DeepFND: an ensemble-based deep learning approach for the optimization and improvement of fake news detection in digital platform
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type News
PubMed
38192452
PubMed Central
PMC10773750
DOI
10.7717/peerj-cs.1666
PII: cs-1666
Knihovny.cz E-resources
- Keywords
- Deep learning, DeepFND, Ensemble model, Fake news, Joint feature extraction,
- Publication type
- News MeSH
Early identification of false news is now essential to save lives from the dangers posed by its spread. People keep sharing false information even after it has been debunked. Those responsible for spreading misleading information in the first place should face the consequences, not the victims of their actions. Understanding how misinformation travels and how to stop it is an absolute need for society and government. Consequently, the necessity to identify false news from genuine stories has emerged with the rise of these social media platforms. One of the tough issues of conventional methodologies is identifying false news. In recent years, neural network models' performance has surpassed that of classic machine learning approaches because of their superior feature extraction. This research presents Deep learning-based Fake News Detection (DeepFND). This technique has Visual Geometry Group 19 (VGG-19) and Bidirectional Long Short Term Memory (Bi-LSTM) ensemble models for identifying misinformation spread through social media. This system uses an ensemble deep learning (DL) strategy to extract characteristics from the article's text and photos. The joint feature extractor and the attention modules are used with an ensemble approach, including pre-training and fine-tuning phases. In this article, we utilized a unique customized loss function. In this research, we look at methods for detecting bogus news on the internet without human intervention. We used the Weibo, liar, PHEME, fake and real news, and Buzzfeed datasets to analyze fake and real news. Multiple methods for identifying fake news are compared and contrasted. Precision procedures have been used to calculate the proposed model's output. The model's 99.88% accuracy is better than expected.
Department of Applied Cybernetics University of Hradec Králové Hradec Kralove Czech Republic
Department of Industrial Engineering and Management Yuan Ze University Taoyuan City Taiwan
Department of Industrial Engineering Istinye University Istanbul Turkey
Department of Language Preparation Princess Nourah Bint Abdulrahman University Riyadh Saudi Arabia
Faculty of Transport and Traffic Engineering University of Belgrade Belgrade Serbia
See more in PubMed
Abedalla A, Al-Sadi A, Abdullah M. A closer look at fake news detection: a deep learning perspective. Proceedings of the 3rd International Conference on Advances in Artificial Intelligence; New York: ACM; 2019. pp. 24–28.
Ahmed H, Traore I, Saad S. Detection of online fake news using n-gram analysis and machine learning techniques. Intelligent, Secure, and Dependable Systems in Distributed and Cloud Environments: First International Conference, ISDDC 2017, Vancouver, BC, Canada, October 26–28, 2017, Proceedings 1; Cham: Springer; 2017. pp. 127–138.
Ahmed H, Traore I, Saad S. Detecting opinion spams and fake news using text classification. Security and Privacy. 2018;1(1):e9. doi: 10.1002/spy2.9. DOI
Ajao O, Bhowmik D, Zargari S. Sentiment aware fake news detection on online social networks. ICASSP, 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); Piscataway: IEEE; 2019. pp. 2507–2511.
Aslam N, Ullah Khan I, Alotaibi FS, Aldaej LA, Aldubaikil AK. Fake detect: a deep learning ensemble model for fake news detection. Complexity. 2021;2021(4):1–8. doi: 10.1155/2021/5557784. DOI
Bhattacharya P, Patel SB, Gupta R, Tanwar S, Rodrigues JJ. SaTYa: trusted bi-LSTM-based fake news classification scheme for smart community. IEEE Transactions on Computational Social Systems. 2021;9(6):1758–1767. doi: 10.1109/TCSS.2021.3131945. DOI
Bian T, Xiao X, Xu T, Zhao P, Huang W, Rong Y, Huang J. Rumor detection on social media with bi-directional graph convolutional networks. Proceedings of the AAAI Conference on Artificial Intelligence. 2020;34(1):549–556. doi: 10.1609/aaai.v34i01.5393. DOI
Cao K, Wang B, Ding H, Lv L, Tian J, Hu H, Gong F. Achieving reliable and secure communications in wireless-powered NOMA systems. IEEE Transactions on Vehicular Technology. 2021;70(2):1978–1983. doi: 10.1109/TVT.2021.3053093. DOI
Chen P, Liu H, Xin R, Carval T, Zhao J, Xia Y, Zhao Z. Effectively detecting operational anomalies in large-scale IoT data infrastructures by using a GAN-based predictive model. The Computer Journal. 2022b;65(11):2909–2925. doi: 10.1093/comjnl/bxac085. DOI
Chen J, Wang Q, Peng W, Xu H, Li X, Xu W. Disparity-based multiscale fusion network for transportation detection. IEEE Transactions on Intelligent Transportation Systems. 2022a;23(10):18855–18863. doi: 10.1109/TITS.2022.3161977. DOI
Chen J, Xu M, Xu W, Li D, Peng W, Xu H. A flow feedback traffic prediction based on visual quantified features. IEEE Transactions on Intelligent Transportation Systems. 2023;24(9):10067–10075. doi: 10.1109/TITS.2023.3269794. DOI
Cheng B, Zhu D, Zhao S, Chen J. Situation-aware IoT service coordination using the event-driven SOA paradigm. IEEE Transactions on Network and Service Management. 2016;13(2):349–361. doi: 10.1109/TNSM.2016.2541171. DOI
Conroy NK, Rubin VL, Chen Y. Automatic deception detection: methods for finding fake news. Proceedings of the Association for Information Science and Technology. 2015;52(1):1–4. doi: 10.1002/pra2.2015.145052010082. DOI
Das SD, Basak A, Dutta S. A heuristic-driven uncertainty based ensemble framework for fake news detection in tweets and news articles. Neurocomputing. 2022;491(8):607–620. doi: 10.1016/j.neucom.2021.12.037. DOI
Ding Y, Zhang W, Zhou X, Liao Q, Luo Q, Ni LM. FraudTrip: Taxi fraudulent trip detection from corresponding trajectories. IEEE Internet of Things Journal. 2020;8(16):12505–12517. doi: 10.1109/JIOT.2020.3019398. DOI
Dong X, Victor U, Qian L. Two-path deep semisupervised learning for timely fake news detection. IEEE Transactions on Computational Social Systems. 2020;7(6):1386–1398. doi: 10.1109/TCSS.2020.3027639. DOI
Fan Q, Han H, Wu S. Credibility analysis of water environment complaint report based on deep cross domain network. Applied Intelligence. 2022;52(7):1–13. doi: 10.1007/s10489-021-02842-0. DOI
Fan W, Yang L, Bouguila N. Unsupervised grouped axial data modeling via hierarchical Bayesian nonparametric models with Watson distributions. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2021;44(12):9654–9668. doi: 10.1109/TPAMI.2021.3128271. PubMed DOI
Feng Y, Zhang B, Liu Y, Niu Z, Fan Y, Chen X. A d-band manifold triplexer with high isolation utilizing novel waveguide dual-mode filters. IEEE Transactions on Terahertz Science and Technology. 2022;12(6):678–681. doi: 10.1109/TTHZ.2022.3203308. DOI
Guo F, Zhou W, Lu Q, Zhang C. Path extension similarity link prediction method based on matrix algebra in directed networks. Computer Communications. 2022;187(2):83–92. doi: 10.1016/j.comcom.2022.02.002. DOI
Hakak S, Alazab M, Khan S, Gadekallu TR, Maddikunta PKR, Khan WZ. An ensemble machine learning approach through effective feature extraction to classify fake news. Future Generation Computer Systems. 2021;117(6):47–58. doi: 10.1016/j.future.2020.11.022. DOI
Han Y, Karunasekera S, Leckie C. Graph neural networks with continual learning for fake news detection from social media. ArXiv preprint. 2020. DOI
Helmstetter S, Paulheim H. Collecting a large scale dataset for classifying fake news tweets using weak supervision. Future Internet. 2021;13(5):114. doi: 10.3390/fi13050114. DOI
Huang Y-F, Chen P-H. Fake news detection using an ensemble learning model based on self-adaptive harmony search algorithms. Expert Systems with Applications. 2020;159(12):113584. doi: 10.1016/j.eswa.2020.113584. DOI
Jiang H, Wang M, Zhao P, Xiao Z, Dustdar S. A utility-aware general framework with quantifiable privacy preservation for destination prediction in LBSs. IEEE/ACM Transactions on Networking. 2021;29(5):2228–2241. doi: 10.1109/TNET.2021.3084251. DOI
Jin Z, Cao J, Guo H, Zhang Y, Luo J. Multimodal fusion with recurrent neural networks for rumor detection on microblogs. Proceedings of the 25th ACM international conference on Multimedia; New York: ACM; 2017. pp. 795–816.
Li B, Zhou X, Ning Z, Guan X, Yiu K-FC. Dynamic event-triggered security control for networked control systems with cyber-attacks: a model predictive control approach. Information Sciences. 2022;612(3):384–398. doi: 10.1016/j.ins.2022.08.093. DOI
Liao Q, Chai H, Han H, Zhang X, Wang X, Xia W, Ding Y. An integrated multi-task model for fake news detection. IEEE Transactions on Knowledge and Data Engineering. 2021;34(11):5154–5165. doi: 10.1109/TKDE.2021.3054993. DOI
Liu X, Shi T, Zhou G, Liu M, Yin Z, Yin L, Zheng W. Emotion classification for short texts: an improved multi-label method. Humanities and Social Sciences Communications. 2023a;10(1):1–9. doi: 10.1057/s41599-023-01816-6. DOI
Liu Z, Xiong C, Sun M, Liu Z. Fine-grained fact verification with kernel graph attention network. ArXiv preprint. 2019 doi: 10.48550/arXiv.1910.09796. DOI
Liu A-A, Zhai Y, Xu N, Nie W, Li W, Zhang Y. Region-aware image captioning via interaction learning. IEEE Transactions on Circuits and Systems for Video Technology. 2021;32(6):3685–3696. doi: 10.1109/TCSVT.2021.3107035. DOI
Liu X, Zhou G, Kong M, Yin Z, Li X, Yin L, Zheng W. Developing multi-labelled corpus of twitter short texts: a semi-automatic method. Systems. 2023b;11(8):390. doi: 10.3390/systems11080390. DOI
Lu S, Ding Y, Liu M, Yin Z, Yin L, Zheng W. Multiscale feature extraction and fusion of image and text in VQA. International Journal of Computational Intelligence Systems. 2023a;16(1):54. doi: 10.1007/s44196-023-00233-6. DOI
Lu S, Liu M, Yin L, Yin Z, Liu X, Zheng W. The multi-modal fusion in visual question answering: a review of attention mechanisms. PeerJ Computer Science. 2023b;9(18):e1400. doi: 10.7717/peerj-cs.1400. PubMed DOI PMC
Ma J, Gao W. Debunking rumors on twitter with tree transformer. Proceedings of the 28th International Conference on Computational Linguistics; Barcelona, Spain: 2020.
Mahabub A. A robust technique of fake news detection using ensemble voting classifier and comparison with other classifiers. SN Applied Sciences. 2020;2(4):525. doi: 10.1007/s42452-020-2326-y. DOI
Ni Q, Guo J, Wu W, Wang H, Wu J. Continuous influence-based community partition for social networks. IEEE Transactions on Network Science and Engineering. 2021;9(3):1187–1197. doi: 10.1109/TNSE.2021.3137353. DOI
Noureen J, Asif M. Crowdsensing: socio-technical challenges and opportunities. International Journal of Advanced Computer Science and Applications. 2017;8(3) doi: 10.14569/issn.2156-5570. DOI
Ozbay FA, Alatas B. Fake news detection within online social media using supervised artificial intelligence algorithms. Physica A: Statistical Mechanics and its Applications. 2020;540:123174. doi: 10.1016/j.physa.2019.123174. DOI
Pamungkas EW, Basile V, Patti V. Stance classification for rumour analysis in twitter: exploiting affective information and conversation structure. ArXiv preprint. 2019 doi: 10.48550/arXiv.1901.01911. DOI
Qi M, Cui S, Chang X, Xu Y, Meng H, Wang Y, Yin T. Multi-region nonuniform brightness correction algorithm based on L-channel gamma transform. Security and Communication Networks. 2022;2022(7):1–9. doi: 10.1155/2022/2675950. DOI
Reddy H, Raj N, Gala M, Basava A. Text-mining-based fake news detection using ensemble methods. International Journal of Automation and Computing. 2020;17(2):210–221. doi: 10.1007/s11633-019-1216-5. DOI
Roy A, Basak K, Ekbal A, Bhattacharyya P. A deep ensemble framework for fake news detection and classification. ArXiv preprint. 2018. DOI
Rubin VL, Chen Y, Conroy NK. Deception detection for news: three types of fakes. Proceedings of the Association for Information Science and Technology. 2015;52(1):1–4. doi: 10.1002/pra2.2015.145052010083. DOI
Shen Y, Ding N, Zheng H-T, Li Y, Yang M. Modeling relation paths for knowledge graph completion. IEEE Transactions on Knowledge and Data Engineering. 2020;33(11):3607–3617. doi: 10.1109/TKDE.2020.2970044. DOI
Shu K, Zhou X, Wang S, Zafarani R, Liu H. The role of user profiles for fake news detection. Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining; Piscataway: IEEE; 2019. pp. 436–439.
Tacchini E, Ballarin G, Della Vedova ML, Moret S, De Alfaro L. Some like it hoax: automated fake news detection in social networks. ArXiv preprint. 2017. DOI
Wu Z, Cao J, Wang Y, Wang Y, Zhang L, Wu J. hPSD: a hybrid PU-learning-based spammer detection model for product reviews. IEEE Transactions on Cybernetics. 2018;50(4):1595–1606. doi: 10.1109/TCYB.2018.2877161. PubMed DOI
Xiao Z, Fang H, Jiang H, Bai J, Havyarimana V, Chen H, Jiao L. Understanding private car aggregation effect via spatio-temporal analysis of trajectory data. IEEE Transactions on Cybernetics. 2021;53(4):2346–2357. doi: 10.1109/TCYB.2021.3117705. PubMed DOI
Yang S, Li Q, Li W, Li X, Liu A-A. Dual-level representation enhancement on characteristic and context for image-text retrieval. IEEE Transactions on Circuits and Systems for Video Technology. 2022;32(11):8037–8050. doi: 10.1109/TCSVT.2022.3182426. DOI
Zakharchenko A, Peráček T, Fedushko S, Syerov Y, Trach O. When fact-checking and ‘BBC standards’ are helpless: ‘fake newsworthy event’ manipulation and the reaction of the ‘high-quality media’ on it. Sustainability. 2021;13(2):573. doi: 10.3390/su13020573. DOI
Zhang J, Peng S, Gao Y, Zhang Z, Hong Q. APMSA: adversarial perturbation against model stealing attacks. IEEE Transactions on Information Forensics and Security. 2023;18:1667–1679. doi: 10.1109/TIFS.2023.3246766. DOI
Zhou D, Sheng M, Li J, Han Z. Aerospace integrated networks innovation for empowering 6G: a survey and future challenges. IEEE Communications Surveys & Tutorials. 2023;25(2):975–1019. doi: 10.1109/COMST.2023.3245614. DOI
Zhou X, Zafarani R. Network-based fake news detection: a pattern-driven approach. ACM SIGKDD Explorations Newsletter. 2019;21(2):48–60. doi: 10.1145/3373464.3373473. DOI
Zhou X, Zhang L. SA-FPN: an effective feature pyramid network for crowded human detection. Applied Intelligence. 2022;52(11):12556–12568. doi: 10.1007/s10489-021-03121-8. DOI
Zong C, Xia F, Li W, Navigli R. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers); Unified Dual-view Cognitive Model for Interpretable Claim Verification; 2021.