MD Simulations to Calculate NMR Relaxation Parameters of Vanadium(IV) Complexes: A Promising Diagnostic Tool for Cancer and Alzheimer's Disease
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
38139780
PubMed Central
PMC10747690
DOI
10.3390/ph16121653
PII: ph16121653
Knihovny.cz E-zdroje
- Klíčová slova
- NMR relaxation, OWSCA, computational chemistry, molecular dynamics, vanadium complexes,
- Publikační typ
- časopisecké články MeSH
Early phase diagnosis of human diseases has still been a challenge in the medicinal field, and one of the efficient non-invasive techniques that is vastly used for this purpose is magnetic resonance imaging (MRI). MRI is able to detect a wide range of diseases and conditions, including nervous system disorders and cancer, and uses the principles of NMR relaxation to generate detailed internal images of the body. For such investigation, different metal complexes have been studied as potential MRI contrast agents. With this in mind, this work aims to investigate two systems containing the vanadium complexes [VO(metf)2]·H2O (VC1) and [VO(bpy)2Cl]+ (VC2), being metformin and bipyridine ligands of the respective complexes, with the biological targets AMPK and ULK1. These biomolecules are involved in the progression of Alzheimer's disease and triple-negative breast cancer, respectively, and may act as promising spectroscopic probes for detection of these diseases. To initially evaluate the behavior of the studied ligands within the aforementioned protein active sites and aqueous environment, four classical molecular dynamics (MD) simulations including VC1 + H2O (1), VC2 + H2O (2), VC1 + AMPK + H2O (3), and VC2 + ULK1 + H2O (4) were performed. From this, it was obtained that for both systems containing VCs and water only, the theoretical calculations implied a higher efficiency when compared with DOTAREM, a famous commercially available contrast agent for MRI. This result is maintained when evaluating the system containing VC1 + AMPK + H2O. Nevertheless, for the system VC2 + ULK1 + H2O, there was observed a decrease in the vanadium complex efficiency due to the presence of a relevant steric hindrance. Despite that, due to the nature of the interaction between VC2 and ULK1, and the nature of its ligands, the study gives an insight that some modifications on VC2 structure might improve its efficiency as an MRI probe.
Medical Biology Research Center Kermanshah University of Medical Sciences Kermanshah 6714414971 Iran
Zobrazit více v PubMed
National Cancer Institute Cancer Statistics Page. [(accessed on 21 November 2023)]; Available online: https://seer.cancer.gov/statfacts/html.
Association A. 2023 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2023;19:1598–1695. doi: 10.1002/alz.13016. PubMed DOI
Zabłocka A., Kazana W., Sochocka M., Stańczykiewicz B., Janusz M., Leszek J., Orzechowska B. Inverse Correlation between Alzheimer’s Disease and Cancer: Short Overview. Mol. Neurobiol. 2021;58:6335–6349. doi: 10.1007/s12035-021-02544-1. PubMed DOI PMC
Fowler M.E., Wright N.C., Triebel K., Rocque G.B., Irvin M.R., Kennedy R.E. The Relationship between Prior Cancer Diagnosis and All-Cause Dementia Progression among US Adults. J. Alzheimer’s Dis. 2022;88:521–535. doi: 10.3233/JAD-220054. PubMed DOI PMC
Ospina-Romero M., Glymour M.M., Hayes-Larson E., Mayeda E.R., Graff R.E., Brenowitz W.D., Ackley S.F., Witte J.S., Kobayashi L.C. Association Between Alzheimer Disease and Cancer With Evaluation of Study Biases: A Systematic Review and Meta-analysis. JAMA Netw. Open. 2020;3:e2025515. doi: 10.1001/jamanetworkopen.2020.25515. PubMed DOI PMC
Porsteinsson A.P., Isaacson R.S., Knox S., Sabbagh M.N., Rubino I. Diagnosis of Early Alzheimer’s Disease: Clinical Practice in 2021. J. Prev. Alzheimers Dis. 2021;3:371–386. doi: 10.14283/jpad.2021.23. PubMed DOI
Chen X., Gole J., Gore A., He Q., Lu M., Min J., Yuan Z., Yang X., Jiang Y., Zhang T., et al. Non-invasive early detection of cancer four years before conventional diagnosis using a blood test. Nat. Commun. 2020;11:3475. doi: 10.1038/s41467-020-17316-z. PubMed DOI PMC
Winblad B., Amouyel P., Andrieu S., Ballard C., Brayne C., Brodaty H., Cedazo-Minguez A., Dubois B., Edvardsson D., Feldman H., et al. Defeating Alzheimer’s disease and other dementias: A priority for European science and society. Lancet Neurol. 2016;5:455–532. doi: 10.1016/S1474-4422(16)00062-4. PubMed DOI
Rajasekhar K., Govindaraju T. Current progress, challenges and future prospects of diagnostic and therapeutic interventions in Alzheimer’s disease. RSC Adv. 2018;8:23780–23804. doi: 10.1039/C8RA03620A. PubMed DOI PMC
Fitzgerald R.C., Antoniou A.C., Fruk L., Rosenfeld N. The future of early cancer detection. Nat. Med. 2022;28:666–677. doi: 10.1038/s41591-022-01746-x. PubMed DOI
Zhang L., Sanagapalli S., Stoita A. Challenges in diagnosis of pancreatic cancer. World J. Gastroenterol. 2018;19:2047–2060. doi: 10.3748/wjg.v24.i19.2047. PubMed DOI PMC
Unger-Saldaña K. Challenges to the early diagnosis and treatment of breast cancer in developing 335 countries. World J. Clin. Oncol. 2014;3:465–477. doi: 10.5306/wjco.v5.i3.465. PubMed DOI PMC
Barisano G., Sepehrband F., Ma S., Jann K., Cabeen R., Wang D.J., Toga A.W., Law M. Clinical 7 T MRI: Are we there yet? A review about magnetic resonance imaging at ultra-high field. Br. J. Radiol. 2019;1094:492. doi: 10.1259/bjr.20180492. PubMed DOI PMC
Boldrini L., Cusumano D., Cellini F., Azario L., Mattiucci G.C., Valentini V. Online adaptive magnetic resonance guided radiotherapy for pancreatic cancer: State of the art, pearls and pitfalls. Radiat. Oncol. 2019;14:71. doi: 10.1186/s13014-019-1275-3. PubMed DOI PMC
Deininger-Czermak E., Villefort C., Knebel Doeberitz N., Franckenberg S., Kälin P., Kenkel D., Gascho D., Piccirelli M., Finkenstaedt T., Thali M.J., et al. Comparison of MR Ultrashort Echo Time and Optimized 3D-Multiecho In-Phase Sequence to Computed Tomography for Assessment of the Osseous Craniocervical Junction. J. Magn. Reson. Imaging. 2020;4:1029–1039. doi: 10.1002/jmri.27478. PubMed DOI
Geraldes C.F.G.C. Introduction to Infrared and Raman-Based Biomedical Molecular Imaging and Comparison with Other Modalities. Molecules. 2020;23:5547. doi: 10.3390/molecules25235547. PubMed DOI PMC
Pinto S.M., Tomé V., Calvete M.J.F., Castro M.M.C., Tóth E., Geraldes C.F. Metal-based redox-responsive MRI contrast agents. Coord. Chem. Rev. 2019;1:1–31. doi: 10.1016/j.ccr.2019.03.014. DOI
Botta M., Carniato F., Esteban-Gómez D., Platas-Iglesias C., Tei L. Mn(II) compounds as an alternative to Gd-based MRI probes. Future Med. Chem. 2019;12:608. doi: 10.4155/fmc-2018-0608. PubMed DOI
Orts-Arroyo M., Ten-Esteve A., Ginés-Cárdenas S., Castro I., Martí-Bonmatí L., Martínez- 351 Lillo J. A Gadolinium(III) Complex Based on the Thymine Nucleobase with Properties Suitable for Magnetic Resonance Imaging. Int. J. Mol. Sci. 2021;22:4586. doi: 10.3390/ijms22094586. PubMed DOI PMC
Ramalho J., Ramalho M., Jay M., Burke L.M., Semelka R.C. Gadolinium toxicity and treatment. Magn. Reson. Imaging. 2016;34:1394–1398. doi: 10.1016/j.mri.2016.09.005. PubMed DOI
Gupta A., Caravan P., Price W.S., Platas-Iglesias C., Gale E.M. Applications for Transition-Metal Chemistry in Contrast-Enhanced Magnetic Resonance Imaging. Inorg. Chem. 2020;10:6648–6678. doi: 10.1021/acs.inorgchem.0c00510. PubMed DOI PMC
Mustafi D., Peng B., Foxley S., Makinen M.W., Karczmar G.S., Zamora M., Ejnik J., Martin H. New vanadium-based magnetic resonance imaging probes: Clinical potential for early detection of cancer. JBIC J. Biol. Inorg. Chem. 2009;14:1187–1197. doi: 10.1007/s00775-009-0562-0. PubMed DOI
Ahmed T.T., Alajrawy O.I. Oxovanadinum (IV) complexes with bidentate ligands synthesis, characterization, and comparison between experimental and theoretical. Mater. Today Proc. 2023;80:3823–3836. doi: 10.1016/j.matpr.2021.07.396. DOI
Swamy S.J., Reddy A.D., Bhaskar K. Synthesis and spectral studies of some oxovanadium(IV) and vanadium(IV) complexes. IJC-A. 2001;40:1166–1171.
Rehder D. Vanadium. Its Role for Humans. In: Sigel A., Sigel H., Sigel R.K.O., editors. Interrelations between Essential Metal Ions and Human Diseases. Springer; Dordrecht, The Netherlands: 2013. pp. 139–169. DOI
Orvig C., Thompson K.H., Battell M., McNeill J.H. Vanadium Compounds as Insulin Mimics. Met. Ions Biol. Syst. 1995;31:575–594. PubMed
Sharfalddin A.A., Al-Younis I.M., Mohammed H.A., Dhahri M., Mouffouk F., Abu Ali H., Anwar J., Qureshi K.A., Hussien M.A., Alghrably M., et al. Therapeutic Properties of Vanadium Complexes. Inorganics. 2022;10:244. doi: 10.3390/inorganics10120244. DOI
Ferretti V.A., León I.E. An Overview of Vanadium and Cell Signaling in Potential Cancer Treatments. Inorganics. 2022;10:47. doi: 10.3390/inorganics10040047. DOI
Turtoi M., Anghelache M., Patrascu A.A., Deleanu M., Voicu G., Raduca M., Safciuc F., Manduteanu I., Calin M., Popescu D.-L. Antitumor Properties of a New Macrocyclic Tetranuclear Oxidovanadium(V) Complex with 3-Methoxysalicylidenvaline Ligand. Biomedicines. 2022;10:1217. doi: 10.3390/biomedicines10061217. PubMed DOI PMC
Turtoi M., Anghelache M., Patrascu A.A., Maxim C., Manduteanu I., Calin M., Popescu D.-L. Synthesis, Characterization, and In Vitro Insulin-Mimetic Activity Evaluation of Valine Schiff Base Coordination Compounds of Oxidovanadium(V) Biomedicines. 2021;9:562. doi: 10.3390/biomedicines9050562. PubMed DOI PMC
Dong Y., Stewart T., Zhang Y., Shi M., Tan C., Li X., Yuan L., Mehrotra A., Zhang J., Yang X. Anti-diabetic vanadyl complexes reduced Alzheimer’s disease pathology independent of amyloid plaque deposition. Sci. China Life Sci. 2019;62:126–139. doi: 10.1007/s11427-018-9350-1. PubMed DOI
Del Carpio E., Hernández L., Ciangherotti C., Coa V.V., Jiménez L., Lubes V., Lubes G. Vanadium: History, chemistry, interactions with amino acids and potential therapeutic applications. Coord. Chem. Rev. 2018;372:117–140. doi: 10.1016/j.ccr.2018.06.002. PubMed DOI PMC
Rehder D. The potentiality of vanadium in medicinal applications. Future Med. Chem. 2012;4:1823–1837. doi: 10.4155/fmc.12.103. PubMed DOI
Pessoa J.C., Etcheverry S., Gambino D. Vanadium compounds in medicine. Coord. Chem. Rev. 2015;15:24–48. doi: 10.1016/j.ccr.2014.12.002. PubMed DOI PMC
Semiz S. Vanadium as potential therapeutic agent for COVID-19: A focus on its antiviral, antiinflamatory, and antihyperglycemic effects. J. Trace Elem. Med. Biol. 2022;69:126887. doi: 10.1016/j.jtemb.2021.126887. PubMed DOI PMC
Vlasiou M.C., Pafti K.S. Screening possible drug molecules for COVID-19. The example of vanadium (III/IV/V) complex molecules with computational chemistry and molecular docking. Comput. Toxicol. 2021;18:100157. doi: 10.1016/j.comtox.2021.100157. PubMed DOI PMC
Scior T., Abdallah H.H., Mustafa S.F.Z., Guevara-García J.A., Rehder D. Are vanadium complexes druggable against the main protease Mpro of SARS-CoV-2?—A computational approach. Inorganica Chim. Acta. 2021;519:120287. doi: 10.1016/j.ica.2021.120287. PubMed DOI PMC
Tavares C.A., Santos T.M.R., Cunha E.F.F., Ramalho T.C. Molecular Dynamics-Assisted Interaction of Vanadium Complex AMPK: From Force Field Development to Biological Application 361 for Alzheimer’s Treatment. J. Phys. Chem. B. 2023;127:495–504. doi: 10.1021/acs.jpcb.2c07147. PubMed DOI
Santos T.M.R., Tavares C.A., Cunha E.F.F., Ramalho T.C. Vanadium complex as a potential modulator of the autophagic mechanism through proteins PI3K and ULK1: Development, validation and biological implications of a specific force field for [VO(bpy)2Cl] J. Bio. Struct. Dyn. 2023:1–15. doi: 10.1080/07391102.2023.2250453. PubMed DOI
Ramalho T.C., Taft C.A. Thermal and solvent effects on the NMR and UV parameters of some bioreductive drugs. J. Chem. Phys. 2005;123:054319. doi: 10.1063/1.1996577. PubMed DOI
Gonçalves A.S., França T.C.C., Caetano M.S., Ramalho T.C. Reactivation steps by 2-PAM of tabun-inhibited human acetylcholinesterase: Reducing the computational cost in hybrid QM/MM methods. J. Biomol. Struct. Dyn. 2014;32:301–307. doi: 10.1080/07391102.2013.765361. PubMed DOI
Martins T.L.C., Ramalho T.C., Figueroa-Villar J.D., Flores A.F., Pereira C.M.P. Theoretical and experimental 13C and 15N NMR investigation of guanylhydrazones in solution. Magn. Reson. Chem. 2003;41:983–988. doi: 10.1002/mrc.1299. DOI
Chen P., Hologne M., Walker O., Hening J. Ab Initio Prediction of NMR Spin Relaxation Parameters from Molecular Dynamics Simulations. J. Chem. Theory Comput. 2018;14:1009–1019. doi: 10.1021/acs.jctc.7b00750. PubMed DOI
Villa A., Stock G. What NMR Relaxation Can Tell Us about the Internal Motion of an RNA Hairpin: A Molecular Dynamics Simulation Study. J. Chem. Theory Comput. 2006;2:1228–1236. doi: 10.1021/ct600160z. PubMed DOI
Gonçalves M.A., Santos L.S., Prata D.M., Peixoto F.C., Ramalho T.C. NMR relaxation and relaxivity parameters of MRI probes revealed by optimal wavelet signal compression of molecular dynamics simulations. Int. J. Quantum Chem. 2019;119:e25896. doi: 10.1002/qua.25896. DOI
Rohrer M., Bauer H., Mintorovitch J., Requardt M., Weinmann H. Comparison of Magnetic Properties of MRI Contrast Media Solutions at Different Magnetic Field Strengths. Investig. Radiol. 2005;40:715–724. doi: 10.1097/01.rli.0000184756.66360.d3. PubMed DOI
Lino J.B., Gonçalves M.A., Santos L.S., Ramalho T.C. Value of NMR relaxation parameters of diamagnetic molecules for quantum information processing: Optimizing the coherent phase. Theor. Chem. Acc. 2021;140:8. doi: 10.1007/s00214-020-02706-9. DOI
Pierre V.C., Allen M.J. Iron-oxide Nanoparticle-based Contrast Agents. In: Ashbrook S., Balcom B., Furó I., Kainosho M., Liu M., editors. Contrast Agents for MRI: Experimental Methods. RSC; London, UK: 2018. p. 318.
Xu F., Cheng C., Chen D., Gu H. Magnetite Nanocrystal Clusters with Ultra-High Sensitivity in Magnetic Resonance Imaging. ChemPhysChem. 2012;13:336–341. doi: 10.1002/cphc.201100548. PubMed DOI
Paquet C., de Haan H.W., Leek D.M., Lin H.-Y., Xiang B., Tian G., Kell A., Simard B. Clusters of superparamagnetic iron oxide nanoparticles encapsulated in a hydrogel: A particle architecture generating a synergistic enhancement of the T2 relaxation. ACS Nano. 2011;5:3104–3112. doi: 10.1021/nn2002272. PubMed DOI
Devra A., Prabhu P., Singh H., Dorai A., Dorai K. Efficient experimental design of high-fidelity three-qubit quantum gates via genetic programming. Quantum Inf. Process. 2018;17:67. doi: 10.1007/s11128-018-1835-8. DOI
Kastrup A., Glover G.H. Neuroimaging at 1.5 T and 3.0 T: Comparison of oxygenation-sensitive magnetic resonance imaging. Magn. Reson. Med. 2001;4:595–604. doi: 10.1002/mrm.1081. PubMed DOI
Uggeri F., Aime S., Anelli P.L., Botta M., Brocchetta M., de Haeen C., Ermondi G., Grandi M., Paoli P. Novel Contrast Agents for Magnetic Resonance Imaging. Synthesis and Characterization of the Ligand BOPTA and Its Ln(III) Complexes (Ln = Gd, La, Lu). X-ray Structure of Disodium (TPS-9-145337286-C-S)-[4-Carboxy-5,8,11-tris(carboxymethyl)-1-phenyl-2-oxa-5,8,11-triazatridecan-13-oato(5-)]gadolinate(2-) in a Mixture with Its Enantiomer. Inorg. Chem. 1995;34:633–643. doi: 10.1021/ic00107a017. DOI
Klemm P.J., Floyd W.C., Smiles D.E., Fréchet J.M.J., Raymond K.N. Improving T1 and T2 magnetic resonance imaging contrast agents through the conjugation of an esteramide dendrimer to high-water-coordination Gd(III) hydroxypyridinone complexes. Contrast Media Mol. Imaging. 2012;7:95–99. doi: 10.1002/cmmi.483. PubMed DOI PMC
Lagostina V., Carniato F., Esteban-Gómez D., Platas-Iglesias C., Chiesa M., Botta M. Magnetic and relaxation properties of vanadium(iv) complexes: An integrated 1H relaxometric, EPR and computational study. Inorg. Chem. Front. 2023;10:1999–2013. doi: 10.1039/D2QI02635J. DOI
Tang X., Cai F., Ding D., Zhang L., Cai X., Fang Q. Magnetic resonance imaging relaxation time in Alzheimer’s disease. Brain Res. Bull. 2018;140:176–189. doi: 10.1016/j.brainresbull.2018.05.004. PubMed DOI
Deoni S.C.L. Quantitative relaxometry of the brain. Top. Magn. Reason. Imaging. 2010;294:101–113. doi: 10.1097/RMR.0b013e31821e56d8. PubMed DOI PMC
Yan Y., Zhou X.E., Novick S.J., Shaw S.J., Li Y., Brunzelle J.S., Hitoshi Y., Griffin P.R., Xu H.E., Melcher K. Structures of AMP-activated protein kinase bound to novel pharmacological activators in phosphorylated, non-phosphorylated, and nucleotide-free states. J. Biol. Chem. 2019;3:953–967. doi: 10.1074/jbc.RA118.004883. PubMed DOI PMC
Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., Beer T.A.P., Rempfer C., Bordoli L., et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:296–303. doi: 10.1093/nar/gky427. PubMed DOI PMC
Lazarus M.B., Novotny C.J., Shokat K.M. Structure of the Human Autophagy Initiating Kinase ULK1 in Complex with Potent Inhibitors. ACS Chem. Biol. 2015;10:257–261. doi: 10.1021/cb500835z. PubMed DOI PMC
BIOVIA . Discovery Studio Visualizer. Dassault Systemes; San Diego, CA, USA: 2021.
Thomsen R., Christensen M.H. MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem. 2006;49:3315–3321. doi: 10.1021/jm051197e. PubMed DOI
Thabah D., Syiem D., Pakyntein C., Banerjee S., Kharshiing C.E., Bhattacharjee A. Potentilla fulgens upregulate GLUT4, AMPK, AKT and insulin in alloxan-induced diabetic mice: An in 385 vivo and in silico study. Arch. Physiol. Biochem. 2021;129:1071–1083. doi: 10.1080/13813455.2021.1897145. PubMed DOI
Zhang H.-R., Gao C.-L., Zhang L.-C., Yu R.-L., Kang C.-M. Homology modeling, virtual screening and MD simulations for the identification of NUAK1 and ULK1 potential dual inhibitors. New J. Chem. 2022;46:4103–4113. doi: 10.1039/D1NJ03690D. DOI
Gonçalves M.A., Santos L.S., Prata D.M., Peixoto F.C., Da Cunha E.F.F., Ramalho T.C. Optimal wavelet signal compression as an efficient alternative to investigate molecular dynamics simulations: Application to thermal and solvent effects of MRI probes. Theor. Chem. Acc. 2017;2:136. doi: 10.1007/s00214-016-2037-z. DOI
Misiti M., Misiti Y., Oppenheim G., Poggi J.M. Wavelets and Their Applications. ISTE Ltd.; London, UK: 2007. (ISTE DSP Series).
Gonçalves M.A., Nunes C.A., Sáfadi T., Ramalho T.C. Optimal Wavepress is a User-Friendly Toolkit for Computational Chemistry, Drug Design and Material Science. J. Braz. Chem. Soc. 2023;34:1457–1463. doi: 10.21577/0103-5053.20230057. DOI
Gonçalves M.A., Gonçalves A.S., Franca T.C.C., Santana M.S., da Cunha E.F.F., Ramalho T.C. Improved Protocol for the Selection of Structures from Molecular Dynamics of Organic Systems in Solution: The Value of Investigating Different Wavelet Families. J. Chem. Theory Comput. 2022;18:5810–5818. doi: 10.1021/acs.jctc.2c00593. PubMed DOI
Giacoppo J.O., França T.C., Kuča K., da Cunha E.F., Abagyan R., Mancini D.T., Ramalho T.C. Molecular modeling and in vitro reactivation study between the oxime BI-6 and acetylcholinesterase inhibited by different nerve agents. J. Biomol. Struct. Dyn. 2015;33:2048–2058. doi: 10.1080/07391102.2014.989408. PubMed DOI