Structural Characterization of the Extracellular Domain of CASPR2 and Insights into Its Association with the Novel Ligand Contactin1
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.
Grant support
P41 GM103412
NIGMS NIH HHS - United States
P41GM103412
NIGMS NIH HHS - United States
R25 GM055145
NIGMS NIH HHS - United States
P41 RR004050
NCRR NIH HHS - United States
R01 MH092906
NIMH NIH HHS - United States
R01 RR022200
NCRR NIH HHS - United States
PubMed
26721881
PubMed Central
PMC4786715
DOI
10.1074/jbc.m115.705681
PII: S0021-9258(20)42821-2
Knihovny.cz E-resources
- Keywords
- analytical ultracentrifugation, ligand-binding protein, molecular cell biology, protein structure, small-angle x-ray scattering (SAXS),
- MeSH
- X-Ray Diffraction MeSH
- HEK293 Cells MeSH
- Hippocampus cytology metabolism MeSH
- Contactin 1 metabolism MeSH
- Cells, Cultured MeSH
- Humans MeSH
- Scattering, Small Angle MeSH
- Protein Interaction Maps MeSH
- Membrane Proteins chemistry metabolism ultrastructure MeSH
- Models, Molecular MeSH
- Mice, Inbred C57BL MeSH
- Nerve Tissue Proteins chemistry metabolism ultrastructure MeSH
- Protein Structure, Tertiary MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- CNTN1 protein, human MeSH Browser
- CNTNAP2 protein, human MeSH Browser
- Contactin 1 MeSH
- Membrane Proteins MeSH
- Nerve Tissue Proteins MeSH
Contactin-associated protein-like 2 (CNTNAP2) encodes for CASPR2, a multidomain single transmembrane protein belonging to the neurexin superfamily that has been implicated in a broad range of human phenotypes including autism and language impairment. Using a combination of biophysical techniques, including small angle x-ray scattering, single particle electron microscopy, analytical ultracentrifugation, and bio-layer interferometry, we present novel structural and functional data that relate the architecture of the extracellular domain of CASPR2 to a previously unknown ligand, Contactin1 (CNTN1). Structurally, CASPR2 is highly glycosylated and has an overall compact architecture. Functionally, we show that CASPR2 associates with micromolar affinity with CNTN1 but, under the same conditions, it does not interact with any of the other members of the contactin family. Moreover, by using dissociated hippocampal neurons we show that microbeads loaded with CASPR2, but not with a deletion mutant, co-localize with transfected CNTN1, suggesting that CNTN1 is an endogenous ligand for CASPR2. These data provide novel insights into the structure and function of CASPR2, suggesting a complex role of CASPR2 in the nervous system.
From the Child Health Institute of New Jersey and Departments of Neuroscience and Cell Biology and
the Department of Biochemistry The University of Texas Health Science Center San Antonio Texas 78229
the School of Molecular Bioscience University of Sydney New South Wales 2006 Australia
See more in PubMed
Poliak S., Gollan L., Martinez R., Custer A., Einheber S., Salzer J. L., Trimmer J. S., Shrager P., and Peles E. (1999) Caspr2, a new member of the neurexin superfamily, is localized at the juxtaparanodes of myelinated axons and associates with K+ channels. Neuron 24, 1037–1047 PubMed
Poliak S., Salomon D., Elhanany H., Sabanay H., Kiernan B., Pevny L., Stewart C. L., Xu X., Chiu S. Y., Shrager P., Furley A. J., and Peles E. (2003) Juxtaparanodal clustering of Shaker-like K+ channels in myelinated axons depends on Caspr2 and TAG-1. J. Cell Biol. 162, 1149–1160 PubMed PMC
Traka M., Goutebroze L., Denisenko N., Bessa M., Nifli A., Havaki S., Iwakura Y., Fukamauchi F., Watanabe K., Soliven B., Girault J. A., and Karagogeos D. (2003) Association of TAG-1 with Caspr2 is essential for the molecular organization of juxtaparanodal regions of myelinated fibers. J. Cell Biol. 162, 1161–1172 PubMed PMC
Tzimourakas A., Giasemi S., Mouratidou M., and Karagogeos D. (2007) Structure-function analysis of protein complexes involved in the molecular architecture of juxtaparanodal regions of myelinated fibers. Biotechnol. J. 2, 577–583 PubMed
Strauss K. A., Puffenberger E. G., Huentelman M. J., Gottlieb S., Dobrin S. E., Parod J. M., Stephan D. A., and Morton D. H. (2006) Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. New Engl. J. Med. 354, 1370–1377 PubMed
Jackman C., Horn N. D., Molleston J. P., and Sokol D. K. (2009) Gene associated with seizures, autism, and hepatomegaly in an Amish girl. Pediatr. Neurol. 40, 310–313 PubMed
Falivelli G., De Jaco A., Favaloro F. L., Kim H., Wilson J., Dubi N., Ellisman M. H., Abrahams B. S., Taylor P., and Comoletti D. (2012) Inherited genetic variants in autism-related CNTNAP2 show perturbed trafficking and ATF6 activation. Hum. Mol. Genet. 21, 4761–4773 PubMed PMC
Kastriti M. E., Sargiannidou I., Kleopa K. A., and Karagogeos D. (2015) Differential modulation of the juxtaparanodal complex in multiple sclerosis. Mol. Cell. Neurosci. 67, 93–103 PubMed
Ranscht B. (1988) Sequence of contactin, a 130-kDa glycoprotein concentrated in areas of interneuronal contact, defines a new member of the immunoglobulin supergene family in the nervous system. J. Cell Biol. 107, 1561–1573 PubMed PMC
Faivre-Sarrailh C., Gauthier F., Denisenko-Nehrbass N., Le Bivic A., Rougon G., and Girault J. A. (2000) The glycosylphosphatidyl inositol-anchored adhesion molecule F3/contactin is required for surface transport of paranodin/contactin-associated protein (caspr). J. Cell Biol. 149, 491–502 PubMed PMC
Rios J. C., Melendez-Vasquez C. V., Einheber S., Lustig M., Grumet M., Hemperly J., Peles E., and Salzer J. L. (2000) Contactin-associated protein (Caspr) and contactin form a complex that is targeted to the paranodal junctions during myelination. J. Neurosci. 20, 8354–8364 PubMed PMC
Puzzo D., Bizzoca A., Privitera L., Furnari D., Giunta S., Girolamo F., Pinto M., Gennarini G., and Palmeri A. (2013) F3/Contactin promotes hippocampal neurogenesis, synaptic plasticity, and memory in adult mice. Hippocampus 23, 1367–1382 PubMed
Koch T., Brugger T., Bach A., Gennarini G., and Trotter J. (1997) Expression of the immunoglobulin superfamily cell adhesion molecule F3 by oligodendrocyte-lineage cells. Glia 19, 199–212 PubMed
Parent A. S., Mungenast A. E., Lomniczi A., Sandau U. S., Peles E., Bosch M. A., Rønnekleiv O. K., and Ojeda S. R. (2007) A contactin-receptor-like protein tyrosine phosphatase β complex mediates adhesive communication between astroglial cells and gonadotrophin-releasing hormone neurones. J. Neuroendocrinol. 19, 847–859 PubMed
Çolakoǧlu G., Bergstrom-Tyrberg U., Berglund E. O., and Ranscht B. (2014) Contactin-1 regulates myelination and nodal/paranodal domain organization in the central nervous system. Proc. Natl. Acad. Sci. U.S.A. 111, E394–403 PubMed PMC
Lamprianou S., Chatzopoulou E., Thomas J. L., Bouyain S., and Harroch S. (2011) A complex between contactin-1 and the protein tyrosine phosphatase PTPRZ controls the development of oligodendrocyte precursor cells. Proc. Natl. Acad. Sci. U.S.A. 108, 17498–17503 PubMed PMC
Poliak S., Gollan L., Salomon D., Berglund E. O., Ohara R., Ranscht B., and Peles E. (2001) Localization of Caspr2 in myelinated nerves depends on axon-glia interactions and the generation of barriers along the axon. J. Neurosci. 21, 7568–7575 PubMed PMC
Comoletti D., Grishaev A., Whitten A. E., Tsigelny I., Taylor P., and Trewhella J. (2007) Synaptic arrangement of the neuroligin/β-neurexin complex revealed by x-ray and neutron scattering. Structure 15, 693–705 PubMed PMC
Reeves P. J., Callewaert N., Contreras R., and Khorana H. G. (2002) Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc. Natl. Acad. Sci. U.S.A. 99, 13419–13424 PubMed PMC
Comoletti D., Flynn R. E., Boucard A. A., Demeler B., Schirf V., Shi J., Jennings L. L., Newlin H. R., Südhof T. C., and Taylor P. (2006) Gene selection, alternative splicing, and post-translational processing regulate neuroligin selectivity for β-neurexins. Biochemistry 45, 12816–12827 PubMed
Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M. R., Appel R. D., and Bairoch A. (2005) The Proteomics Protocols Handbook (Walker J. M., ed) pp. 571–607, Humana Press, New York
Demeler B. (2010) Methods for the design and analysis of sedimentation velocity and sedimentation equilibrium experiments with proteins. Curr. Protoc. Protein Sci. Chapter 7, Unit 7.13 PubMed PMC
Demeler B., and Gorbet G. (2016) Analytical Ultracentrifugation Data Analysis with UltraScan-III. Analytical Ultracentrifugation: Instrumentation, Software, and Applications, Springer, New York, in press
Brookes E., Cao W., and Demeler B. (2010) A two-dimensional spectrum analysis for sedimentation velocity experiments of mixtures with heterogeneity in molecular weight and shape. Eur. Biophys. J. 39, 405–414 PubMed
Demeler B., and van Holde K. E. (2004) Sedimentation velocity analysis of highly heterogeneous systems. Anal. Biochem. 335, 279–288 PubMed
Brookes E., and Demeler B. (2006) Genetic algorithm optimization for obtaining accurate molecular weight distributions from Sedimentation velocity experiments. Analytical Ultracentrifugation VIII in Progress in Colloid Polymer Science (Wandrey C., and Cölfen H., eds) Vol. 131, pp. 78–82, Springer-Verlag, New York
Brookes E., and Demeler B. (2007) Parsimonious regularization using genetic algorithms applied to the analysis of analytical ultracentrifugation experiments. In GECCO '07 Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 361–368, ACM, New York
Demeler B., and Brookes E. (2008) Monte Carlo analysis of sedimentation experiments. Colloid Polym. Sci. 286, 129–137
Brookes E., and Demeler B. (2008) Parallel computational techniques for the analysis of sedimentation velocity experiments in UltraScan. Colloid Polym. Sci. 286, 138–148
Durchschlag H. (1986) Thermodynamic data for biochemistry and biotechnology (Hinz H. J., ed) pp. 45–128, Springer-Verlag, New York
Jeffries C. M., Whitten A. E., Harris S. P., and Trewhella J. (2008) Small-angle x-ray scattering reveals the N-terminal domain organization of cardiac myosin binding protein C. J. Mol. Biol. 377, 1186–1199 PubMed
Svergun D. I. (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Crystallogr. 25, 495–503
Krigbaum W. R., and Kügler F. R. (1970) Molecular conformation of egg-white lysozyme and bovine α-lactalbumin in solution. Biochemistry 9, 1216–1223 PubMed
Svergun D. I. (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys. J. 76, 2879–2886 PubMed PMC
Franke D., Jeffries C. M., and Svergun D. I. (2015) Correlation map, a goodness-of-fit test for one-dimensional x-ray scattering spectra. Nat. Methods 12, 419–422 PubMed
Valentini E., Kikhney A. G., Previtali G., Jeffries C. M., and Svergun D. I. (2015) SASBDB, a repository for biological small-angle scattering data. Nucleic Acids Res. 43, D357–D363 PubMed PMC
Ohi M., Li Y., Cheng Y., and Walz T. (2004) Negative staining and image classification: powerful tools in modern electron microscopy. Biol. Proced. Online 6, 23–34 PubMed PMC
Frank J., Radermacher M., Penczek P., Zhu J., Li Y., Ladjadj M., and Leith A. (1996) SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 PubMed
Demeler B., Brookes E., Wang R., Schirf V., and Kim C. A. (2010) Characterization of reversible associations by sedimentation velocity with UltraScan. Macromol. Biosci. 10, 775–782 PubMed
Guinier A. (1939) La diffraction des rayons X aux tres petits angles; application a l'etude de phenomenes ultramicroscopiques. Ann. Phys. Paris 12, 161–237
Petoukhov M. V., Franke D., Shkumatov A. V., Tria G., Kikhney A. G., Gajda M., Gorba C., Mertens H. D., Konarev P. V., and Svergun D. I. (2012) New developments in the program package for small-angle scattering data analysis. J. Appl. Crystallogr. 45, 342–350 PubMed PMC
Volkov V. V., and Svergun D. I. (2003) Uniqueness of ab initio shape determination in small-angle scattering. J. Appl. Crystallogr. 36, 860–864 PubMed PMC
Comoletti D., Miller M. T., Jeffries C. M., Wilson J., Demeler B., Taylor P., Trewhella J., and Nakagawa T. (2010) The macromolecular architecture of extracellular domain of alphaNRXN1: domain organization, flexibility, and insights into trans-synaptic disposition. Structure 18, 1044–1053 PubMed PMC
Boucard A. A., Chubykin A. A., Comoletti D., Taylor P., and Südhof T. C. (2005) A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to α- and β-neurexins. Neuron 48, 229–236 PubMed
Abrahams B. S., Tentler D., Perederiy J. V., Oldham M. C., Coppola G., and Geschwind D. H. (2007) Genome-wide analyses of human perisylvian cerebral cortical patterning. Proc. Natl. Acad. Sci. U.S.A. 104, 17849–17854 PubMed PMC
Miller M. T., Mileni M., Comoletti D., Stevens R. C., Harel M., and Taylor P. (2011) The crystal structure of the α-neurexin-1 extracellular region reveals a hinge point for mediating synaptic adhesion and function. Structure 19, 767–778 PubMed PMC
Chen F., Venugopal V., Murray B., and Rudenko G. (2011) The structure of neurexin 1α reveals features promoting a role as synaptic organizer. Structure 19, 779–789 PubMed PMC
van der Merwe P. A., and Barclay A. N. (1994) Transient intercellular adhesion: the importance of weak protein-protein interactions. Trends Biochem. Sci. 19, 354–358 PubMed
Finci L. I., Krüger N., Sun X., Zhang J., Chegkazi M., Wu Y., Schenk G., Mertens H. D., Svergun D. I., Zhang Y., Wang J. H., and Meijers R. (2014) The crystal structure of netrin-1 in complex with DCC reveals the bifunctionality of netrin-1 as a guidance cue. Neuron 83, 839–849 PubMed PMC
Bohne A., Lang E., and von der Lieth C. W. (1999) SWEET: WWW-based rapid 3D construction of oligo- and polysaccharides. Bioinformatics 15, 767–768 PubMed