Ginsenoside Rg1 attenuates dextran sodium sulfate-induced ulcerative colitis in mice

. 2023 Dec 31 ; 72 (6) : 783-792.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38215064

Ulceration colitis (UC) is a chronic and recurrent inflammatory disorder in the gastro-intestinal tract. The purpose of our study is to explore the potential mechanisms of ginsenoside Rg1 (GS Rg1) on dextran sulfate sodium (DSS)-induced colitis in mice and lipopolysaccharide (LPS)-induced RAW 264.7 cells. Acute colitis was induced in male C57BL/6 mice. In vitro model of LPS-induced RAW 264.7 cells to simulate enteritis model. The disease activity index (DAI), colon length, body weight and histopathological analysis were performed in vivo. Pro-inflammatory cytokines and markers for oxidative and anti-oxidative stress, MPO level were measured in vivo and in vitro. Nuclear erythroid 2-related factor 2 (Nrf2) and NF-?B p65 protein levels were analyzed using western blotting. Our results indicated that the UC models were established successfully by drinking DSS water. GS Rg1 significantly attenuated UC-related symptoms, including preventing weight loss, decreasing DAI scores, and increasing colon length. GS Rg1 ameliorated the DSS-induced oxidative stress. IL-1beta, IL-6, and TNF-alpha levels were significantly increased in serum and cell supernatant effectively, while treatment with the GS Rg1 significantly reduced these factors. GS Rg1 reduced MPO content in the colon. GS Rg1 treatment increased SOD and decreased MDA levels in the serum, colon, and cell supernatant. GS Rg1 restored the Nrf-2/HO-1/NF-?B pathway in RAW 264.7 cells and UC mice, and these changes were blocked by Nrf-2 siRNA. Overall, GS Rg1 ameliorated inflammation and oxidative stress in colitis via Nrf-2/HO-1/NF-kappaB pathway. Thus, GS Rg1 could serve as a potential therapeutic agent for the treatment of UC.

Zobrazit více v PubMed

Baumgart DC, Sandborn WJ. Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet. 2007;369:1641–1657. doi: 10.1016/S0140-6736(07)60751-X. PubMed DOI

Salaritabar A, Darvishi B, Hadjiakhoondi F, et al. Therapeutic potential of flavonoids in inflammatory bowel disease: a comprehensive review. World Journal of Gastroenterology. 2017;23:5097–5114. doi: 10.3748/wjg.v23.i28.5097. PubMed DOI PMC

Ungaro R, Mehandru S, Allen PB, Peyrin-Biroulet L, Colombel JF. Ulcerative colitis. Lancet. 2017;389:1756–1770. doi: 10.1016/S0140-6736(16)32126-2. PubMed DOI PMC

Rubin DT, Parekh MJ. Colorectal cancer in inflammatory bowel disease: molecular and clinical considerations. Current Treatment Options in Gastroenterology. 2006;9:211–220. doi: 10.1007/s11938-006-0040-5. PubMed DOI

McKenna NP, Bews KA, Behm KT, Mathis KL, Lightner AL, Habermann EB. Do patients with Inflammatory bowel disease have a higher postoperative risk of venous thromboembolism or do they undergo more high-risk operations. Annals of Surgery. 2020;271:325–331. doi: 10.1097/SLA.0000000000003017. PubMed DOI

Gu J, Remzi FH, Shen B, Vogel JD, Kiran RP. Operative strategy modifies risk of pouch-related outcomes in patients with ulcerative colitis on preoperative anti-tumor necrosis factor-α therapy. Diseases of the Colon & Rectum. 2013;56:1243–1252. doi: 10.1097/DCR.0b013e3182a0e702. PubMed DOI

Ng SC, Shi HY, Hamidi N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. The Lancet. 2017;390:2769–2778. doi: 10.1016/S0140-6736(17)32448-0. PubMed DOI

Tatiya-Aphiradee N, Chatuphonprasert W, Jarukamjorn K. Immune response and inflammatory pathway of ulcerative colitis. J Basic Clin Physiol Pharmacol. 2018;30:1–10. doi: 10.1515/jbcpp-2018-0036. PubMed DOI

Torres M, Rios A. Current view of the immunopathogenesis in inflammatory bowel disease and its implications for therapy. World Journal of Gastroenterology: WJG. 2008;14:1972. doi: 10.3748/wjg.14.1972. PubMed DOI PMC

Yuan Z, Yang L, Zhang X, et al. Huang-Lian-Jie-Du Decoction ameliorates acute ulcerative colitis in mice via regulating NF-kB and Nrf2 signaling pathways and enhancing intestinal barrier function. Front Pharmacol. 2019;10:1354. doi: 10.3389/fphar.2019.01354. PubMed DOI PMC

Zhang Q, Zhao YH. Therapeutic angiogenesis after ischemic stroke: Chinese medicines, bone marrow stromal cells (BMSCs) and their combinational treatment. Am J Chin Med. 2014;42:61–77. doi: 10.1142/S0192415X14500049. PubMed DOI

Chu SF, Zhang Z, Zhou X, He WB, Chen C, Luo P, Liu DD, Ai QD, Gong HF, Wang ZZ, et al. Ginsenoside Rg1 protects against ischemic/reperfusion-induced neuronal injury through miR-144/Nrf2/ARE pathway. Acta Pharmacol Sin. 2019;40:13–25. doi: 10.1038/s41401-018-0154-z. PubMed DOI PMC

He M, Halima M, Xie Y, Schaaf MJM, Meijer AH, Wang M. Ginsenoside Rg1 acts as a selective glucocorticoid receptor agonist with anti-inflammatory action without affecting tissue regeneration in Zebrafish Larvae. Cells. 2020;9:1107. doi: 10.3390/cells9051107. PubMed DOI PMC

Gao QG, Zhou LP, Lee VH, Chan HY, Man CW, Wong MS. Ginsenoside Rg1 activates ligand-independent estrogenic effects via rapid estrogen receptor signaling pathway. J Ginseng Res. 2019;43:527–538. doi: 10.1016/j.jgr.2018.03.004. PubMed DOI PMC

Zhu G, Wang H, Wang T, Shi F. Ginsenoside Rg1 attenuates the inflammatory response in DSS-induced mice colitis. Int Immunopharmacol. 2017;50:1–5. doi: 10.1016/j.intimp.2017.06.002. PubMed DOI

Zhang Y, Ding S, Chen Y, Sun Z, Zhang J, Han Y, et al. Ginsenoside Rg1 alleviates lipopolysaccharide-induced neuronal damage by inhibiting NLRP1 inflammasomes in HT22 cells. Exp Ther Med. 2021;22:782. PubMed PMC

Lee SY, Jeong JJ, Eun SH, Kim DH. Anti-inflammatory effects of ginsenoside Rg1 and its metabolites ginsenoside Rh1 and 20(S)-protopanaxatriol in mice with TNBS-induced colitis. Eur J Pharmacol. 2015;762:333–343. doi: 10.1016/j.ejphar.2015.06.011. PubMed DOI

Lee DC, Lau AS. Effects of Panax ginseng on tumor necrosis factor-α-mediated inflammation: a mini-review. Molecules. 2011;16:2802–2816. doi: 10.3390/molecules16042802. PubMed DOI PMC

Su F, Xue Y, Wang Y, Zhang L, Chen W, Hu S. Protective effect of ginsenosides Rg1 and Re on lipopolysaccharide-induced sepsis by competitive binding to toll-like receptor 4, Antimicrob. Agents Chemother. 2015;59:5654–5663. doi: 10.1128/AAC.01381-15. PubMed DOI PMC

Zhang J, Cao L, Wang H, Cheng X, Wang L, Zhu T, Yan T, Xie Y, Wu Y, Zhao M. Ginsenosides regulate PXR/NF-κB signaling and attenuate dextran sulfate sodium-induced colitis. Drug Metab Dispos. 2015;43:1181–1189. doi: 10.1124/dmd.115.063800. PubMed DOI

Bellezza I, Giambanco I, Minelli A, et al. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res. 2018;1865:721–733. doi: 10.1016/j.bbamcr.2018.02.010. PubMed DOI

Zeng T, Zhang CL, Song FY, et al. The activation of HO-1/Nrf-2 contributes to the protective effects of diallyl disulfide (DADS) against ethanol-induced oxidative stress. Biochim Biophys Acta. 2013;1830:4848–4859. doi: 10.1016/j.bbagen.2013.06.028. PubMed DOI

Park EJ, Kim YM, Park SW, et al. Induction of HO-1 through p38 MAPK/Nrf2 signaling pathway by ethanol extract of Inula helenium L. reduces inflammation in LPS-activated RAW 264.7 cells and CLP-induced septic mice. Food Chem Toxicol. 2013;55:386–395. doi: 10.1016/j.fct.2012.12.027. PubMed DOI

Liu C, Zhu C, Wang G, et al. Higenamine regulates Nrf2-HO-1-Hmgb1 axis and attenuates intestinal ischemia-reperfusion injury in mice. Inflamm Res. 2015;64:395–403. doi: 10.1007/s00011-015-0817-x. PubMed DOI

Wang J, Hu X, Xie J, et al. Beta-1-adrenergic receptors mediate Nrf2-HO-1- HMGB1 axis regulation to attenuate hypoxia/reoxygenation-induced cardiomyocytes injury in vitro. Cell Physiol Biochem. 2015;35:767–777. doi: 10.1159/000369736. PubMed DOI

Sun SC. The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol. 2017;17:545–558. doi: 10.1038/nri.2017.52. PubMed DOI PMC

Mitchell JP, Carmody RJ. NF-κB and the Transcriptional Control of Inflammation. Int Rev Cell Mol Biol. 2018;335:41–84. doi: 10.1016/bs.ircmb.2017.07.007. PubMed DOI

Timucin AC, Basaga H. Pro-apoptotic effects of lipid oxidation products: HNE at the crossroads of NF-κB pathway and anti-apoptotic Bcl-2. Free Radic Biol Med. 2017;111:209–18. doi: 10.1016/j.freeradbiomed.2016.11.010. PubMed DOI

Hayden MS, Ghosh S. NF-κB in immunobiology. Cell Res. 2011;21:223–44. doi: 10.1038/cr.2011.13. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...