Encapsulation of Uranium Oxide in Multiwall WS2 Nanotubes

. 2024 Apr ; 20 (14) : e2307684. [epub] 20231221

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38126906

Uranium is a high-value energy element, yet also poses an appreciable environmental burden. The demand for a straightforward, low energy, and environmentally friendly method for encapsulating uranium species can be beneficial for long-term storage of spent uranium fuel and a host of other applications. Leveraging on the low melting point (60 °C) of uranyl nitrate hexahydrate and nanocapillary effect, a uranium compound is entrapped in the hollow core of WS2 nanotubes. Followingly, the product is reduced at elevated temperatures in a hydrogen atmosphere. Nanocrystalline UO2 nanoparticles anchor within the WS2 nanotube lumen are obtained through this procedure. Such methodology can find utilization in the processing of spent nuclear fuel or other highly active radionuclides as well as a fuel for deep space missions. Moreover, the low melting temperatures of different heavy metal-nitrate hydrates, pave the way for their encapsulation within the hollow core of the WS2 nanotubes, as demonstrated herein.

Zobrazit více v PubMed

D. Deng, L. Zhang, M. Dong, R. E. Samuel, A. Ofori‐Boadu, M. Lamssali, Water Environ. Res. 2020, 92, 1818.

J. Bruno, L. Duro, F. Diaz‐Maurin, in Advances in Nuclear Fuel Chemistry, Elsevier, Amsterdam/New York 2020, pp. 527–553.

A. Upadhyaya, Mater. Chem. Phys. 2001, 67, 101.

P. A. Lessing, Development of `DUCRETE, Lockheed Idaho Technologies Company, California, USA 1995, https://doi.org/10.2172/366558.

Z. R. Ismagilov, S. V. Lazareva, N. V. Shikina, V. V. Kuznetsov, M. A. Kerzhentsev, Y. V. Ostrovsky, N. A. Rudina, V. A. Rogov, V. A. Ushakov, Mendeleev Commun. 2011, 21, 209.

Z. R. Ismagilov, S. V. Kuntsevich, V. V. Kuznetsov, N. V. Shikina, M. A. Kerzhentsev, V. A. Rogov, V. A. Ushakov, Kinet. Catal. 2007, 48, 511.

G. J. Hutchings, C. S. Heneghan, I. D. Hudson, S. H. Taylor, Nature 1996, 384, 341.

A. P. Amrute, F. Krumeich, C. Mondelli, J. Pérez‐Ramírez, Chem. Sci. 2013, 4, 2209.

L. Ling, W.‐X. Zhang, J. Am. Chem. Soc. 2015, 137, 2788.

P. Li, J. Wang, Y. Wang, J. Liang, B. He, D. Pan, Q. Fan, X. Wang, Chem. Eng. J. 2019, 365, 231.

D. Ji, Y. Liu, H. Ma, Z. Bai, Z. Qiao, D. Ji, C. Yan, Y. Yan, H. Wu, ACS Sustainable Chem. Eng. 2022, 10, 11990.

I. I. Fasfous, J. N. Dawoud, Appl. Surf. Sci. 2012, 259, 433.

L. S. Keith, O. M. Faroon, B. A. Fowler, in Handbook on the Toxicology of Metals, Elsevier, Amsterdam/New York 2007, pp. 881–903.

C. Ganguly, in Encyclopedia of Materials: Science and Technology, Elsevier, Amsterdam/New York 2001, pp. 1–15.

T. Chen, K. Yu, C. Dong, X. Yuan, X. Gong, J. Lian, X. Cao, M. Li, L. Zhou, B. Hu, R. He, W. Zhu, X. Wang, Coord. Chem. Rev. 2022, 467, 214615.

M. I. Ojovan, W. E. Lee, S. N. Kalmykov, An Introduction to Nuclear Waste Immobilisation, Elsevier, Amsterdam/New York 2019.

S. A. Kearney, B. Mcluckie, K. Webb, R. Orr, I. A. Vatter, A. S. Yorkshire, C. L. Corkhill, M. Hayes, M. J. Angus, J. L. Provis, J. Nucl. Mater. 2020, 530, 151960.

D. C. Phillips, J. W. Hitchon, D. I. Johnson, J. R. Matthews, J. Nucl. Mater. 1984, 125, 202.

K.‐W. Kim, R. I. Foster, J. Kim, H.‐H. Sung, D. Yang, W.‐J. Shon, M.‐K. Oh, K.‐Y. Lee, J. Nucl. Mater. 2019, 516, 238.

S. V. Yudintsev, M. S. Nickolsky, M. I. Ojovan, O. I. Stefanovsky, V. I. Malkovsky, A. S. Ulanova, L. R. Blackburn, Ceramics 2023, 6, 1573.

P. Szajerski, Chem. Eng. J. 2021, 404, 126495.

N. P. Laverov, S. V. Yudintsev, B. I. Omel'yanenko, Geol. Ore Deposits 2009, 51, 259.

Y. Zhang, L. Kong, M. Ionescu, D. J. Gregg, J. Eur. Ceram. Soc. 2022, 42, 1852.

C. Haertling, R. J. Hanrahan, J. Nucl. Mater. 2007, 366, 317.

M. Sessim, M. R. Tonks, Nuclear Technology 2021, 207, 1004.

Y. M. Kulyako, T. I. Trofimov, M. D. Samsonov, A. Y. Shadrin, B. F. Myasoedov, Radiochemistry 2008, 50, 250.

R. Tenne, L. Margulis, M. Genut, G. Hodes, Nature 1992, 360, 444.

M. Bar Sadan, M. Heidelmann, L. Houben, R. Tenne, Appl. Phys. A 2009, 96, 343.

A. Zak, L. Sallacan‐Ecker, A. Margolin, M. Genut, R. Tenne, Nano 2009, 04, 91.

L. Rapoport, N. Fleischer, R. Tenne, Adv. Mater. 2003, 15, 651.

C. S. Reddy, A. Zak, E. Zussman, J. Mater. Chem. 2011, 21, 16086.

L. Yadgarov, B. Visic, T. Abir, R. Tenne, A. Y. Polyakov, R. Levi, T. V. Dolgova, V. V. Zubyuk, A. A. Fedyanin, E. A. Goodilin, T. Ellenbogen, R. Tenne, D. Oron, Phys. Chem. Chem. Phys. 2018, 20, 20812.

D. Ugarte, A. Châtelain, W. A. De Heer, Science 1996, 274, 1897.

O. Goldbart, S. R. Cohen, I. Kaplan‐Ashiri, P. Glazyrina, H. D. Wagner, A. Enyashin, R. Tenne, Proc. Natl. Acad. Sci. 2016, 113, 13624.

S. C. Tsang, Y. K. Chen, P. J. F. Harris, M. L. H. Green, Nature 1994, 372, 159.

R. Kreizman, S. Y. Hong, J. Sloan, R. Popovitz‐Biro, A. Albu‐Yaron, G. Tobias, B. Ballesteros, B. G. Davis, M. L. H. Green, R. Tenne, Angew. Chem., Int. Ed. 2009, 48, 1230.

S. Sandoval, E. Pach, B. Ballesteros, G. Tobias, Carbon 2017, 123, 129.

N. Thamavaranukup, H. A. Höppe, L. Ruiz‐Gonzalez, P. M. F. J. Costa, J. Sloan, A. Kirkland, M. L. H. Green, Chem. Commun. 2004, 1686.

S. Bandi, A. K. Srivastav, J. Mater. Sci. 2021, 56, 6615.

E. R. Nazin, G. M. Zachinyaev, E. V. Belova, I. V. Skvortsov, B. F. Myasoedov, Radiochemistry 2019, 61, 665.

S. Hartland, R. J. Nesbitt, J. Appl. Chem. 2007, 14, 406.

C. R. Edwards, A. J. Oliver, JOM 2000, 52, 12.

R. D. Kozlova, V. A. Matyukha, N. V. Dedov, Radiochemistry 2007, 49, 130.

T. N. Filippov, D. A. Svintsitskiy, I. A. Chetyrin, I. P. Prosvirin, D. S. Selishchev, D. V. Kozlov, Appl. Catal., A 2018, 558, 81.

A. U. Olayiwola, H. Du, S.‐N. Wang, B. Liu, Y. Q. Lv, B. Pan, Tungsten 2023, 5, 145.

V. Kundrat, A. Patak, J. Pinkas, J. Nucl. Mater. 2019, 528, 151877.

V. Kundrat, V. Vykoukal, Z. Moravec, L. Simonikova, K. Novotny, J. Pinkas, J. Alloys Compd. 2022, 900, 163542.

E. Lassner, Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, Springer, Berlin 2013.

S. Kobayashi, N. Hosoda, R. Takashima, Nucl. Instrum. Methods Phys. Res., Sect. A 1997, 390, 426.

R. C. O'brien, N. D. Jerred, J. Nucl. Mater. 2013, 433, 50.

M. Colella, G. R. Lumpkin, Z. Zhang, E. C. Buck, K. L. Smith, Phys Chem Minerals 2005, 32, 52.

F. Rouquerol, J. Rouquerol, K. S. W. Sing, Adsorption by Powders and Porous Solids: Principles, Methodology, and Applications, Academic Press, San Diego 1999.

Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, (Eds:S. Lowell, J. E. Shields, M. A. Thomas, M. Thommes), Kluwer Academic Publishers, Dordrecht 2010.

J. Chen, S.‐L. Li, F. Gao, Z.‐L. Tao, Chem. Mater. 2003, 15, 1012.

P. Chithaiah, S. Ghosh, A. Idelevich, L. Rovinsky, T. Livneh, A. Zak, ACS Nano 2020, 14, 3004.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...