Mice prone to tinnitus after acoustic trauma show increased pre-exposure sensitivity to background noise
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38144362
PubMed Central
PMC10739389
DOI
10.3389/fnbeh.2023.1321277
Knihovny.cz E-zdroje
- Klíčová slova
- acoustic startle reflex, background noise, hearing loss, noise exposure, tinnitus,
- Publikační typ
- časopisecké články MeSH
Noise-induced tinnitus is generally associated with hearing impairment caused by traumatic acoustic overexposure. Previous studies in laboratory animals and human subjects, however, have observed differences in tinnitus susceptibility, even among individuals with similar hearing loss. The mechanisms underlying increased sensitivity or, conversely, resistance to tinnitus are still incompletely understood. Here, we used behavioral tests and ABR audiometry to compare the sound-evoked responses of mice that differed in the presence of noise-induced tinnitus. The aim was to find a specific pre-exposure neurophysiological marker that would predict the development of tinnitus after acoustic trauma. Noise-exposed mice were screened for tinnitus-like behavior with the GPIAS paradigm and subsequently divided into tinnitus (+T) and non-tinnitus (-T) groups. Both groups showed hearing loss after exposure, manifested by elevated audiometric thresholds along with reduced amplitudes and prolonged latencies of ABR waves. Prior to exposure, except for a slightly increased slope of growth function for ABR amplitudes in +T mice, the two groups did not show significant audiometric differences. Behavioral measures, such as the magnitude of the acoustic startle response and its inhibition by gap pre-pulse, were also similar before exposure in both groups. However, +T mice showed significantly increased suppression of the acoustic startle response in the presence of background noise of moderate intensity. Thus, increased modulation of startle by background sounds may represent a behavioral correlate of susceptibility to noise-induced tinnitus, and its measurement may form the basis of a simple non-invasive method for predicting tinnitus development in laboratory rodents.
Zobrazit více v PubMed
Ahlf S., Tziridis K., Korn S., Strohmeyer I., Schulze H. (2012). Predisposition for and prevention of subjective tinnitus development. PLoS One 7:e44519. doi: 10.1371/journal.pone.0044519, PMID: PubMed DOI PMC
Bhatt I. S., Wilson N., Dias R., Torkamani A. (2022). A genome-wide association study of tinnitus reveals shared genetic links to neuropsychiatric disorders. Sci. Rep. 12:22511. doi: 10.1038/s41598-022-26413-6, PMID: PubMed DOI PMC
Burghard A. L., Lee C. M., Fabrizio-Stover E. M., Oliver D. L. (2022). Long-duration sound-induced facilitation changes population activity in the inferior colliculus. Front. Syst. Neurosci. 16:920642. doi: 10.3389/fnsys.2022.920642, PMID: PubMed DOI PMC
Deng D., Masri S., Yao L., Ma X., Cao X., Yang S., et al. . (2020). Increasing endogenous activity of NMDARs on GABAergic neurons increases inhibition, alters sensory processing and prevents noise-induced tinnitus. Sci. Rep. 10:11969. doi: 10.1038/s41598-020-68652-5, PMID: PubMed DOI PMC
Eggermont J. J., Roberts L. E. (2015). Tinnitus: animal models and findings in humans. Cell Tissue Res. 361, 311–336. doi: 10.1007/s00441-014-1992-8, PMID: PubMed DOI PMC
Fabrizio-Stover E. M., Nichols G., Corcoran J., Jain A., Burghard A. L., Lee C. M., et al. . (2022). Comparison of two behavioral tests for tinnitus assessment in mice. Front. Behav. Neurosci. 16:995422. doi: 10.3389/fnbeh.2022.995422, PMID: PubMed DOI PMC
Galazyuk A., Hebert S. (2015). Gap-Prepulse inhibition of the acoustic startle reflex (GPIAS) for tinnitus assessment: current status and future directions. Front. Neurol. 6:88. doi: 10.3389/fneur.2015.00088 PubMed DOI PMC
Gerrard R. L., Ison J. R. (1990). Spectral frequency and the modulation of the acoustic startle reflex by background noise. J. Exp. Psychol. Anim. Behav. Process. 16, 106–112. doi: 10.1037/0097-7403.16.1.106, PMID: PubMed DOI
Hamed S. A., Attiah F. A., Fawzy M., Azzam M. (2023). Evaluation of chronic idiopathic tinnitus and its psychosocial triggers. World J. Clin. Cases 11, 3211–3223. doi: 10.12998/wjcc.v11.i14.3211, PMID: PubMed DOI PMC
Heeringa A. N., Wu C., Chung C., West M., Martel D., Liberman L., et al. . (2018). Glutamatergic projections to the cochlear nucleus are redistributed in tinnitus. Neuroscience 391, 91–103. doi: 10.1016/j.neuroscience.2018.09.008 PubMed DOI PMC
Henry J. A., Roberts L. E., Caspary D. M., Theodoroff S. M., Salvi R. J. (2014). Underlying mechanisms of tinnitus: review and clinical implications. J. Am. Acad. Audiol. 25:5-22; quiz 126. doi: 10.3766/jaaa.25.1.2, PMID: PubMed DOI PMC
Henton A., Tzounopoulos T. (2021). What's the buzz? The neuroscience and the treatment of tinnitus. Physiol. Rev. 101, 1609–1632. doi: 10.1152/physrev.00029.2020, PMID: PubMed DOI PMC
Ison J. R., Silverstein L. (1978). Acoustic startle reactions, activity, and background noise intensity, before and after lesions of medial cortex in the rat. Physiol. Psychol. 6, 245–248. doi: 10.3758/BF03326721 DOI
Koebis M., Urata S., Shinoda Y., Okabe S., Yamasoba T., Nakao K., et al. . (2019). LAMP5 in presynaptic inhibitory terminals in the hindbrain and spinal cord: a role in startle response and auditory processing. Mol. Brain 12:20. doi: 10.1186/s13041-019-0437-4, PMID: PubMed DOI PMC
Konig O., Schaette R., Kempter R., Gross M. (2006). Course of hearing loss and occurrence of tinnitus. Hear. Res. 221, 59–64. doi: 10.1016/j.heares.2006.07.007 PubMed DOI
Kraus K. S., Ding D., Jiang H., Lobarinas E., Sun W., Salvi R. J. (2011). Relationship between noise-induced hearing-loss, persistent tinnitus and growth-associated protein-43 expression in the rat cochlear nucleus: does synaptic plasticity in ventral cochlear nucleus suppress tinnitus? Neuroscience 194, 309–325. doi: 10.1016/j.neuroscience.2011.07.056, PMID: PubMed DOI PMC
Li S., Choi V., Tzounopoulos T. (2013). Pathogenic plasticity of Kv7.2/3 channel activity is essential for the induction of tinnitus. Proc. Natl. Acad. Sci. U. S. A. 110, 9980–9985. doi: 10.1073/pnas.1302770110, PMID: PubMed DOI PMC
Li S., Kalappa B. I., Tzounopoulos T. (2015). Noise-induced plasticity of KCNQ2/3 and HCN channels underlies vulnerability and resilience to tinnitus. elife 4:e07242. doi: 10.7554/eLife.07242, PMID: PubMed DOI PMC
Masri S., Chan N., Marsh T., Zinsmaier A., Schaub D., Zhang L., et al. . (2021). Chemogenetic activation of cortical parvalbumin-positive interneurons reverses noise-induced impairments in gap detection. J. Neurosci. 41, 8848–8857. doi: 10.1523/JNEUROSCI.2687-19.2021, PMID: PubMed DOI PMC
Miyakawa A., Wang W., Cho S. J., Li D., Yang S., Bao S. (2019). Tinnitus correlates with downregulation of cortical glutamate decarboxylase 65 expression but not auditory cortical map reorganization. J. Neurosci. 39, 9989–10001. doi: 10.1523/JNEUROSCI.1117-19.2019, PMID: PubMed DOI PMC
Mohrle D., Hofmeier B., Amend M., Wolpert S., Ni K., Bing D., et al. . (2019). Enhanced central neural gain compensates acoustic trauma-induced cochlear impairment, but unlikely correlates with tinnitus and hyperacusis. Neuroscience 407, 146–169. doi: 10.1016/j.neuroscience.2018.12.038, PMID: PubMed DOI
Resnik J., Polley D. B. (2021). Cochlear neural degeneration disrupts hearing in background noise by increasing auditory cortex internal noise. Neuron 109, 984–996.e4. doi: 10.1016/j.neuron.2021.01.015, PMID: PubMed DOI PMC
Roberts L. E., Eggermont J. J., Caspary D. M., Shore S. E., Melcher J. R., Kaltenbach J. A. (2010). Ringing ears: the neuroscience of tinnitus. J. Neurosci. 30, 14972–14979. doi: 10.1523/JNEUROSCI.4028-10.2010, PMID: PubMed DOI PMC
Ruttiger L., Singer W., Panford-Walsh R., Matsumoto M., Lee S. C., Zuccotti A., et al. . (2013). The reduced cochlear output and the failure to adapt the central auditory response causes tinnitus in noise exposed rats. PLoS One 8:e57247. doi: 10.1371/journal.pone.0057247, PMID: PubMed DOI PMC
Rybalko N., Mitrovic D., Suta D., Bures Z., Popelar J., Syka J. (2019). Behavioral evaluation of auditory function abnormalities in adult rats with normal hearing thresholds that were exposed to noise during early development. Physiol. Behav. 210:112620. doi: 10.1016/j.physbeh.2019.112620, PMID: PubMed DOI
Shore S. E., Roberts L. E., Langguth B. (2016). Maladaptive plasticity in tinnitus — triggers, mechanisms and treatment. Nat. Rev. Neurol. 12, 150–160. doi: 10.1038/nrneurol.2016.12, PMID: PubMed DOI PMC
Shore S. E., Wu C. (2019). Mechanisms of noise-induced tinnitus: insights from cellular studies. Neuron 103, 8–20. doi: 10.1016/j.neuron.2019.05.008, PMID: PubMed DOI PMC
Swerdlow N. R., Braff D. L., Geyer M. A. (2000). Animal models of deficient sensorimotor gating: what we know, what we think we know, and what we hope to know soon. Behav. Pharmacol. 11, 185–204. doi: 10.1097/00008877-200006000-00002, PMID: PubMed DOI
Trevis K. J., McLachlan N. M., Wilson S. J. (2018). A systematic review and meta-analysis of psychological functioning in chronic tinnitus. Clin. Psychol. Rev. 60, 62–86. doi: 10.1016/j.cpr.2017.12.006, PMID: PubMed DOI
Turner J. G., Brozoski T. J., Bauer C. A., Parrish J. L., Myers K., Hughes L. F., et al. . (2006). Gap detection deficits in rats with tinnitus: a potential novel screening tool. Behav. Neurosci. 120, 188–195. doi: 10.1037/0735-7044.120.1.188, PMID: PubMed DOI
Tziridis K., Ahlf S., Jeschke M., Happel M. F., Ohl F. W., Schulze H. (2015). Noise trauma induced neural plasticity throughout the auditory system of Mongolian gerbils: differences between tinnitus developing and non-developing animals. Front. Neurol. 6:22. doi: 10.3389/fneur.2015.00022 PubMed DOI PMC
Willott J. F. (2006). Measurement of the auditory brainstem response (ABR) to study auditory sensitivity in mice. Curr Protoc Neurosci 34:Unit8.21B. doi: 10.1002/0471142301.ns0821bs34 PubMed DOI
Zheng Q. Y., Johnson K. R., Erway L. C. (1999). Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses. Hear. Res. 130, 94–107. doi: 10.1016/S0378-5955(99)00003-9, PMID: PubMed DOI PMC