Serum neurofilament light chain levels in patients with cognitive deficits and movement disorders: comparison of cerebrospinal and serum neurofilament light chain levels with other biomarkers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38164192
PubMed Central
PMC10757912
DOI
10.3389/fnhum.2023.1284416
Knihovny.cz E-zdroje
- Klíčová slova
- cognitive deficit, high-sensitivity ELISA, mini-mental state examination, neurofilament light chain, serum,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Serum neurofilament light chain (S NfL) is a non-specific marker of neuronal damage, including Alzheimer's disease (AD). We aimed to verify the reference interval (RI) of serum NfL using a highly sensitive ELISA, and to estimate the optimal cut-off value for neuronal damage. Our second objective was to compare NfL in cerebrospinal fluid (CSF) and serum (S) with the routine neurodegeneration biomarkers used in AD, and to assess their concentrations relative to the degree of cognitive deficit. METHODS: Samples from 124 healthy volunteers were used to estimate the S NfL RI. For the comparison study, we used CSF and S samples from 112 patients with cognitive disorders. Cognitive functions were assessed using the mini-mental state examination. ELISA assays were used to determine the CSF and S NfL levels, CSF β-amyloid peptide42 (Aβ42), CSF β-amyloid peptide40 (Aβ40), CSF total tau protein (tTau), CSF phosphorylated tau protein (pTau), and CSF alpha-synuclein (αS). RESULTS: The estimated RI of S NfL were 2.25-9.19 ng.L-1. The cut-off value of S NfL for assessing the degree of neuronal impairment was 10.5 ng.L-1. We found a moderate statistically significant correlation between S NfL and CSF Aβ42 in the group with movement disorders, without dementia (rs = 0.631; p = 0.016); between S NfL and CSF Aβ40 in the group with movement disorder plus dementia (rs = -0.750; p = 0.052); between S NfL and CSF tTau in the control group (rs = 0.689; p = 0.009); and between S NfL and CSF pTau in the control group (rs = 0.749; p = 0.003). The non-parametric Kruskal-Wallis test revealed statistically significant differences between S NfL, CSF NfL, CSF Aβ42, CSF tTau, and CSF pTau and diagnosis within groups. The highest kappa coefficients were found between the concentrations of S NfL and CSF NfL (κ = 0.480) and between CSF NfL and CSF tTau (κ = 0.351). CONCLUSION: Our results suggested that NfL and tTau in CSF of patients with cognitive decline could be replaced by the less-invasive determination of S NfL using a highly sensitive ELISA method. S NfL reflected the severity of cognitive deficits assessed by mini-mental state examination (MMSE). However, S NfL is not specific to AD and does not appear to be a suitable biomarker for early diagnosis of AD.
Department of Clinical Neurosciences University of Ostrava Ostrava Czechia
Department of Neurology University Hospital Ostrava Ostrava Czechia
Institute of Laboratory Medicine University of Ostrava Ostrava Czechia
Zobrazit více v PubMed
Andersson E., Janelidze S., Lampinen B., Nilsson M., Leuzy A., Stomrud E., et al. (2020). Blood and cerebrospinal fluid neurofilament light differentially detect neurodegeneration in early Alzheimer’s disease. Neurobiol. Aging 95 143–153. 10.1016/j.neurobiolaging.2020.07.018 PubMed DOI PMC
Arrambide G., Espejo C., Eixarch H., Villar L., Alvarez-Cermeño J., Picón C., et al. (2016). Neurofilament light chain level is a weak risk factor for the development of MS. Neurology. 87 1076–1084. PubMed PMC
Bartoš A., Smětáková M., Nosková L., Říčný J., Fialová L. (2019). Determination of tau proteins and β-amyloid 42 in cerebrospinal fluid by ELISA methods and indicative normative values. Èeská Slov. Neurol. Neurochir. 82/115 533–540.
Buganza M., Ferrari S., Cecchini M., Orrico D., Monaco S., Zanusso G. (2009). The oldest old Creutzfeldt-Jakob disease case. J. Neurol. Neurosurg. Psychiatry 80 1140–1142. PubMed
Canaslan S., Schmitz M., Villar-Piqué A., Maass F., Gmitterová K., Varges D., et al. (2021). Detection of cerebrospinal fluid neurofilament light Chain as a marker for alpha-synucleinopathies. Front. Aging Neurosci. 13:717930. 10.3389/fnagi.2021.717930 PubMed DOI PMC
Ciccocioppo F., Bologna G., Ercolino E., Pierdomenico L., Simeone P., Lanuti P., et al. (2020). Neurodegenerative diseases as proteinopathies-driven immune disorders. Neural. Regen. Res. 15 850–856. 10.4103/1673-5374.268971 PubMed DOI PMC
Clinical and Laboratory Standards Institute [CLSI]. (2008). Defining, establishing, and verifying reference intervals in the clinical laboratory; approved guideline, 3rd Edn. Wayne, PA: CLSI.
Das S., Dewit N., Jacobs D., Pijnenburg Y., In’t Veld S., Coppens S., et al. (2022). A Novel neurofilament light chain ELISA validated in patients with Alzheimer’s disease, frontotemporal dementia, and subjective cognitive decline, and the evaluation of candidate proteins for immunoassay calibration. Int. J. Mol. Sci. 23:7221. 10.3390/ijms23137221 PubMed DOI PMC
Delaby C., Bousiges O., Bouvier D., Fillée C., Fourier A., Mondésert E., et al. (2022). Neurofilaments contribution in clinic: State of the art. Front. Aging Neurosci. 14:1034684. 10.3389/fnagi.2022.1034684 PubMed DOI PMC
Dhiman K., Gupta V., Villemagne V., Eratne D., Graham P., Fowler C., et al. (2020). Cerebrospinal fluid neurofilament light concentration predicts brain atrophy and cognition in Alzheimer’s disease. Alzheimer’s Dement. (Amsterdam, Netherlands) 12:e12005. PubMed PMC
Dugger B., Dickson D. (2017). Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol. 9:a028035. PubMed PMC
Ferri C., Prince M., Brayne C., Brodaty H., Fratiglioni L., Ganguli M., et al. (2005). Global prevalence of dementia: A Delphi consensus study. Lancet (London, England) 366 2112–2117. PubMed PMC
Giacomucci G., Mazzeo S., Bagnoli S., Ingannato A., Leccese D., Berti V., et al. (2022). Plasma neurofilament light chain as a biomarker of Alzheimer’s disease in Subjective Cognitive Decline and Mild Cognitive Impairment. J. Neurol. 269 4270–4280. 10.1007/s00415-022-11055-5 PubMed DOI PMC
Harp C., Thanei G., Jia X., Kuhle J., Leppert D., Schaedelin S., et al. (2022). Development of an age-adjusted model for blood neurofilament light chain. Ann. Clin. Transl. Neurol. 9 444–453. PubMed PMC
Holper S., Watson R., Yassi N. (2022). Tau as a biomarker of neurodegeneration. Int. J. Mol. Sci. 23:7307. PubMed PMC
Hviid C., Knudsen C., Parkner T. (2020). Reference interval and preanalytical properties of serum neurofilament light chain in Scandinavian adults. Scand. J. Clin. Lab. Invest. 80 291–295. 10.1080/00365513.2020.1730434 PubMed DOI
Irwin D., Lee V., Trojanowski J. (2013). Parkinson’s disease dementia: Convergence of α-synuclein, tau and amyloid-β pathologies. Nat. Rev. Neurosci. 14 626–636. PubMed PMC
Jack C., Bennett D., Blennow K., Carrillo M., Dunn B., Haeberlein S., et al. (2018). NIA-AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 14 535–562. 10.1016/j.jalz.2018.02.018 PubMed DOI PMC
Kang J., Mollenhauer B., Coffey C., Toledo J., Weintraub D., Galasko D., et al. (2016). CSF biomarkers associated with disease heterogeneity in early Parkinson’s disease: the Parkinson’s progression markers initiative study. Acta Neuropathol. 131 935–949. PubMed PMC
Khalil M., Teunissen C., Otto M., Piehl F., Sormani M., Gattringer T., et al. (2018). Neurofilaments as biomarkers in neurological disorders. Nat. Rev. Neurol. 14 577–589. PubMed
Koini M., Pirpamer L., Hofer E., Buchmann A., Pinter D., Ropele S., et al. (2021). Factors influencing serum neurofilament light chain levels in normal aging. Aging (Albany NY). 13 25729–25738. 10.18632/aging.203790 PubMed DOI PMC
Lehmann S., Dumurgier J., Ayrignac X., Marelli C., Alcolea D., Ormaechea J., et al. (2020). Cerebrospinal fluid A beta 1-40 peptides increase in Alzheimer’s disease and are highly correlated with phospho-tau in control individuals. Alzheimers Res. Ther. 12:123. 10.1186/s13195-020-00696-1 PubMed DOI PMC
Loeffler T., Schilcher I., Flunkert S., Hutter-Paier B. (2020). Neurofilament-light chain as biomarker of neurodegenerative and rare diseases with high translational value. Front. Neurosci. 14:579. 10.3389/fnins.2020.00579 PubMed DOI PMC
Ma L., Zhang C., Wang H., Ma Y., Shen X., Wang J., et al. (2021). Serum neurofilament dynamics predicts cognitive progression in de novo Parkinson’s disease. J. Parkinsons Dis. 11 1117–1127. 10.3233/JPD-212535 PubMed DOI
McHugh M. (2012). Interrater reliability: The kappa statistic. Biochem. Med. 22 276–282. PubMed PMC
Mohandas E., Rajmohan V. (2009). Frontotemporal dementia: An updated overview. Indian J. Psychiatry. 51(Suppl. 1) S65–S69. PubMed PMC
Mollenhauer B. (2014). Quantification of α-synuclein in cerebrospinal fluid: How ideal is this biomarker for Parkinson’s disease? Parkinsonism Relat. Disord. 20(Suppl. 1) S76–S79. 10.1016/S1353-8020(13)70020-8 PubMed DOI
Mollenhauer B., Dakna M., Kruse N., Galasko D., Foroud T., Zetterberg H., et al. (2020). Validation of serum neurofilament light Chain as a biomarker of Parkinson’s disease progression. Mov. Disord. 35 1999–2008. 10.1002/mds.28206 PubMed DOI PMC
Nichols E., Szoeke C., Vollser S., Abbasi N., Foad A., Jemal A., et al. (2019). Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18 88–106. PubMed PMC
Oosterveld L., Verberk I., Majbour N., El-Agnaf O., Weinstein H., Berendse H., et al. (2020). CSF or serum neurofilament light added to α-Synuclein panel discriminates Parkinson’s from controls. Mov. Disord. 35 288–295. PubMed PMC
Pavlov I., Wilson A., Delgado J. (2010). Resampling approach for determination of the method for reference interval calculation in clinical laboratory practice. Clin. Vaccine Immunol. 17 1217–1222. 10.1128/CVI.00112-10 PubMed DOI PMC
Postuma R., Berg D., Stern M., Poewe W., Olanow C., Oertel W., et al. (2015). MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 30 1591–1601. PubMed
Preische O., Schultz S., Apel A., Kuhle J., Kaeser S., Barro C., et al. (2019). Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer’s disease. Nat. Med. 25 277–283. 10.1038/s41591-018-0304-3 PubMed DOI PMC
Revendova K., Zeman D., Bunganic R., Karasova K., Volny O., Bar M., et al. (2022). Serum neurofilament levels in patients with multiple sclerosis: A comparison of SIMOA and high sensitivity ELISA assays and contributing factors to ELISA levels. Mult. Scler. Relat. Disord. 67:104177. 10.1016/j.msard.2022.104177 PubMed DOI
Román G. (2005). Vascular dementia prevention: A risk factor analysis. Cerebrovasc. Dis. 20(Suppl. 2) 91–100. PubMed
Siderowf A., Xie S., Hurtig H., Weintraub D., Duda J., Chen-Plotkin A., et al. (2010). CSF amyloid β 1-42 predicts cognitive decline in Parkinson disease. Neurology 75 1055–1061. PubMed PMC
Swirski M., Miners J., de Silva R., Lashley T., Ling H., Holton J., et al. (2014). Evaluating the relationship between amyloid-β and α-synuclein phosphorylated at Ser129 in dementia with Lewy bodies and Parkinson’s disease. Alzheimers Res. Ther. 6:77. PubMed PMC
Tokutake T., Kasuga K., Tsukie T., Ishiguro T., Shimohata T., Onodera O., et al. (2022). Clinical correlations of cerebrospinal fluid biomarkers including neuron-glia 2 and neurofilament light chain in patients with multiple system atrophy. Parkinsonism Relat. Disord. 102 30–35. 10.1016/j.parkreldis.2022.07.007 PubMed DOI
Zhang J., Mattison H., Liu C., Ginghina C., Auinger P., McDermott M., et al. (2013). Longitudinal assessment of tau and amyloid beta in cerebrospinal fluid of Parkinson disease. Acta Neuropathol. 126 671–682. PubMed PMC