry. Clin Nutr. 2020;39(12):3797–3803. doi:10.1016/j.clnu.2020.04.017 PubMed DOI
Druml W. Metabolic aspects of continuous renal replacement therapies. Kidney Int. 1999;56(72):S56–S61. doi:10.1046/j.1523-1755.56.s72.1.x PubMed DOI
Briassoulis G, Zavras N, Hatzis T. Malnutrition, nutritional indices, and early enteral feeding in critically ill children. Nutrition. 2001;17(7-8):548–557. doi:10.1016/s0899-9007(01)00578-0 PubMed DOI
Carpenter A, Pencharz PB, Mouzaki M. Accurate estimation of energy requirements of young patients. J Pediatr Gastroenterol Nutr. 2015;60(1):4–10. doi:10.1097/MPG.0000000000000572 PubMed DOI
Sabatino A, Regolisti G, Maggiore U, Fiaccadori E. Protein/energy debt in critically ill children in the pediatric intensive care unit: acute kidney injury as a major risk factor. J Ren Nutr. 2014;24(4):209–218. doi:10.1053/j.jrn.2013.08.007 PubMed DOI
Das JK Salam RA Thornburg KL, et al. . Nutrition in adolescents: physiology, metabolism, and nutritional needs. Ann N Y Acad Sci. 2017;1393(1):21–33. doi:10.1111/nyas.13330 PubMed DOI
Preiser J, Ichai C, Orban J, Groeneveld A. Metabolic response to the stress of critical illness. Br J Anaesth. 2014;113(6):945–954. doi:10.1093/bja/aeu187 PubMed DOI
Tappy L Schwarz JM Schneiter P, et al. . Effects of isoenergetic glucose-based or lipid-based parenteral nutrition on glucose metabolism, de novo lipogenesis, and respiratory gas exchanges in critically ill patients. Crit Care Med. 1998;26(5):860–867. doi:10.1097/00003246-199805000-00018 PubMed DOI
Agus MS, Jaksic T. Nutritional support of the critically ill child. Curr Opin Pediatr. 2002;14(4):470–481. doi:10.1097/00008480-200208000-00020 PubMed DOI
Malbrain M, Regenmortel N, Owczuk R. It is time to consider the four D's of fluid management. Anaesthesiol Intensive Ther. 2015:11–17. doi:10.5603/AIT.a2015.0070 PubMed DOI
Raina R, Sethi SK, Wadhwani N, Vemuganti M, Krishnappa V, Bansal SB. Fluid overload in critically ill children. Front Pediatr. 2018;6:306. doi:10.3389/fped.2018.00306 PubMed DOI PMC
Sutherland SM Zappitelli M Alexander SR, et al. . Fluid overload and mortality in children receiving continuous renal replacement therapy: the prospective pediatric continuous renal replacement therapy registry. Am J Kidney Dis. 2010;55(2):316–325. doi:10.1053/j.ajkd.2009.10.048 PubMed DOI
Alobaidi R Morgan C Basu RK, et al. . Association between fluid balance and outcomes in critically ill children: a systematic review and meta-analysis. JAMA Pediatr. 2018;172(3):257–268. doi:10.1001/jamapediatrics.2017.4540 PubMed DOI PMC
Hayes W, Paglialonga F. Assessment and management of fluid overload in children on dialysis. Pediatr Nephrol. 2019;34(2):233–242. doi:10.1007/s00467-018-3916-4 PubMed DOI PMC
Ash JL, Worrall CL. Metabolic and Nutrition Issues in Patients Receiving Continuous Renal Replacement Therapy, 6th ed. PSAP. 2009.
Nystrom EM, Nei AM. Metabolic support of the patient on continuous renal replacement therapy. Nutr Clin Pract. 2018;33(6):754–766. doi:10.1002/ncp.10208 PubMed DOI
Fiaccadori E, Regolisti G, Maggiore U. Specialized nutritional support interventions in critically ill patients on renal replacement therapy. Curr Opin Clin Nutr Metab Care. 2013;16(2):217–224. doi:10.1097/MCO.0b013e32835c20b0 PubMed DOI
Grams ME, Rabb H. The distant organ effects of acute kidney injury. Kidney Int. 2012;81(10):942–948. doi:10.1038/ki.2011.241 PubMed DOI
Himmelfarb J, Ikizler TA. Acute kidney injury: changing lexicography, definitions, and epidemiology. Kidney Int. 2007;71(10):971–976. doi:10.1038/sj.ki.5002224 PubMed DOI
Nguyen DL. Guidance for supplemental enteral nutrition across patient populations. Am J Manag Care. 2017;23(12 suppl):S210–S219. PMID: 28727475. PubMed
Balik M Zakharchenko M Otahal M, et al. . Quantification of systemic delivery of substrates for intermediate metabolism during citrate anticoagulation of continuous renal replacement therapy. Blood Purif. 2012;33(1-3):80–87. doi:10.1159/000334641 PubMed DOI
Balik M Zakharchenko M Leden P, et al. . Bioenergetic gain of citrate anticoagulated continuous hemodiafiltration–a comparison between 2 citrate modalities and unfractionated heparin. J Crit Care. 2013;28(1):87–95. doi:10.1016/j.jcrc.2012.06.003 PubMed DOI
Ashton DN, Mehta RL, Ward DM, McDonald BR, Aguilar MM. Recent advances in continuous renal replacement therapy: citrate anticoagulated continuous arteriovenous hemodialysis. ANNA J. 1991;18(3):263–267. PMID: 2064452. PubMed
Apsner R, Druml W. More on anticoagulation for continuous hemofiltration. N Engl J Med. 1998;338(2):131–132. doi:10.1056/NEJM199801083380214 PubMed DOI
Palsson R, Niles JL. Regional citrate anticoagulation in continuous venovenous hemofiltration in critically ill patients with a high risk of bleeding. Kidney Int. 1999;55(5):1991–1997. doi:10.1046/j.1523-1755.1999.00444.x PubMed DOI
Morabito S Pistolesi V Tritapepe L, et al. . Regional citrate anticoagulation in cardiac surgery patients at high risk of bleeding: a continuous veno-venous hemofiltration protocol with a low concentration citrate solution. Crit Care. 2012;16(3):R111. doi:10.1186/cc11403 PubMed DOI PMC
Schetz M, Vanhorebeek I, Wouters PJ, Wilmer A, Van den Berghe G. Tight blood glucose control is renoprotective in critically ill patients. J Am Soc Nephrol. 2008;19(3):571–578. doi:10.1681/ASN.2006101091 PubMed DOI PMC
Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120(4):c179–c184. doi:10.1159/000339789 PubMed DOI
Scurlock C, Raikhelkar J, Mechanick JI. Critique of normoglycemia in intensive care evaluation: survival using glucose algorithm regulation (NICE-SUGAR)--a review of recent literature. Curr Opin Clin Nutr Metab Care. 2010;13(2):211–214. doi:10.1097/MCO.0b013e32833571f4 PubMed DOI
Briassoulis G. Nutrition monitoring in the PICU. Pediatric Critical Care Medicine. 2014:579–601. doi:10.1007/978-1-4471-6362-6_42 PubMed DOI
Agus MS Wypij D Hirshberg EL, et al. . Tight glycemic control in critically ill children. N Engl J Med. 2017;376(8):729–741. doi:10.1056/NEJMoa1612348 PubMed DOI PMC
Maursetter L, Kight CE, Mennig J, Hofmann RM. Review of the mechanism and nutrition recommendations for patients undergoing continuous renal replacement therapy. Nutr Clin Pract. 2011;26(4):382–390. doi:10.1177/0884533611413899 PubMed DOI
McClave SA Taylor BE Martindale RG, et al. . Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of critical care medicine (SCCM) and American Society for parenteral and enteral nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr. 2016;40(2):159–211. doi:10.1177/0148607115621863 PubMed DOI
Pollack MM, Ruttimann UE, Wiley JS. Nutritional depletions in critically ill children: associations with physiologic instability and increased quantity of care. JPEN J Parenter enteral Nutr. 1985;9(3):309–313. doi:10.1177/0148607185009003309 PubMed DOI
Allingstrup MJ Esmailzadeh N Wilkens Knudsen A, et al. . Provision of protein and energy in relation to measured requirements in intensive care patients. Clin Nutr. 2012;31(4):462–468. doi:10.1016/j.clnu.2011.12.006 PubMed DOI
Butler BA. Nutritional management of catabolic acute renal failure requiring renal replacement therapy. ANNA J. 1991;18(3):247–254. PMID: 1905911. PubMed
Coss-Bu JA, Jefferson LS, Walding D, David Y, Smith EO, Klish WJ. Resting energy expenditure in children in a pediatric intensive care unit: comparison of Harris-Benedict and Talbot predictions with indirect calorimetry values. Am J Clin Nutr. 1998;67(1):74–80. doi:10.1093/ajcn/67.1.74 PubMed DOI
Lefler DM, Pafford RG, Black NA, Raymond JR, Arthur JM. Identification of proteins in slow continuous ultrafiltrate by reversed-phase chromatography and proteomics. J Proteome Res. 2004;3(6):1254–1260. doi:10.1021/pr0498640 PubMed DOI
Scheinkestel CD Adams F Mahony L, et al. . Impact of increasing parenteral protein loads on amino acid levels and balance in critically ill anuric patients on continuous renal replacement therapy. Nutrition. 2003;19(9):733–740. doi:10.1016/s0899-9007(03)00107-2 PubMed DOI
Sáez-Plaza P, Navas M, Wybraniec S, Michałowski T, Asuero AG. An overview of the Kjeldahl method of nitrogen determination. Part II. Sample preparation, working scale, instrumental finish, and quality control. Crit Rev Anal Chem. 2013;43(4):224–272. doi:10.1080/10408347.2012.751787 DOI
Kihara M Ikeda Y Fujita H, et al. . Amino acid losses and nitrogen balance during slow diurnal hemodialysis in critically ill patients with renal failure. Intensive Care Med. 1997;23(1):110–113. doi:10.1007/s001340050299 PubMed DOI
Blumenkrantz MJ Gahl GM Kopple JD, et al. . Protein losses during peritoneal dialysis. Kidney Int. 1981;19(4):593–602. doi:10.1038/ki.1981.57 PubMed DOI
Bellomo R Tan HK Bhonagiri S, et al. . High protein intake during continuous hemodiafiltration: impact on amino acids and nitrogen balance. Int J Artif Organs. 2002;25(4):261–268. doi:10.1177/039139880202500403 PubMed DOI
Btaiche IF, Mohammad RA, Alaniz C, Mueller BA. Amino acid requirements in critically ill patients with acute kidney injury treated with continuous renal replacement therapy. Pharmacotherapy. 2008;28(5):600–613. doi:10.1592/phco.28.5.600 PubMed DOI
Bellomo R Seacombe J Daskalakis M, et al. . A prospective comparative study of moderate versus high protein intake for critically ill patients with acute renal failure. Ren Fail. 1997;19(1):111–120. doi:10.3109/08860229709026265 PubMed DOI
Scheinkestel CD Kar L Marshall K, et al. . Prospective randomized trial to assess caloric and protein needs of critically Ill, anuric, ventilated patients requiring continuous renal replacement therapy. Nutrition. 2003;19(11-12):909–916. doi:10.1016/s0899-9007(03)00175-8 PubMed DOI
Mehta NM, Compher C.; A.S.P.E.N. Board of Directors. A.S.P.E.N. Clinical Guidelines: nutrition support of the critically ill child. JPEN J Parenter Enteral Nutr. 2009;33(3):260–276. doi:10.1177/0148607109333114 PubMed DOI
Druml W, Fischer M, Liebisch B, Lenz K, Roth E. Elimination of amino acids in renal failure. Am J Clin Nutr. 1994;60(3):418–423. doi:10.1093/ajcn/60.3.418 PubMed DOI
Avenell A. Glutamine in critical care: current evidence from systematic reviews. Proc Nutr Soc. 2006;65(3):236–241. doi:10.1079/pns2006498 PubMed DOI
Weitzel LR, Wischmeyer PE. Glutamine in critical illness: the time has come, the time is now. Crit Care Clin. 2010;26(3):515–525, ix-x. doi:10.1016/j.ccc.2010.04.006 PubMed DOI
Fah M Van Althuis LE Ohnuma T, et al. . Micronutrient deficiencies in critically ill patients receiving continuous renal replacement therapy. Clin Nutr ESPEN. 2022;50:247–254. doi:10.1016/j.clnesp.2022.05.008 PubMed DOI
Battistella PA, Vergani L, Donzelli F, Rubaltelli FF, Angelini C. Plasma and urine carnitine levels during development. Pediatr Res. 1980;14(12):1379–1381. doi:10.1203/00006450-198012000-00024 PubMed DOI
Green P, Theilla M, Singer P. Lipid metabolism in critical illness. Curr Opin Clin Nutr Metab Care. 2016;19(2):111–115. doi:10.1097/mco.0000000000000253 PubMed DOI
Wiesen P, Van Overmeire L, Delanaye P, Dubois B, Preiser JC. Nutrition disorders during acute renal failure and renal replacement therapy. JPEN J Parenter enteral Nutr. 2011;35(2):217–222. doi:10.1177/0148607110377205 PubMed DOI
Cioccari L, Luethi N, Masoodi M. Lipid mediators in critically ill patients: a step towards precision medicine. Front Immunol. 2020;11:599853. doi:10.3389/fimmu.2020.599853 PubMed DOI PMC
Dębska-ślizień A Kawecka A Wojnarowski K, et al. . Correlation between plasma carnitine, muscle carnitine and glycogen levels in maintenance hemodialysis patients. Int J Artif Organs. 2000;23(2):90–96. PMID: 10741803. PubMed
Friedman Z, Danon A, Stahlman MT, Oates JA. Rapid onset of essential fatty acid deficiency in the newborn. Pediatrics. 1976;58(5):640–649. doi:10.1542/peds.58.5.640 PubMed DOI
Yuan G, Al-Shali KZ, Hegele RA. Hypertriglyceridemia: its etiology, effects and treatment. CMAJ. 2007;176(8):1113–1120. doi:10.1503/cmaj.060963 PubMed DOI PMC
Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents, National Heart, Lung, and Blood Institute. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics. 2011;128(suppl 5):S213–S256. doi:10.1542/peds.2009-2107C PubMed DOI PMC
Koletzko B Goulet O Hunt J, et al. . 1. Guidelines on paediatric parenteral nutrition of the European Society of paediatric Gastroenterology, Hepatology and nutrition (ESPGHAN) and the European Society for clinical nutrition and metabolism (ESPEN), supported by the European Society of paediatric research (ESPR). J Pediatr Gastroenterol Nutr. 2005;41(suppl 2):S1–S87. doi:10.1097/01.mpg.0000181841.07090.f4 PubMed DOI
Tomsits E, Pataki M, Tölgyesi A, Fekete G, Rischak K, Szollár L. Safety and efficacy of a lipid emulsion containing a mixture of soybean oil, medium-chain triglycerides, olive oil, and fish oil: a randomised, double-blind clinical trial in premature infants requiring parenteral nutrition. J Pediatr Gastroenterol Nutr. 2010;51(4):514–521. doi:10.1097/MPG.0b013e3181de210c PubMed DOI
Singer P Berger MM Van den Berghe G, et al. . ESPEN guidelines on parenteral nutrition: intensive care. Clin Nutr. 2009;28(4):387–400. doi:10.1016/j.clnu.2009.04.024 PubMed DOI
Wooley JA, Btaiche IF, Good KL. Metabolic and nutritional aspects of acute renal failure in critically ill patients requiring continuous renal replacement therapy. Nutr Clin Pract. 2005;20(2):176–191. doi:10.1177/0115426505020002176 PubMed DOI
Palevsky PM Zhang JH O'Connor TZ, et al. .; VA/NIH Acute Renal Failure Trial Network. Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med. 2008;359(1):7–20. doi:10.1056/NEJMoa0802639 PubMed DOI PMC
Bellomo R Cass A Cole L, et al. .; RENAL Replacement Therapy Study Investigators. Intensity of continuous renal-replacement therapy in critically ill patients. New Engl J Med. 2009;361(17):1627–1638. doi:10.1056/NEJMoa0902413 PubMed DOI
Prowle J, Bellomo R. Continuous renal replacement therapy: recent advances and future research. Nat Rev Nephrol. 2010;6(9):521–529. doi:10.1038/nrneph.2010.100 PubMed DOI
Santoro A Mancini E London G, et al. . Patients with complex arrhythmias during and after haemodialysis suffer from different regimens of potassium removal. Nephrol Dial Transplant. 2008;23(4):1415–1421. doi:10.1093/ndt/gfm730 PubMed DOI
Formeck CL, Siripong N, Joyce EL, Ayus JC, Kellum JA, Moritz ML. Association of early hyponatremia and the development of acute kidney injury in critically ill children. Pediatr Nephrol. 2022;37(11):2755–2763. doi:10.1007/s00467-022-05478-5 PubMed DOI PMC
Tandukar S, Kim C, Kalra K, Verma S, Palevsky P, Puttarajappa C. Severe hyponatremia and continuous renal replacement therapy: safety and effectiveness of low-sodium dialysate. Kidney Med. 2020;2(4):437–449. doi:10.1016/j.xkme.2020.05.007 PubMed DOI PMC
Davenport A, Tolwani A. Citrate anticoagulation for continuous renal replacement therapy (CRRT) in patients with acute kidney injury admitted to the intensive care unit. NDT Plus. 2009;2(6):439–447. doi:10.1093/ndtplus/sfp136 PubMed DOI PMC
Santiago MJ, Lopez-Herce J, Urbano J, Bellón JM, Del Castillo J, Carrillo A. Hypophosphatemia and phosphate supplementation during continuous renal replacement therapy in children. Kidney Int. 2009;75(3):312–316. doi:10.1038/ki.2008.570 PubMed DOI
Datzmann T, Träger K. Vitamin and trace element administration during continuous renal replacement therapy (CRRT) in the Intensive Care Unit (ICU). Integr Food Nutr Metab. 2019;6(5):2. doi:10.15761/IFNM.1000262 DOI
Story DA, Ronco C, Bellomo R. Trace element and vitamin concentrations and losses in critically ill patients treated with continuous venovenous hemofiltration. Crit Care Med. 1999;27(1):220–223. doi:10.1097/00003246-199901000-00057 PubMed DOI
Berger MM, Broman M, Forni L, Ostermann M, De Waele E, Wischmeyer PE. Nutrients and micronutrients at risk during renal replacement therapy: a scoping review. Curr Opin Crit Care. 2021;27(4):367–377. doi:10.1097/MCC.0000000000000851 PubMed DOI PMC
Dao DT, Anez-Bustillos L, Cho BS, Li Z, Puder M, Gura KM. Assessment of micronutrient status in critically ill children: challenges and opportunities. Nutrients. 2017;9(11):1185. doi:10.3390/nu9111185 PubMed DOI PMC
Zhang X Yang K Chen L, et al. . Vitamin A deficiency in critically ill children with sepsis. Crit Care. 2019;23:267–269. doi:10.1186/s13054-019-2548-9 PubMed DOI PMC
Casaer MP, Bellomo R. Micronutrient deficiency in critical illness: an invisible foe?. Intensive Care Med. 2019;45(8):1136–1139. doi:10.1007/s00134-019-05678-y PubMed DOI
Dubey P, Thakur V, Chattopadhyay M. Role of minerals and trace elements in diabetes and insulin resistance. Nutrients. 2020;12(6):1864. doi:10.3390/nu12061864 PubMed DOI PMC
Maynar Moliner J, Honore PM, Sánchez-Izquierdo Riera JA, Herrera Gutiérrez M, Spapen HD. Handling continuous renal replacement therapy-related adverse effects in intensive care unit patients: the dialytrauma concept. Blood Purif. 2012;34(2):177–185. doi:10.1159/000342064 PubMed DOI
Roman M, Jitaru P, Barbante C. Selenium biochemistry and its role for human health. Metallomics. 2014;6(1):25–54. doi:10.1039/c3mt00185g PubMed DOI
Manzanares W, Dhaliwal R, Jiang X, Murch L, Heyland DK. Antioxidant micronutrients in the critically ill: a systematic review and meta-analysis. Crit Care. 2012;16(2):R66. doi:10.1186/cc11316 PubMed DOI PMC
Mertens K Lowes DA Webster NR, et al. . Low zinc and selenium concentrations in sepsis are associated with oxidative damage and inflammation. Br J Anaesth. 2015;114(6):990–999. doi:10.1093/bja/aev073 PubMed DOI
Kamel AY, Dave NJ, Zhao VM, Griffith DP, Connor MJ, Ziegler TR. Micronutrient alterations during continuous renal replacement therapy in critically ill adults: a retrospective study. Nutr Clin Pract. 2018;33(3):439–446. doi:10.1177/0884533617716618 PubMed DOI
Broman M, Bryland A, Carlsson O.; T-Trace Acute Study Group. Trace elements in patients on continuous renal replacement therapy. Acta Anaesthesiol Scand. 2017;61(6):650–659. doi:10.1111/aas.12909 PubMed DOI
Churchwell MD, Pasko DA, Btaiche IF, Jain JC, Mueller BA. Trace element removal during in vitro and in vivo continuous haemodialysis. Nephrol Dial Transplant. 2007;22(10):2970–2977. doi:10.1093/ndt/gfm352 PubMed DOI
Seres DS, Valcarcel M, Guillaume A. Advantages of enteral nutrition over parenteral nutrition. Therap Adv Gastroenterol. 2013;6(2):157–167. doi:10.1177/1756283x12467564 PubMed DOI PMC
Mehta NM Bechard LJ Cahill N, et al. . Nutritional practices and their relationship to clinical outcomes in critically ill children--an international multicenter cohort study. Crit Care Med. 2012;40(7):2204–2211. doi:10.1097/CCM.0b013e31824e18a8 PubMed DOI PMC
Mehta NM, Bechard LJ, Zurakowski D, Duggan CP, Heyland DK. Adequate enteral protein intake is inversely associated with 60-d mortality in critically ill children: a multicenter, prospective, cohort study. Am J Clin Nutr. 2015;102(1):199–206. doi:10.3945/ajcn.114.104893 PubMed DOI PMC
Tume LN Valla FV Joosten K, et al. . Nutritional support for children during critical illness: European Society of Pediatric and Neonatal Intensive Care (ESPNIC) metabolism, endocrine and nutrition section position statement and clinical recommendations. Intensive Care Med. 2020;46(3):411–425. doi:10.1007/s00134-019-05922-5 PubMed DOI PMC
Kratochvíl M Klučka J Klabusayová E, et al. . Nutrition in pediatric intensive care: a narrative review. Children. 2022;9(7):1031. doi:10.3390/children9071031 PubMed DOI PMC
Mehta NM McAleer D Hamilton S, et al. . Challenges to optimal enteral nutrition in a multidisciplinary pediatric intensive care unit. JPEN J Parenter Enteral Nutr. 2010;34(1):38–45. doi:10.1177/0148607109348065 PubMed DOI PMC
Singer P Blaser AR Berger MM, et al. . ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2019;38(1):48–79. doi:10.1016/j.clnu.2018.08.037 PubMed DOI
López-Herce J, Santiago M, Sánchez C, Mencia S, Carrillo A, Vigil D. Risk factors for gastrointestinal complications in critically ill children with transpyloric enteral nutrition. Eur J Clin Nutr. 2008;62(3):395–400. doi:10.1038/sj.ejcn.1602710 PubMed DOI
Zhang J Ankawi G Sun J, et al. . Gut–kidney crosstalk in septic acute kidney injury. Crit Care. 2018;22(1):117–118. doi:10.1186/s13054-018-2040-y PubMed DOI PMC
Ibrahim H, Mansour M, El Gendy Y. Peptide-based formula versus standard-based polymeric formula for critically ill children: is it superior for patients’ tolerance? Arch Med Sci. 2020;16(3):592–596. doi:10.5114/aoms.2020.94157 PubMed DOI PMC
Eveleens R, Dungen D, Verbruggen S, Hulst J, Joosten K. Weight improvement with the use of protein and energy enriched nutritional formula in infants with a prolonged PICU stay. J Hum Nutr Diet. 2019;32(1):3–10. doi:10.1111/jhn.12603 PubMed DOI
Zhang H, Gu Y, Mi Y, Jin Y, Fu W, Latour JM. High-energy nutrition in paediatric cardiac critical care patients: a randomized controlled trial. Nurs Crit Care. 2019;24(2):97–102. doi:10.1111/nicc.12400 PubMed DOI
Kar P Plummer MP Chapman MJ, et al. . Energy-dense formulae may slow gastric emptying in the critically ill. JPEN J Parenter Enteral Nutr. 2016;40(7):1050–1056. doi:10.1177/0148607115588333 PubMed DOI
Fiaccadori E, Cremaschi E. Nutritional assessment and support in acute kidney injury. Curr Opin Crit Care. 2009;15(6):474–480. doi:10.1097/MCC.0b013e328332f6b2 PubMed DOI
Fiaccadori E, Parenti E, Maggiore U. Nutritional support in acute kidney injury. J Nephrol. 2008;21(5):645–656. PMID: 18949718. PubMed
McCarthy MS, Phipps SC. Special nutrition challenges: current approach to acute kidney injury. Nutr Clin Pract. 2014;29(1):56–62. doi:10.1177/0884533613515726 PubMed DOI
Silva FMd Bermudes ACG Maneschy IR, et al. . Impact of early enteral nutrition therapy on morbimortality reduction in a pediatric intensive care unit: a systematic review. Rev Assoc Med Bras (1992). 2013;59(6):563–570. doi:10.1016/j.ramb.2013.06.013 PubMed DOI
Fivez T Kerklaan D Mesotten D, et al. . Early versus late parenteral nutrition in critically ill children. New Engl J Med. 2016;374(12):1111–1122. doi:10.1056/nejmoa1514762 PubMed DOI
Hamiel CR, Pinto S, Hau A, Wischmeyer PE. Glutamine enhances heat shock protein 70 expression via increased hexosamine biosynthetic pathway activity. Am J Physiol Cell Physiol. 2009;297(6):C1509–C1519. doi:10.1152/ajpcell.00240.2009 PubMed DOI PMC
Stapleton RD, Martin JM, Mayer K. Fish oil in critical illness: mechanisms and clinical applications. Crit Care Clin. 2010;26(3):501–514, ix. doi:10.1016/j.ccc.2010.04.009 PubMed DOI PMC
Hassan IR, Gronert K. Acute changes in dietary omega-3 and omega-6 polyunsaturated fatty acids have a pronounced impact on survival following ischemic renal injury and formation of renoprotective docosahexaenoic acid-derived protectin D1. J Immunol. 2009;182(5):3223–3232. doi:10.4049/jimmunol.0802064 PubMed DOI
Fiaccadori E Sabatino A Barazzoni R, et al. . ESPEN guideline on clinical nutrition in hospitalized patients with acute or chronic kidney disease. Clin Nutr. 2021;40(4):1644–1668. doi:10.1016/j.clnu.2021.01.028 PubMed DOI
Trautmann A Vivarelli M Samuel S, et al. . IPNA clinical practice recommendations for the diagnosis and management of children with steroid-sensitive nephrotic syndrome. Pediatr Nephrol. 2020;35(8):1529–1561. doi:10.1007/s00467-020-04519-1 PubMed DOI PMC
American Academy of Pediatrics (AAP). Classifying Recommendations for Clinical Practice Guidelines; 2004. PubMed