• This record comes from PubMed

Analysis of chimeric reads characterises the diverse targetome of AGO2-mediated regulation

. 2023 Dec 21 ; 13 (1) : 22895. [epub] 20231221

Language English Country England, Great Britain Media electronic

Document type Journal Article

Grant support
19-10976Y Grantová Agentura České Republiky,Czechia
LQ1601 Central European Institute of Technology
20-19617S Grantová Agentura České Republiky
CZ.02.01.01/00/22_008/0004575 OP-JAK
HORIZON-WIDERA-2022 BioGeMT 101086768 HORIZON EUROPE Framework Programme

Links

PubMed 38129478
PubMed Central PMC10739727
DOI 10.1038/s41598-023-49757-z
PII: 10.1038/s41598-023-49757-z
Knihovny.cz E-resources

Argonaute proteins are instrumental in regulating RNA stability and translation. AGO2, the major mammalian Argonaute protein, is known to primarily associate with microRNAs, a family of small RNA 'guide' sequences, and identifies its targets primarily via a 'seed' mediated partial complementarity process. Despite numerous studies, a definitive experimental dataset of AGO2 'guide'-'target' interactions remains elusive. Our study employs two experimental methods-AGO2 CLASH and AGO2 eCLIP, to generate thousands of AGO2 target sites verified by chimeric reads. These chimeric reads contain both the AGO2 loaded small RNA 'guide' and the target sequence, providing a robust resource for modeling AGO2 binding preferences. Our novel analysis pipeline reveals thousands of AGO2 target sites driven by microRNAs and a significant number of AGO2 'guides' derived from fragments of other small RNAs such as tRNAs, YRNAs, snoRNAs, rRNAs, and more. We utilize convolutional neural networks to train machine learning models that accurately predict the binding potential for each 'guide' class and experimentally validate several interactions. In conclusion, our comprehensive analysis of the AGO2 targetome broadens our understanding of its 'guide' repertoire and potential function in development and disease. Moreover, we offer practical bioinformatic tools for future experiments and the prediction of AGO2 targets. All data and code from this study are freely available at https://github.com/ML-Bioinfo-CEITEC/HybriDetector/ .

See more in PubMed

Gebert LFR, MacRae IJ. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol. 2019;20:21–37. doi: 10.1038/s41580-018-0045-7. PubMed DOI PMC

Bartel DP. Metazoan microRNAs. Cell. 2018;173:20–51. doi: 10.1016/j.cell.2018.03.006. PubMed DOI PMC

Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song J-J, et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science. 2004;305:1437–1441. doi: 10.1126/science.1102513. PubMed DOI

Morita S, Horii T, Kimura M, Goto Y, Ochiya T, Hatada I. One Argonaute family member, Eif2c2 (Ago2), is essential for development and appears not to be involved in DNA methylation. Genomics. 2007;89:687–696. doi: 10.1016/j.ygeno.2007.01.004. PubMed DOI

Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP. Prediction of plant microRNA targets. Cell. 2002;110:513–520. doi: 10.1016/S0092-8674(02)00863-2. PubMed DOI

Bartel DP. MicroRNAs: Target recognition and regulatory functions. Cell. 2009;136:215–233. doi: 10.1016/j.cell.2009.01.002. PubMed DOI PMC

Ha I, Wightman B, Ruvkun G. A bulged lin-4/lin-14 RNA duplex is sufficient for Caenorhabditis elegans lin-14 temporal gradient formation. Genes. Dev. 1996;10:3041–3050. doi: 10.1101/gad.10.23.3041. PubMed DOI

Lal A. miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3ʹ UTR microRNA recognition elements. Mol. Cell. 2009;35:610–625. doi: 10.1016/j.molcel.2009.08.020. PubMed DOI PMC

Agarwal V, Bell GW, Nam J-W, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015 doi: 10.7554/eLife.05005. PubMed DOI PMC

Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets in drosophila. Genome Biol. 2003;5:R1. doi: 10.1186/gb-2003-5-1-r1. PubMed DOI PMC

Alexiou P, Maragkakis M, Papadopoulos GL, Reczko M, Hatzigeorgiou AG. Lost in translation: An assessment and perspective for computational microrna target identification. Bioinformatics. 2009;25(23):3049–3055. doi: 10.1093/bioinformatics/btp565. PubMed DOI

Kudla G, Granneman S, Hahn D, Beggs JD, Tollervey D. Cross-linking, ligation, and sequencing of hybrids reveals RNA–RNA interactions in yeast. Proc. Natl. Acad. Sci. U.S.A. 2011;108:10010–10015. doi: 10.1073/pnas.1017386108. PubMed DOI PMC

Helwak A, Kudla G, Dudnakova T, Tollervey D. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell. 2013;153:654–665. doi: 10.1016/j.cell.2013.03.043. PubMed DOI PMC

Klimentová E, Hejret V, Krčmář J, Grešová K, Giassa I-C, Alexiou P. miRBind: A deep learning method for miRNA binding classification. Genes. 2022;13:2323. doi: 10.3390/genes13122323. PubMed DOI PMC

Burroughs AM, Ando Y, de Hoon ML, Tomaru Y, Suzuki H, Hayashizaki Y, et al. Deep-sequencing of human Argonaute-associated small RNAs provides insight into miRNA sorting and reveals Argonaute association with RNA fragments of diverse origin. RNA Biol. 2011;8:158–177. doi: 10.4161/rna.8.1.14300. PubMed DOI PMC

Haussecker D, Huang Y, Lau A, Parameswaran P, Fire AZ, Kay MA. Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA. 2010;16:673–695. doi: 10.1261/rna.2000810. PubMed DOI PMC

Kumar P, Anaya J, Mudunuri SB, Dutta A. Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC Med. 2014;12:1–14. PubMed PMC

Kuscu C, Kumar P, Kiran M, Su Z, Malik A, Dutta A. tRNA fragments (tRFs) guide ago to regulate gene expression post-transcriptionally in a dicer-independent manner. RNA. 2018;24:1093–1105. doi: 10.1261/rna.066126.118. PubMed DOI PMC

Guan L, Karaiskos S, Grigoriev A. Inferring targeting modes of argonaute-loaded tRNA fragments. RNA Biol. 2020;17:1070–1080. doi: 10.1080/15476286.2019.1676633. PubMed DOI PMC

Guan L, Grigoriev A. Computational meta-analysis of ribosomal RNA fragments: Potential targets and interaction mechanisms. Nucleic Acids Res. 2021;49:4085–4103. doi: 10.1093/nar/gkab190. PubMed DOI PMC

Manakov SA, Shishkin AA, Yee BA, Shen KA, Cox DC, Park SS, et al. Scalable and deep profiling of mRNA targets for individual microRNAs with chimeric eCLIP. BioRxiv. 2022 doi: 10.1101/2022.02.13.480296. DOI

Libri V, Helwak A, Miesen P, Santhakumar D, Borger JG, Kudla G, et al. Murine cytomegalovirus encodes a miR-27 inhibitor disguised as a target. Proc. Natl. Acad. Sci. 2012;109:279–284. doi: 10.1073/pnas.1114204109. PubMed DOI PMC

Geng G, Wang H, Xin W, Liu Z, Chen J, Danting Z, et al. tRNA derived fragment (tRF)-3009 participates in modulation of IFN-α-induced CD4(+) T cell oxidative phosphorylation in lupus patients. J Transl Med. 2021;19:305. doi: 10.1186/s12967-021-02967-3. PubMed DOI PMC

Zhao, Y., Wang, R., Qin, Q., Yu, J., Che, H. & Wang L. Differentially expressed tRNA-derived fragments and their roles in primary cardiomyocytes stimulated by high glucose. Front. Endocrinol.13, (2023). PubMed PMC

Komina A, Palkina N, Aksenenko M, Tsyrenzhapova S, Ruksha T. Antiproliferative and Pro-Apoptotic Effects of MiR-4286 Inhibition in Melanoma Cells. PLoS One. 2016;11:e0168229. doi: 10.1371/journal.pone.0168229. PubMed DOI PMC

Ho K-H, Chen P-H, Shih C-M, Lee Y-T, Cheng C-H, Liu A-J, et al. miR-4286 is Involved in Connections Between IGF-1 and TGF-β Signaling for the Mesenchymal Transition and Invasion by Glioblastomas. Cell. Mol. Neurobiol. 2022;42:791–806. doi: 10.1007/s10571-020-00977-1. PubMed DOI PMC

Shen M, Xu X, Liu X, Wang Q, Li W, You X, et al. Prospective Study on Plasma MicroRNA‐4286 and Incident Acute Coronary Syndrome. J. Am. Heart Assoc. 2021;10:e018999. doi: 10.1161/JAHA.120.018999. PubMed DOI PMC

Kim B, Jeong K, Kim VN. Genome-wide mapping of DROSHA cleavage sites on primary micrornas and noncanonical substrates. Mol. Cell. 2017;66:258–269. doi: 10.1016/j.molcel.2017.03.013. PubMed DOI

Moore MJ, Scheel TKH, Luna JM, Park CY, Fak JJ, Nishiuchi E, et al. miRNA-target chimeras reveal miRNA 3ʹ-end pairing as a major determinant of Argonaute target specificity. Nat. Commun. 2015;6:8864. doi: 10.1038/ncomms9864. PubMed DOI PMC

Loher P, Rigoutsos I. Interactive exploration of RNA22 microRNA target predictions. Bioinform. 2012;28:3322–3323. doi: 10.1093/bioinformatics/bts615. PubMed DOI

Pillai RS, Artus CG, Filipowicz W. Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA. 2004;10:1518–1525. doi: 10.1261/rna.7131604. PubMed DOI PMC

Seok H, Ham J, Jang E-S, Chi SW. MicroRNA target recognition, insights from transcriptome-wide non-canonical interactions. Mol. Cells. 2016;39(5):375–381. doi: 10.14348/molcells.2016.0013. PubMed DOI PMC

Broughton JP, Lovci MT, Huang JL, Yeo GW, Pasquinelli AE. Pairing beyond the seed supports microRNA targeting specificity. Mol. Cell. 2016;64:320–333. doi: 10.1016/j.molcel.2016.09.004. PubMed DOI PMC

Yuan Y, Stumpf FM, Schlor LA, Schmidt OP, Saumer P, Huber LB, et al. Chemoproteomic discovery of a human RNA ligase. Nat. Commun. 2023;14:842. doi: 10.1038/s41467-023-36451-x. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...