Measuring the Canopy Architecture of Young Vegetation Using the Fastrak Polhemus 3D Digitizer
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
38202971
PubMed Central
PMC10781307
DOI
10.3390/s24010109
PII: s24010109
Knihovny.cz E-zdroje
- Klíčová slova
- 3D model, Fastrak Polhemus, Pinus sylvestris, shading, tree architecture,
- MeSH
- biomasa MeSH
- klimatické změny MeSH
- lesy * MeSH
- stromy * MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
In the context of climate change conditions, addressing the shifting composition of forest stands and changes in traditional forest management practices are necessary. For this purpose, understanding the biomass allocation directly influenced by crown architecture is crucial. In this paper, we want to demonstrate the possibility of 3D mensuration of canopy architecture with the digitizer sensor Fastrak Polhemus and demonstrate its capability for assessing important structural information for forest purposes. Scots pine trees were chosen for this purpose, as it is the most widespread tree species in Europe, which, paradoxically, is very negatively affected by climate change. In our study, we examined young trees since the architecture of young trees influences their growth potential. In order to get the most accurate measurement of tree architecture, we evaluated the use of the Fastrak Polhemus magnetic digitizer to create a 3D model of individual trees and perform a subsequent statistical analysis of the data obtained. It was found that the stand density affects the number of branches in different orders and the heights of the trees in the process of natural regeneration. Regarding the branches, in our case, the highest number of branch orders was found in the clear-cut areas (density = 0.0), whereas the lowest branching was on-site with mature stands (density = 0.8). The results showed that the intensity of branching (assessed as the number of third-order branches) depends on the total number of branches of the tree of different branch orders but also on stand density where the tree is growing. An important finding in this study was the negative correlation between the tree branching and the tree height. The growth in height is lower when the branching expansion is higher. Similar data could be obtained with Lidar sensors. However, the occlusion due to the complexity of the tree crown would impede the information from being complete when using the magnetic digitizer. These results provide vital information for the creation of structural-functional models, which can be used to predict and estimate future tree growth and carbon fixation.
Zobrazit více v PubMed
Sharma R.P., Bílek L., Vacek Z., Vacek S. Modelling crown width-diameter relationship for Scots pine in the central Europe. Trees. 2017;31:1875–1889. doi: 10.1007/s00468-017-1593-8. DOI
Lundqvist L., Aahlström M.A., Axelsson E.P., Mörling T., Valinger E. Multi-layered Scots pine forests in boreal Sweden result from mass regeneration and size stratification. Forest Ecol. Manag. 2019;441:176–181. doi: 10.1016/j.foreco.2019.03.044. DOI
Liška J., Knížek M., Véle A. Evaluation of insect pest occurrence in areas of calamitous mortality of Scots pine. Cent. Eur. For. 2021;67:85–90. doi: 10.2478/forj-2021-0006. DOI
Sydorenko S., Voron V., Koval I., Sydorenko S., Rumiantsev M., Hurzhii R. Postfire tree mortality and fire resistance patterns in pine forests of Ukraine. Cent. Eur. For. J. 2021;67:21–29. doi: 10.2478/forj-2020-0029. DOI
Ministerstvo zemědělství . Zpráva o Stavu Lesa a Lesního Hospodářství. eAGRI; 2021.
Bílek L., Vacek S., Vacek Z., Remeš J., Král J., Bulušek D., Gallo J. How close to nature is close-to-nature pine silviculture? J. For. Sci. 2016;62:24–34. doi: 10.17221/98/2015-JFS. DOI
Podrázský V., Vacek Z., Vacek S., Vítámvás J., Gallo J., Prokůpková A., D’Andrea G. Production potential and structural variability of pine stands in the Czech Republic: Scots pine (Pinus sylvestris L.) vs. introduced pines–case study and problem review. J. For. Sci. 2020;66:197–207. doi: 10.17221/42/2020-JFS. DOI
Poleno Z., Vacek S., Podrázský V., Remeš J., Štefančík I., Mikeska M., Kobliha J., Kupka I., Malík V., Turčáni M., et al. Pěstování lesů III. Praktické postupy pěstování lesů.[Silviculture III. Practical methods in silviculture]. Kostelec nad Černými lesy. Lesn. Práce. 2009;952
Kurz W., Dymond C., White T., Stinson G., Shaw C., Rampley G., Smyth C., Simpson B., Neilson E., Trofymow J., et al. CBM-CFS3: A model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Ecol. Model. 2009;220:480–504. doi: 10.1016/j.ecolmodel.2008.10.018. DOI
Lin Y., Hyyppä J., Kukko A., Jaakkola A., Kaartinen H. Tree height growth measurement with single-scan airborne, static terrestrial and mobile laser scanning. Sensors. 2012;12:12798–12813. doi: 10.3390/s120912798. PubMed DOI PMC
Côté J.F., Fournier R.A., Egli R. An architectural model of trees to estimate forest structural attributes using terrestrial LiDAR. Environ. Model. Softw. 2011;26:761–777. doi: 10.1016/j.envsoft.2010.12.008. DOI
Brovkina O., Novotny J., Cienciala E., Zemek F., Russ R. Mapping forest aboveground biomass using airborne hyperspectral and LiDAR data in the mountainous conditions of Central Europe. Ecol. Eng. 2017;100:219–230. doi: 10.1016/j.ecoleng.2016.12.004. DOI
Polhemus Incorporated: 3space Fastrak User Manual. [(accessed on 5 December 2022)]. Available online: http://www.polhemus.com/fastrak.html.
Mutke S., Nikinmaa E., Perttunen J., Gil L., Sievänen R. Crown architecture of grafted Stone pine (Pinus pinea L.): Shoot growth and bud differentiation. Trees. 2005;19:15–25. doi: 10.1007/s00468-004-0346-7. DOI
Lang A. Leaf orientation of a cotton plant. Agric. Meteorol. 1973;11:37–51. doi: 10.1016/0002-1571(73)90049-6. DOI
Watanabe T., Hanan J.S., Room P.M., Hasegawa T., Nakagawa H., Takahashi W. Rice morphogenesis and plant architecture: Measurement, specification and the reconstruction of structural development by 3D architectural modelling. Ann. Bot. 2005;95:1131–1143. doi: 10.1093/aob/mci136. PubMed DOI PMC
Yoshimoto A., Surový P., Konoshima M., Kurth W. Constructing tree stem form from digitized surface measurements by a programming approach within discrete mathematics. Trees. 2014;28:1577–1588. doi: 10.1007/s00468-014-1065-3. DOI
Han X., Hao X., Qiu S., Guan S., Zhan H., Yu J., Wang S., Lu X. Strigolactone regulates plant architecture by inhibiting lateral branch growth in Quercus mongolica seedlings. Scand. J. For. Res. 2021;36:333–343. doi: 10.1080/02827581.2021.1933166. DOI
Hu B.G., Jaeger M. Analysis and Modeling of the Root System Architecture of Winter Wheat Seedling. Springer and Tsinghua University Press; Beijing, China: 2003.
Sinoquet H., Rivet P., Hanan J., Měch R. Measurement and visualization of the architecture of an adult tree based on a three-dimensional digitising device. Trees. 1997;11:265–270. doi: 10.1007/s004680050084. DOI
Dawson T.E. Determining water use by trees and forests from isotopic, energy balance and transpiration analyses: The roles of tree size and hydraulic lift. Tree Physiol. 1996;16:263–272. doi: 10.1093/treephys/16.1-2.263. PubMed DOI
Vertessy R.A., Benyon R.G., O’sullivan S.K., Gribben P.R. Relationships between stem diameter, sapwood area, leaf area and transpiration in a young mountain ash forest. Tree Physiol. 1995;15:559–567. doi: 10.1093/treephys/15.9.559. PubMed DOI
Vertessy R.A., Hatton T.J., Reece P., O'Sullivan S.K., Benyon R.G. Estimating stand water use of large mountain ash trees and validation of the sap flow measurement technique. Tree Physiol. 1997;17:747–756. doi: 10.1093/treephys/17.12.747. PubMed DOI
Tfwala C.M., Van Rensburg L.D., Schall R., Zietsman P.C., Dlamini P. Whole tree water use: Effects of tree morphology and environmental factors. Ecol. Indic. 2019;102:366–373. doi: 10.1016/j.ecolind.2019.02.054. DOI
Kurth W., Anzola Jürgenson G. Triebwachstum und Verzweigung junger Fichten in Abhängigkeit von den beiden Einflussgrößen “Beschattung” und “Wuchsdichte”: Datenaufbereitung undanalyse mit GROGRA. Dtsch. Verb. Forstl. Forschungsanstalten Sekt. Forstl. Biom. Und Inform. 1997;10:89–108.
White J. The plant as a metapopulation. Annu. Rev. Ecol. Syst. 1979;10:109–145. doi: 10.1146/annurev.es.10.110179.000545. DOI
Kellomäki S., Strandman H. A model for the structural growth of young Scotch pine crowns based on light interception byshoots. Ecol. Model. 1995;80:237–2501. doi: 10.1016/0304-3800(94)00065-P. DOI
Sievänen R., Nikinmaa E., Nygren P., Ozier-Lafontaine H., Perttunen J., Hakula H. Components of functional-structural tree models. Ann. For. Sci. 2000;57:399–412. doi: 10.1051/forest:2000131. DOI
Gavrikov V.L., Sekretenko O.P. Shoot-based three-dimensional model of young Scots pine growth. Ecol. Model. 1996;88:183–193. doi: 10.1016/0304-3800(95)00087-9. DOI
Kellomäki S., Ikonen V.P., Peltola H., Kolström T. Modelling the structural growth of Scots pine with implications for wood quality. Ecol. Model. 1999;122:117–134. doi: 10.1016/S0304-3800(99)00086-1. DOI
Paletto A., Tosi V. Forest canopy cover and canopy closure: Comparison of assessment techniques. Eur. J. For. Res. 2009;128:265–272. doi: 10.1007/s10342-009-0262-x. DOI
James K.R., Dahle G.A., Grabosky J., Kane B., Detter A. Tree biomechanics literature review: Dynamics. Arboric. Urban. For. 2014;40:1–15. doi: 10.48044/jauf.2014.001. DOI
Schönfelder O., Zeidler A., Borůvka V., Bílek L., Vítámvás J. Effect of Shelterwood and Clear-Cutting Regeneration Method on Wood Density of Scots Pine. Forests. 2020;11:868. doi: 10.3390/f11080868. DOI
Lance S. EvansZella Kahn-Jetter Jessica Torres Mabel Martinez Paul. Tarsia 2008 Mechanical stresses of primary branches: A survey of 40 woody tree and shrub species. Trees. 2008;22:283–289. doi: 10.1007/s00468-007-0182-7. DOI
Danjon F., Sinoquet H., Godin C., Colin F., Drexhage M. Characterisation of structural tree root architecture using 3D digitising and AMAPmod software. Plant Soil. 1999;211:241–258. doi: 10.1023/A:1004680824612. DOI
Långström B., Hellqvist C. Effects of different pruning regimes on growth and sapwood area of Scots pine. For. Ecol. Manag. 1991;44:239–254. doi: 10.1016/0378-1127(91)90011-J. DOI
Soil Map. [(accessed on 11 March 2020)]. Available online: http://www.geology.cz/extranet-eng/services/web-applications/
Brichta J., Linda R., Bílek L., Vitamvas J. Does shelterwood regeneration on natural Scots pine sites under changing environmental conditions represent a viable alternative to traditional clear-cut management? Cent. Eur. For. J. 2020;66:9. doi: 10.2478/forj-2020-0014. DOI
Bílek L., Vacek Z., Vacek S., Bulušek D., Linda R., Král J. Are clearcut borders an effective tool for Scots pine (Pinus sylvestris L.) natural regeneration? For. Syst. 2018;27:e010. doi: 10.5424/fs/2018272-12408. DOI
Köppen W. Das Geographische System der Klimate, Handbuch der Klimatologie. Gebrüder Borntraeger; Berlin, Germany: 1936.
Raab F.H., Blood E.B., Steiner T.O., Jones H.R. Magnetic position and orientation tracking system. IEEE Trans. Aerosp. Electron. Syst. 1979;AES-15:709–718. doi: 10.1109/TAES.1979.308860. DOI
Jaeger H.A., Cantillon-Murphy P. Distorter characterisation using mutual inductance in electromagnetic tracking. Sensors. 2018;18:3059. doi: 10.3390/s18093059. PubMed DOI PMC
Thomas R., Vaughan I., Lello J. Data analysis with R statistical software. A guidebook for scientists. Eco-Explore. 2017:80.
Kurth W. Specification of morphological models with L-systems and relational growth grammars. IMAGE. Z. Für Interdiszip. Bild. 2007;3:50–79.
Lefsky M.A., Harding D.J., Keller M., Cohen W.B., Carabajal C.C., Del Bom F., Hunter M.O., de Oliveira R., Jr. Estimates of forest canopy height and aboveground biomass using ICESat. Geophys. Res. Lett. 2005;32:1–4. doi: 10.1029/2005GL023971. DOI
Lefsky M.A., Harding D., Cohen W., Parker G., Shugart H. Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern maryland, USA. Remote Sens. Environ. 1999;67:83–98. doi: 10.1016/S0034-4257(98)00071-6. DOI
Lefsky M.A., Cohen W.B., Spies T.A. An evaluation of alternate remote sensing products for forest inventory, monitoring, and mapping of Douglas-fir forests in western Oregon. Can. J. For. Res. 2001;31:78–87. doi: 10.1139/x00-142. DOI
Wagner C.V. Conditions for the start and spread of crown fire. Can. J. For. Res. 1977;7:23–34. doi: 10.1139/x77-004. DOI
Cohen J.D., Sutherland E.K. Crown fires and fire behavior in conifer forests. For. Ecol. Mat. 1996;89:44–55.
Hoffman C.M., Morgan P., Charnley S., Collins B.M., Mell W. Fire regime conditions and crown fire potential in western US forests. For. Ecol. Manag. 2016;378:57–67. doi: 10.1016/j.foreco.2016.05.030. DOI
Hood S.M., Smith S.L., Ottmar R.D. Crown Fire Behavior in Western Conifer Forests: A Synthesis of Research and Management Implications. United States Department of Agriculture Forest Service; Washington, DC, USA: 2014. pp. 73–74. General Technical Report PNW-GTR-696.
Finney M.A., McAllister S.S., Cohen J.D. Modeling crown fire initiation and spread in conifer forest stands. For Ecol. Manag. 2013;310:499–513. doi: 10.1016/j.foreco.2013.07.044. DOI
Rauh W. Über Gesetzmäßigkeit der Verzweigung und deren Bedeutung für die Wuchsformen der Pflanzen. Mitt. Dtsch. Dendrol. Ges. 1939;52:86–111.
Hallé F., Oldeman R.A., Tomlinson P.B. Tropical Trees and Forests: An Architectural Analysis. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2012.
Tomlinson P.B. Chance and Design in the Construction of Plants. In: Sattler R., editor. Axioms and Principles of Plant Construction. Springer; Dordrecht, The Netherlands: 1982. DOI
Konopka B., Šebeň V., Merganicova K., Pajtík J. Silver birch aboveground biomass allocation pattern, stem and foliage traits with regard to intraspecific crown competition. J. For. 2020;66:12. doi: 10.2478/forj-2020-0013. DOI
Dušek D., Novak J., Slodičak M. Experimenty s výchovou borovice lesní na jižní Moravě–Strážnice I a Strážnice III. Zprávy Lesn. Výzkumu. 2011;56:283–290. (In Czech)
Surový P., Ribeiro N., Pereira J.S. Observations on 3-dimensional crown growth of Stone pine. Agrofor. Syst. 2011;82:105–110. doi: 10.1007/s10457-010-9344-5. DOI
Riikonen J., Kettunen N., Gritsevich M., Hakala T., Särkkä L., Tahvonen R. Growth and development of Norway spruce and Scots pine seedlings under different light spectra. Environ. Exp. Bot. 2016;121:112–120. doi: 10.1016/j.envexpbot.2015.06.006. DOI
Chidi E.B., Ebenezer M.I., Kenneth E.U. Tree Crown Architecture: Approach to Tree Form, Structure and Performance: A Review. Int. J. Sci. Res. 2014;1997:5.
Popescu S.C., Wynne R.H., Nelson R.F. Estimating plot-level tree heights with lidar: Local filtering with a canopy-height based variable window size. Comput. Electron. Agric. 2002;37:71–95. doi: 10.1016/S0168-1699(02)00121-7. DOI
Wiedemann E. Die Praktischen Erfolge des Kieferndauerwaldes. Verlag von Friedr. Vieweg & Sohn; Braunschweig, Germany: 1925. 184p
Barbeito I., LeMay V., Calama R., Canellas I. Regeneration of Mediterranean Pinus sylvestris under two alternative shelterwood systems within a multiscale framework. Can. J. For. Res. 2011;41:341–351. doi: 10.1139/X10-214. DOI
Aleksandrowicz-Trzcińska M., Drozdowski S., Wolczyk Z., Bielak K., Żybura H. Effects of Reforestation and Site Preparation Methods on Early Growth and Survival of Scots Pine (Pinus sylvestris L.) in South-Eastern Poland. Forests. 2017;8:421. doi: 10.3390/f8110421. DOI
Horn H.S. Adaptive Geometry of Trees. Princeton University Press; Princeton, NJ, USA: 1971.
Yamamura Y., Ishida A., Hori Y. Differences in sapling architecture between Fagus crenata and Fagus japonica. Ecol. Res. 1993;8:235–239. doi: 10.1007/BF02348536. DOI
Fournier A. D.F.A. Dissertation. Univ. Montpellier II; 1979. Is Architectural Radiation Adaptive.51p
Fisher J.B., Hibbs D.E. Plasticity of tree architecture: Specific and ecological variations found in Aubreville’s model. Am. J. Bot. 1982;69:690–702. doi: 10.1002/j.1537-2197.1982.tb13309.x. DOI
Stevens G.C., Perkins A.L. The branching habits and life history of woody plants. Am. Nat. 1992;139:267–275. doi: 10.1086/285327. DOI
Jelonek T., Kopaczyk J., Neumann M., Tomczak A., Pazdrowski W., Grzywiński W., Klimek K., Naskrent B., Kuźmiński R., Szwed T. How Wood Quality Can Be Shaped: Results of 70 Years of Experience. Forests. 2022;13:2103. doi: 10.3390/f13122103. DOI
Šebeň V. Indices of Tree Competition in Dense Spruces Stand Originated from Natural Regeneration. Volume 59. Slovak Academic Press; Lesnícký časopis Bratislava, Slovakia: 2013. pp. 172–179. (In Czech)
Oliver C.W., Larson B.C. Forest Stand Dynamics: Update edition. Wiley; New York, NY, USA: 1996. 520p
Oppelt A.L., Kurth W., Dzierzon H., Jentschke G., Godbold D.L. Structure and fractal dimensions of root systems of four co-occurring fruit tree species from Botswana. Ann. For. Sci. 2000;57:463–475. doi: 10.1051/forest:2000135. DOI
Oppelt A.L., Kurth W., Godbold D.L. Topology, scaling relations and Leonardo’s rule in root systems from African tree species. Tree Physiol. 2001;21:117–128. doi: 10.1093/treephys/21.2-3.117. PubMed DOI