Analysis of chimeric reads characterises the diverse targetome of AGO2-mediated regulation
Language English Country England, Great Britain Media electronic
Document type Journal Article
Grant support
19-10976Y
Grantová Agentura České Republiky,Czechia
LQ1601
Central European Institute of Technology
20-19617S
Grantová Agentura České Republiky
CZ.02.01.01/00/22_008/0004575
OP-JAK
HORIZON-WIDERA-2022 BioGeMT 101086768
HORIZON EUROPE Framework Programme
PubMed
38129478
PubMed Central
PMC10739727
DOI
10.1038/s41598-023-49757-z
PII: 10.1038/s41598-023-49757-z
Knihovny.cz E-resources
- MeSH
- Argonaute Proteins genetics metabolism MeSH
- MicroRNAs * genetics metabolism MeSH
- RNA, Ribosomal MeSH
- RNA, Transfer MeSH
- Mammals metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Argonaute Proteins MeSH
- MicroRNAs * MeSH
- RNA, Ribosomal MeSH
- RNA, Transfer MeSH
Argonaute proteins are instrumental in regulating RNA stability and translation. AGO2, the major mammalian Argonaute protein, is known to primarily associate with microRNAs, a family of small RNA 'guide' sequences, and identifies its targets primarily via a 'seed' mediated partial complementarity process. Despite numerous studies, a definitive experimental dataset of AGO2 'guide'-'target' interactions remains elusive. Our study employs two experimental methods-AGO2 CLASH and AGO2 eCLIP, to generate thousands of AGO2 target sites verified by chimeric reads. These chimeric reads contain both the AGO2 loaded small RNA 'guide' and the target sequence, providing a robust resource for modeling AGO2 binding preferences. Our novel analysis pipeline reveals thousands of AGO2 target sites driven by microRNAs and a significant number of AGO2 'guides' derived from fragments of other small RNAs such as tRNAs, YRNAs, snoRNAs, rRNAs, and more. We utilize convolutional neural networks to train machine learning models that accurately predict the binding potential for each 'guide' class and experimentally validate several interactions. In conclusion, our comprehensive analysis of the AGO2 targetome broadens our understanding of its 'guide' repertoire and potential function in development and disease. Moreover, we offer practical bioinformatic tools for future experiments and the prediction of AGO2 targets. All data and code from this study are freely available at https://github.com/ML-Bioinfo-CEITEC/HybriDetector/ .
Central European Institute of Technology Masaryk University 62500 Brno Czech Republic
Centre for Molecular Medicine and Biobanking University of Malta Msida MSD 2080 Malta
See more in PubMed
Gebert LFR, MacRae IJ. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol. 2019;20:21–37. doi: 10.1038/s41580-018-0045-7. PubMed DOI PMC
Bartel DP. Metazoan microRNAs. Cell. 2018;173:20–51. doi: 10.1016/j.cell.2018.03.006. PubMed DOI PMC
Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song J-J, et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science. 2004;305:1437–1441. doi: 10.1126/science.1102513. PubMed DOI
Morita S, Horii T, Kimura M, Goto Y, Ochiya T, Hatada I. One Argonaute family member, Eif2c2 (Ago2), is essential for development and appears not to be involved in DNA methylation. Genomics. 2007;89:687–696. doi: 10.1016/j.ygeno.2007.01.004. PubMed DOI
Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP. Prediction of plant microRNA targets. Cell. 2002;110:513–520. doi: 10.1016/S0092-8674(02)00863-2. PubMed DOI
Bartel DP. MicroRNAs: Target recognition and regulatory functions. Cell. 2009;136:215–233. doi: 10.1016/j.cell.2009.01.002. PubMed DOI PMC
Ha I, Wightman B, Ruvkun G. A bulged lin-4/lin-14 RNA duplex is sufficient for Caenorhabditis elegans lin-14 temporal gradient formation. Genes. Dev. 1996;10:3041–3050. doi: 10.1101/gad.10.23.3041. PubMed DOI
Lal A. miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3ʹ UTR microRNA recognition elements. Mol. Cell. 2009;35:610–625. doi: 10.1016/j.molcel.2009.08.020. PubMed DOI PMC
Agarwal V, Bell GW, Nam J-W, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015 doi: 10.7554/eLife.05005. PubMed DOI PMC
Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets in drosophila. Genome Biol. 2003;5:R1. doi: 10.1186/gb-2003-5-1-r1. PubMed DOI PMC
Alexiou P, Maragkakis M, Papadopoulos GL, Reczko M, Hatzigeorgiou AG. Lost in translation: An assessment and perspective for computational microrna target identification. Bioinformatics. 2009;25(23):3049–3055. doi: 10.1093/bioinformatics/btp565. PubMed DOI
Kudla G, Granneman S, Hahn D, Beggs JD, Tollervey D. Cross-linking, ligation, and sequencing of hybrids reveals RNA–RNA interactions in yeast. Proc. Natl. Acad. Sci. U.S.A. 2011;108:10010–10015. doi: 10.1073/pnas.1017386108. PubMed DOI PMC
Helwak A, Kudla G, Dudnakova T, Tollervey D. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell. 2013;153:654–665. doi: 10.1016/j.cell.2013.03.043. PubMed DOI PMC
Klimentová E, Hejret V, Krčmář J, Grešová K, Giassa I-C, Alexiou P. miRBind: A deep learning method for miRNA binding classification. Genes. 2022;13:2323. doi: 10.3390/genes13122323. PubMed DOI PMC
Burroughs AM, Ando Y, de Hoon ML, Tomaru Y, Suzuki H, Hayashizaki Y, et al. Deep-sequencing of human Argonaute-associated small RNAs provides insight into miRNA sorting and reveals Argonaute association with RNA fragments of diverse origin. RNA Biol. 2011;8:158–177. doi: 10.4161/rna.8.1.14300. PubMed DOI PMC
Haussecker D, Huang Y, Lau A, Parameswaran P, Fire AZ, Kay MA. Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA. 2010;16:673–695. doi: 10.1261/rna.2000810. PubMed DOI PMC
Kumar P, Anaya J, Mudunuri SB, Dutta A. Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC Med. 2014;12:1–14. PubMed PMC
Kuscu C, Kumar P, Kiran M, Su Z, Malik A, Dutta A. tRNA fragments (tRFs) guide ago to regulate gene expression post-transcriptionally in a dicer-independent manner. RNA. 2018;24:1093–1105. doi: 10.1261/rna.066126.118. PubMed DOI PMC
Guan L, Karaiskos S, Grigoriev A. Inferring targeting modes of argonaute-loaded tRNA fragments. RNA Biol. 2020;17:1070–1080. doi: 10.1080/15476286.2019.1676633. PubMed DOI PMC
Guan L, Grigoriev A. Computational meta-analysis of ribosomal RNA fragments: Potential targets and interaction mechanisms. Nucleic Acids Res. 2021;49:4085–4103. doi: 10.1093/nar/gkab190. PubMed DOI PMC
Manakov SA, Shishkin AA, Yee BA, Shen KA, Cox DC, Park SS, et al. Scalable and deep profiling of mRNA targets for individual microRNAs with chimeric eCLIP. BioRxiv. 2022 doi: 10.1101/2022.02.13.480296. DOI
Libri V, Helwak A, Miesen P, Santhakumar D, Borger JG, Kudla G, et al. Murine cytomegalovirus encodes a miR-27 inhibitor disguised as a target. Proc. Natl. Acad. Sci. 2012;109:279–284. doi: 10.1073/pnas.1114204109. PubMed DOI PMC
Geng G, Wang H, Xin W, Liu Z, Chen J, Danting Z, et al. tRNA derived fragment (tRF)-3009 participates in modulation of IFN-α-induced CD4(+) T cell oxidative phosphorylation in lupus patients. J Transl Med. 2021;19:305. doi: 10.1186/s12967-021-02967-3. PubMed DOI PMC
Zhao, Y., Wang, R., Qin, Q., Yu, J., Che, H. & Wang L. Differentially expressed tRNA-derived fragments and their roles in primary cardiomyocytes stimulated by high glucose. Front. Endocrinol.13, (2023). PubMed PMC
Komina A, Palkina N, Aksenenko M, Tsyrenzhapova S, Ruksha T. Antiproliferative and Pro-Apoptotic Effects of MiR-4286 Inhibition in Melanoma Cells. PLoS One. 2016;11:e0168229. doi: 10.1371/journal.pone.0168229. PubMed DOI PMC
Ho K-H, Chen P-H, Shih C-M, Lee Y-T, Cheng C-H, Liu A-J, et al. miR-4286 is Involved in Connections Between IGF-1 and TGF-β Signaling for the Mesenchymal Transition and Invasion by Glioblastomas. Cell. Mol. Neurobiol. 2022;42:791–806. doi: 10.1007/s10571-020-00977-1. PubMed DOI PMC
Shen M, Xu X, Liu X, Wang Q, Li W, You X, et al. Prospective Study on Plasma MicroRNA‐4286 and Incident Acute Coronary Syndrome. J. Am. Heart Assoc. 2021;10:e018999. doi: 10.1161/JAHA.120.018999. PubMed DOI PMC
Kim B, Jeong K, Kim VN. Genome-wide mapping of DROSHA cleavage sites on primary micrornas and noncanonical substrates. Mol. Cell. 2017;66:258–269. doi: 10.1016/j.molcel.2017.03.013. PubMed DOI
Moore MJ, Scheel TKH, Luna JM, Park CY, Fak JJ, Nishiuchi E, et al. miRNA-target chimeras reveal miRNA 3ʹ-end pairing as a major determinant of Argonaute target specificity. Nat. Commun. 2015;6:8864. doi: 10.1038/ncomms9864. PubMed DOI PMC
Loher P, Rigoutsos I. Interactive exploration of RNA22 microRNA target predictions. Bioinform. 2012;28:3322–3323. doi: 10.1093/bioinformatics/bts615. PubMed DOI
Pillai RS, Artus CG, Filipowicz W. Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA. 2004;10:1518–1525. doi: 10.1261/rna.7131604. PubMed DOI PMC
Seok H, Ham J, Jang E-S, Chi SW. MicroRNA target recognition, insights from transcriptome-wide non-canonical interactions. Mol. Cells. 2016;39(5):375–381. doi: 10.14348/molcells.2016.0013. PubMed DOI PMC
Broughton JP, Lovci MT, Huang JL, Yeo GW, Pasquinelli AE. Pairing beyond the seed supports microRNA targeting specificity. Mol. Cell. 2016;64:320–333. doi: 10.1016/j.molcel.2016.09.004. PubMed DOI PMC
Yuan Y, Stumpf FM, Schlor LA, Schmidt OP, Saumer P, Huber LB, et al. Chemoproteomic discovery of a human RNA ligase. Nat. Commun. 2023;14:842. doi: 10.1038/s41467-023-36451-x. PubMed DOI PMC