Exceptionally Fast Temperature-Responsive, Mechanically Strong and Extensible Monolithic Non-Porous Hydrogels: Poly(N-isopropylacrylamide) Intercalated with Hydroxypropyl Methylcellulose
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
ASRT-22-01
Czech Academy of Sciences
none
National Research Centre and the Academy of Scientific Research and Technology (ASRT), Egypt
PubMed
38131912
PubMed Central
PMC10742870
DOI
10.3390/gels9120926
PII: gels9120926
Knihovny.cz E-zdroje
- Klíčová slova
- cellulose, drug release, hydrogels, poly(N-isopropylacrylamide), semi-interpenetrating networks, smart materials,
- Publikační typ
- časopisecké články MeSH
Exceptionally fast temperature-responsive, mechanically strong, tough and extensible monolithic non-porous hydrogels were synthesized. They are based on divinyl-crosslinked poly(N-isopropyl-acrylamide) (PNIPAm) intercalated by hydroxypropyl methylcellulose (HPMC). HPMC was largely extracted after polymerization, thus yielding a 'template-modified' PNIPAm network intercalated with a modest residue of HPMC. High contents of divinyl crosslinker and of HPMC caused a varying degree of micro-phase-separation in some products, but without detriment to mechanical or tensile properties. After extraction of non-fixed HPMC, the micro-phase-separated products combine superior mechanical properties with ultra-fast T-response (in 30 s). Their PNIPAm network was highly regular and extensible (intercalation effect), toughened by hydrogen bonds to HPMC, and interpenetrated by a network of nano-channels (left behind by extracted HPMC), which ensured the water transport rates needed for ultra-fast deswelling. Moreover, the T-response rate could be widely tuned by the degree of heterogeneity during synthesis. The fastest-responsive among our hydrogels could be of practical interest as soft actuators with very good mechanical properties (soft robotics), while the slower ones offer applications in drug delivery systems (as tested on the example of Theophylline), or in related biomedical engineering applications.
Zobrazit více v PubMed
Bashir S., Hina M., Iqbal J., Rajpar A.H., Mujtaba M.A., Alghamdi N.A., Wageh S., Ramesh K., Ramesh S. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers. 2020;12:2702. doi: 10.3390/polym12112702. PubMed DOI PMC
El-Husseiny H.M., Mady E.A., Hamabe L., Abugomaa A., Shimada K., Yoshida T., Tanaka T., Yokoi A., Elbadawy M., Tanaka R. Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications. Mater. Today Bio. 2022;13:100186. doi: 10.1016/j.mtbio.2021.100186. PubMed DOI PMC
Ebara M., Kotsuchibashi Y., Uto K., Aoyagi T., Kim Y.J., Narain R., Idota N., Hoffman J.M. Smart Biomaterials. Springer; Tokyo, Japan: 2014. Smart Hydrogels; pp. 9–65. NIMS Monographs. DOI
Schild H. Poly(N-isopropylacrylamide): Experiment, theory and application. Prog. Polym. Sci. 1992;17:163–249. doi: 10.1016/0079-6700(92)90023-R. DOI
Heskins M., Guillet J.E. Solution Properties of Poly(N-isopropylacrylamide) J. Macromol. Sci. Part A Chem. 1968;2:1441–1455. doi: 10.1080/10601326808051910. DOI
Haq M.A., Su Y., Wang D. Mechanical properties of PNIPAM based hydrogels: A review. Mater. Sci. Eng. C. 2017;70:842–855. doi: 10.1016/j.msec.2016.09.081. PubMed DOI
Sakai T., Matsunaga T., Yamamoto Y., Ito C., Yoshida R., Suzuki S., Sasaki N., Shibayama M., Chung U.-I. Design and Fabrication of a High-Strength Hydrogel with Ideally Homogeneous Network Structure from Tetrahedron-like Macromonomers. Macromolecules. 2008;41:5379–5384. doi: 10.1021/ma800476x. DOI
Sun J.-Y., Zhao X., Illeperuma W.R.K., Chaudhuri O., Oh K.H., Mooney D.J., Vlassak J.J., Suo Z. Highly stretchable and tough hydrogels. Nature. 2012;489:133–136. doi: 10.1038/nature11409. PubMed DOI PMC
Bin Imran A., Esaki K., Gotoh H., Seki T., Ito K., Sakai Y., Takeoka Y. Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network. Nat. Commun. 2014;5:5124. doi: 10.1038/ncomms6124. PubMed DOI PMC
Kalkan B., Orakdogen N. Anionically modified N-(alkyl)acrylamide-based semi-IPN hybrid gels reinforced with SiO2 for enhanced on–off switching and responsive properties. Soft Matter. 2022;18:4582–4603. doi: 10.1039/D2SM00319H. PubMed DOI
Gong J.P., Katsuyama Y., Kurokawa T., Osada Y. Double-Network Hydrogels with Extremely High Mechanical Strength. Adv. Mater. 2003;15:1155–1158. doi: 10.1002/adma.200304907. DOI
Song K., Zhu W., Li X., Yu Z. A novel mechanical robust, self-healing and shape memory hydrogel based on PVA reinforced by cellulose nanocrystal. Mater. Lett. 2020;260:126884. doi: 10.1016/j.matlet.2019.126884. DOI
Strachotová B., Strachota A., Uchman M., Šlouf M., Brus J., Pleštil J., Matějka L. Super porous organic–inorganic poly(N-isopropylacrylamide)-based hydrogel with a very fast temperature response. Polymer. 2007;48:1471–1482. doi: 10.1016/j.polymer.2007.01.042. DOI
Depa K., Strachota A., Šlouf M., Hromádková J. Fast temperature-responsive nanocomposite PNIPAM hydrogels with controlled pore wall thickness: Force and rate of T-response. Eur. Polym. J. 2012;48:1997–2007. doi: 10.1016/j.eurpolymj.2012.09.007. DOI
Strachota B., Šlouf M., Matějka L. Tremendous reinforcing, pore-stabilizing and response-accelerating effect of in situ generated nanosilica in thermoresponsive poly(N-isopropylacrylamide) cryogels. Polym. Int. 2017;66:1510–1521. doi: 10.1002/pi.5406. DOI
Huerta-Angeles G., Hishchak K., Strachota A., Strachota B., Šlouf M., Matějka L. Super-porous nanocomposite PNIPAm hydrogels reinforced with titania nanoparticles, displaying a very fast temperature response as well as pH-sensitivity. Eur. Polym. J. 2014;59:341–352. doi: 10.1016/j.eurpolymj.2014.07.033. DOI
Strachota B., Matějka L., Zhigunov A., Konefał R., Spěváček J., Dybal J., Puffr R. Poly(N-isopropylacrylamide)–clay based hydrogels controlled by the initiating conditions: Evolution of structure and gel formation. Soft Matter. 2015;11:9291–9306. doi: 10.1039/C5SM01996F. PubMed DOI
Strachota B., Hodan J., Matějka L. Poly(N-isopropylacrylamide)–clay hydrogels: Control of mechanical properties and structure by the initiating conditions of polymerization. Eur. Polym. J. 2016;77:1–15. doi: 10.1016/j.eurpolymj.2016.02.011. DOI
Strachota B., Šlouf M., Hodan J., Matějka L. Advanced two-step cryopolymerization to form superporous thermosensitive PNIPA/clay gels with unique mechanical properties and ultrafast swelling-deswelling kinetics. Colloid Polym. Sci. 2018;296:753–769. doi: 10.1007/s00396-018-4289-8. DOI
Haraguchi K., Takehisa T. Nanocomposite Hydrogels: A Unique Organic–Inorganic Network Structure with Extraordinary Mechanical, Optical, and Swelling/De-swelling Properties. Adv. Mater. 2002;14:1120. doi: 10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9. DOI
Strachota B., Matějka L., Sikora A., Spěváček J., Konefał R., Zhigunov A., Šlouf M. Insight into the cryopolymerization to form a poly(N-isopropylacrylamide)/clay macroporous gel: Structure and phase evolution. Soft Matter. 2017;13:1244–1256. doi: 10.1039/C6SM02278B. PubMed DOI
Yoshida R., Sakai K., Okano T., Sakurai Y. Surface-modulated skin layers of thermal responsive hydrogels as on-off switches: II. Drug permeation. J. Biomater. Sci. Polym. Ed. 1992;3:243–252. doi: 10.1163/156856292X00150. PubMed DOI
Zhang J.-T., Huang S.-W., Zhuo R.-X. Temperature-Sensitive Polyamidoamine Dendrimer/Poly(N-isopropylacrylamide) Hydrogels with Improved Responsive Properties. Macromol. Biosci. 2004;4:575–578. doi: 10.1002/mabi.200400003. PubMed DOI
Liu Q., Zhang P., Qing A., Lan Y., Lu M. Poly(N-isopropylacrylamide) hydrogels with improved shrinking kinetics by RAFT polymerization. Polymer. 2006;47:2330–2336. doi: 10.1016/j.polymer.2006.02.006. DOI
Depa K., Strachota A., Šlouf M., Brus J. Poly(N-isopropylacrylamide)-SiO2 nanocomposites interpenetrated by starch: Stimuli-responsive hydrogels with attractive tensile properties. Eur. Polym. J. 2017;88:349–372. doi: 10.1016/j.eurpolymj.2017.01.038. DOI
Strachota B., Strachota A., Šlouf M., Brus J., Cimrová V. Monolithic intercalated PNIPAm/starch hydrogels with very fast and extensive one-way volume and swelling responses to temperature and pH: Prospective actuators and drug release systems. Soft Matter. 2019;15:752–769. doi: 10.1039/C8SM02153H. PubMed DOI
Strachota B., Strachota A., Horodecka S., Šlouf M., Dybal J. Monolithic nanocomposite hydrogels with fast dual T- and pH- stimuli responsiveness combined with high mechanical properties. J. Mater. Res. Technol. 2021;15:6079–6097. doi: 10.1016/j.jmrt.2021.11.018. DOI
Zhang L.-M. Cellulosic associative thickeners. Carbohydr. Polym. 2001;45:1–10. doi: 10.1016/S0144-8617(00)00276-9. DOI
Moussa E., Siepmann F., Flament M., Benzine Y., Penz F., Siepmann J., Karrout Y. Controlled release tablets based on HPMC:lactose blends. J. Drug Deliv. Sci. Technol. 2019;52:607–617. doi: 10.1016/j.jddst.2019.05.028. DOI
Wu Z., Hong Y. Combination of the Silver–Ethylene Interaction and 3D Printing To Develop Antibacterial Superporous Hydrogels for Wound Management. ACS Appl. Mater. Interfaces. 2019;11:33734–33747. doi: 10.1021/acsami.9b14090. PubMed DOI
Kato N., Gehrke S.H. Microporous, fast response cellulose ether hydrogel prepared by freeze-drying. Colloids Surf. B Biointerfaces. 2004;38:191–196. doi: 10.1016/j.colsurfb.2004.01.018. PubMed DOI
Marsano E., Bianchi E., Viscardi A. Stimuli responsive gels based on interpenetrating network of hydroxy propylcellulose and poly(N-isopropylacrylamide) Polymer. 2004;45:157–163. doi: 10.1016/j.polymer.2003.10.088. DOI
Liu Z., Zhang S., Gao C., Meng X., Wang S., Kong F. Temperature/pH-Responsive Carboxymethyl Cellulose/Poly (N-isopropyl acrylamide) Interpenetrating Polymer Network Aerogels for Drug Delivery Systems. Polymers. 2022;14:1578. doi: 10.3390/polym14081578. PubMed DOI PMC
Liu Z., Zhang S., He B., Wang S., Kong F. Temperature-responsive hydroxypropyl methylcellulose-N-isopropylacrylamide aerogels for drug delivery systems. Cellulose. 2020;27:9493–9504. doi: 10.1007/s10570-020-03426-w. DOI
Wang J., Zhou X., Xiao H. Structure and properties of cellulose/poly(N-isopropylacrylamide) hydrogels prepared by SIPN strategy. Carbohydr. Polym. 2013;94:749–754. doi: 10.1016/j.carbpol.2013.01.036. PubMed DOI
Wei W., Hu X., Qi X., Yu H., Liu Y., Li J., Zhang J., Dong W. A novel thermo-responsive hydrogel based on salecan and poly(N-isopropylacrylamide): Synthesis and characterization. Colloids Surf. B Biointerfaces. 2015;125:1–11. doi: 10.1016/j.colsurfb.2014.10.057. PubMed DOI
Hu Y., Kim Y., Jeong J.-P., Park S., Shin Y., Hong I.K., Kim M.S., Jung S. Novel temperature/pH-responsive hydrogels based on succinoglycan/poly(N-isopropylacrylamide) with improved mechanical and swelling properties. Eur. Polym. J. 2022;174:111308. doi: 10.1016/j.eurpolymj.2022.111308. DOI
Wan T., Huang R., Zhao Q., Xiong L., Qin L., Tan X., Cai G. Synthesis of wheat straw composite superabsorbent. J. Appl. Polym. Sci. 2013;130:3404–3410. doi: 10.1002/app.39573. DOI
Mirzakhanian Z., Faghihi K., Barati A., Momeni H.R. Synthesis and characterization of fast-swelling porous superabsorbent hydrogel based on starch as a hemostatic agent. J. Biomater. Sci. Polym. Ed. 2015;26:1439–1451. doi: 10.1080/09205063.2015.1100496. PubMed DOI
Yi G., Huang Y., Xiong F., Liao B., Yang J., Chen X. Preparation and swelling behaviors of rapid responsive semi-IPN NaCMC/PNIPAm hydrogels. J. Wuhan Univ. Technol. Sci. Ed. 2011;26:1073–1078. doi: 10.1007/s11595-011-0365-3. DOI
Alvarez-Lorenzo C., Concheiro A., Dubovik A.S., Grinberg N.V., Burova T.V., Grinberg V.Y. Temperature-sensitive chitosan-poly(N-isopropylacrylamide) interpenetrated networks with enhanced loading capacity and controlled release properties. J. Control. Release. 2005;102:629–641. doi: 10.1016/j.jconrel.2004.10.021. PubMed DOI
Zhang G.-Q., Zha L.-S., Zhou M.-H., Ma J.-H., Liang B.-R. Rapid deswelling of sodium alginate/poly(N-isopropylacrylamide) semi-interpenetrating polymer network hydrogels in response to temperature and pH changes. Colloid Polym. Sci. 2004;283:431–438. doi: 10.1007/s00396-004-1172-6. DOI
Ilavský M. Responsive Gels: Volume Transitions I. Springer; Berlin/Heidelberg, Germany: 1993. Effect of phase transition on swelling and mechanical behavior of synthetic hydrogels; pp. 173–206. DOI
Yoshida R., Sakai K., Okano T., Sakurai Y. Drug release profiles in the shrinking process of thermoresponsive poly(N-isopropylacrylamide-co-alkyl methacrylate) gels. Ind. Eng. Chem. Res. 1992;31:2339–2345. doi: 10.1021/ie00010a013. DOI