Discovering Electrochemistry with an Electrochemistry-Informed Neural Network (ECINN)
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
90254
Ministerstvo Školství, Mládeže a Tělovýchovy
SP2023/034
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.10.03.01/00/22_003/0000048
European Union
PubMed
38179808
DOI
10.1002/anie.202315937
Knihovny.cz E-zdroje
- Klíčová slova
- Cyclic Voltammetr, Electrochemistry, Multi-Task Discovery, Physics-Informed Neural Networks, Tafel Analysis,
- Publikační typ
- časopisecké články MeSH
Machine learning is increasingly integrated into chemistry research by guiding experimental procedures, correlating structure and function, interpreting large experimental datasets, to distill scientific insights that might be challenging with traditional methods. Such applications, however, largely focus on gaining insights via big data and/or big computation, while neglecting the valuable chemical prior knowledge dwelling in chemists' minds. In this paper, we introduce an Electrochemistry-Informed Neural Network (ECINN) by explicitly embedding electrochemistry priors including the Butler-Volmer (BV), Nernst and diffusion equations on the backbone of neural networks for multi-task discovery of electrochemistry parameters. We applied the ECINN to voltammetry experiments of F e 2 + / F e 3 + ${{\rm F}{{\rm e}}^{2+}/{\rm F}{{\rm e}}^{3+}}$ and R u N H 3 6 2 + / R u N H 3 6 3 + ${{\rm R}{\rm u}{\left({\rm N}{{\rm H}}_{3}\right)}_{6}^{2+{\rm \ }}/{\rm R}{\rm u}{\left({\rm N}{{\rm H}}_{3}\right)}_{6}^{3+{\rm \ }}}$ redox couples to discover electrode kinetics and mass transport parameters. Notably, ECINN seamlessly integrated mass transport with BV to analyze the entire voltammogram to infer transfer coefficients directly, so offering a new approach to Tafel analysis by outdating various mass transport correction methods. In addition, ECINN can help discover the nature of electron transfer and is shown to refute incorrect physics if imposed. This work encourages chemists to embed their domain knowledge into machine learning models to start a new paradigm of chemistry-informed machine learning for better accountability, interpretability, and generalization.
Zobrazit více v PubMed
C. Zhou, R. C. Paffenroth, Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery, Halifax, 2017, pp. 665-674.
E. Govorkova, E. Puljak, T. Aarrestad, T. James, V. Loncar, M. Pierini, A. A. Pol, N. Ghielmetti, M. Graczyk, S. Summers, J. Ngadiuba, T. Q. Nguyen, J. Duarte, Z. Wu, Nat. Mach. Intell. 2022, 4, 154-161.
J.-P. Vert, Nat. Biotechnol. 2023, 41, 750-751.
Y. Liu, K. P. Kelley, R. K. Vasudevan, H. Funakubo, M. A. Ziatdinov, S. V. Kalinin, Nat. Mach. Intell. 2022, 4, 341-350;
C. W. Coley, N. S. Eyke, K. F. Jensen, Angew. Chem. Int. Ed. 2020, 59, 23414-23436.
B. Burger, P. M. Maffettone, V. V. Gusev, C. M. Aitchison, Y. Bai, X. Wang, X. Li, B. M. Alston, B. Li, R. Clowes, N. Rankin, B. Harris, R. S. Sprick, A. I. Cooper, Nature 2020, 583, 237-241.
H. Chen, S. Barton, M. Yang, R. E. M. Rickaby, H. A. Bouman, R. G. Compton, Chem. Sci. 2023, 14, 5872-5879.
Y. Luo, J. Peng, J. Ma, Nat. Mach. Intell. 2020, 2, 426-427.
Z. Hao, S. Liu, Y. Zhang, C. Ying, Y. Feng, H. Su, J. Zhu, arXiv preprint 2022, arXiv:2211.08064.
N. Fujinuma, B. DeCost, J. Hattrick-Simpers, S. E. Lofland, Commun. Mater. 2022, 3, 59.
G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang, Nat. Rev. Phys. 2021, 3, 422-440.
H. Wang, T. Fu, Y. Du, W. Gao, K. Huang, Z. Liu, P. Chandak, S. Liu, P. Van Katwyk, A. Deac, A. Anandkumar, K. Bergen, C. P. Gomes, S. Ho, P. Kohli, J. Lasenby, J. Leskovec, T.-Y. Liu, A. Manrai, D. Marks, B. Ramsundar, L. Song, J. Sun, J. Tang, P. Veličković, M. Welling, L. Zhang, C. W. Coley, Y. Bengio, M. Zitnik, Nature 2023, 620, 47-60.
T. Mou, H. S. Pillai, S. Wang, M. Wan, X. Han, N. M. Schweitzer, F. Che, H. Xin, Nat. Catal. 2023, 6, 122-136.
J. Peng, D. Schwalbe-Koda, K. Akkiraju, T. Xie, L. Giordano, Y. Yu, C. J. Eom, J. R. Lunger, D. J. Zheng, R. R. Rao, S. Muy, J. C. Grossman, K. Reuter, R. Gómez-Bombarelli, Y. Shao-Horn, Nat. Rev. Mater. 2022, 7, 991-1009.
G. Bradford, J. Lopez, J. Ruza, M. A. Stolberg, R. Osterude, J. A. Johnson, R. Gomez-Bombarelli, Y. Shao-Horn, ACS Cent. Sci. 2023, 9, 206-216.
B. Zhang, X. Zhang, W. Du, Z. Song, G. Zhang, G. Zhang, Y. Wang, X. Chen, J. Jiang, Y. Luo, Proc. Natl. Acad. Sci. USA 2022, 119, e2212711119.
C. Rao, P. Ren, Q. Wang, O. Buyukozturk, H. Sun, Y. Liu, Nat. Mach. Intell. 2023, 5, 765-779;
M. Raissi, P. Perdikaris, G. E. Karniadakis, J. Comput. Phys. 2019, 378, 686-707;
H. Chen, E. Kätelhön, R. G. Compton, J. Phys. Chem. Lett. 2022, 13, 536-543.
R. Guidelli, R. G. Compton, J. M. Feliu, E. Gileadi, J. Lipkowski, W. Schmickler, S. Trasatti, Pure Appl. Chem. 2014, 86, 245-258;
R. Guidelli, R. G. Compton, J. M. Feliu, E. Gileadi, J. Lipkowski, W. Schmickler, S. Trasatti, Pure Appl. Chem. 2014, 86, 259-262.
W. M. Haynes, in CRC Handbook of Chemistry and Physics, CRC, Boca Raton, 2014.
G. F. Kennedy, J. Zhang, A. M. Bond, Anal. Chem. 2019, 91, 12220-12227.
C. Batchelor-McAuley, D. Li, R. G. Compton, ChemElectroChem 2020, 7, 3844-3851.
D. Li, C. Lin, C. Batchelor-McAuley, L. Chen, R. G. Compton, J. Electroanal. Chem. 2018, 826, 117-124.
Z. Lukács, T. Kristóf, Electrochem. Commun. 2023, 154, 107556.
P. Agbo, N. Danilovic, J. Phys. Chem. C 2019, 123, 30252-30264.
M. Corva, N. Blanc, C. J. Bondue, K. Tschulik, ACS Catal. 2022, 12, 13805-13812;
P. Khadke, T. Tichter, T. Boettcher, F. Muench, W. Ensinger, C. Roth, Sci. Rep. 2021, 11, 8974.
R. S. Nicholson, Anal. Chem. 1965, 37, 1351-1355.
R. Klingler, J. Kochi, J. Phys. Chem. 1981, 85, 1731-1741.
L. Gundry, S.-X. Guo, G. Kennedy, J. Keith, M. Robinson, D. Gavaghan, A. M. Bond, J. Zhang, Chem. Commun. 2021, 57, 1855-1870.
B. Lakshminarayanan, A. Pritzel, C. Blundell, NeurIPS 2017, 30.
A. S. N. Murthy, T. Srivastava, J. Power Sources 1989, 27, 119-126.
T. Saji, T. Yamada, S. Aoyagui, J. Electroanal. Chem. Interfacial Electrochem. 1975, 61, 147-153.
H. M. A. Amin, Y. Uchida, E. Kätelhön, R. G. Compton, J. Electroanal. Chem. 2019, 836, 62-67.
Y. Wang, J. G. Limon-Petersen, R. G. Compton, J. Electroanal. Chem. 2011, 652, 13-17.
D. Li, C. Batchelor-McAuley, L. Chen, R. G. Compton, J. Phys. Chem. Lett. 2020, 11, 1497-1501.
C. Batchelor-McAuley, M. Yang, E. M. Hall, R. G. Compton, J. Electroanal. Chem. 2015, 758, 1-6;
I. Puigdomenech, KTH Royal Institute of Technology 2004;
H. Chen, C. Batchelor-McAuley, E. Kätelhön, J. Elliott, R. G. Compton, J. Electroanal. Chem. 2022, 925, 116918;
A. Einstein, J. Ann. Phys. 1905, 322, 549-560;
I. B. Svir, A. I. Oleinick, R. G. Compton, Russ. J. Electrochem. 2003, 39, 160-164;
R. G. Compton, C. E. Banks, in Understanding voltammetry, 3rd ed., World Scientific, London, 2018;
R. G. Compton, E. Laborda, E. Kaetelhoen, K. R. Ward, in Understanding voltammetry: simulation of electrode processes, 2nd ed., World Scientific, London, 2020.