Lithiated porous silicon nanowires stimulate periodontal regeneration

. 2024 Jan 12 ; 15 (1) : 487. [epub] 20240112

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38216556

Grantová podpora
MC_PC_16048 Medical Research Council - United Kingdom

Odkazy

PubMed 38216556
PubMed Central PMC10786831
DOI 10.1038/s41467-023-44581-5
PII: 10.1038/s41467-023-44581-5
Knihovny.cz E-zdroje

Periodontal disease is a significant burden for oral health, causing progressive and irreversible damage to the support structure of the tooth. This complex structure, the periodontium, is composed of interconnected soft and mineralised tissues, posing a challenge for regenerative approaches. Materials combining silicon and lithium are widely studied in periodontal regeneration, as they stimulate bone repair via silicic acid release while providing regenerative stimuli through lithium activation of the Wnt/β-catenin pathway. Yet, existing materials for combined lithium and silicon release have limited control over ion release amounts and kinetics. Porous silicon can provide controlled silicic acid release, inducing osteogenesis to support bone regeneration. Prelithiation, a strategy developed for battery technology, can introduce large, controllable amounts of lithium within porous silicon, but yields a highly reactive material, unsuitable for biomedicine. This work debuts a strategy to lithiate porous silicon nanowires (LipSiNs) which generates a biocompatible and bioresorbable material. LipSiNs incorporate lithium to between 1% and 40% of silicon content, releasing lithium and silicic acid in a tailorable fashion from days to weeks. LipSiNs combine osteogenic, cementogenic and Wnt/β-catenin stimuli to regenerate bone, cementum and periodontal ligament fibres in a murine periodontal defect.

Zobrazit více v PubMed

Lindhe, J., Lang, N. P., Karring, T. Clinical periodontology and implant dentistry. 5th ed. (Wiley-Blackwell, Oxford, 2008).

Moreno Sancho F, et al. Cell-based therapies for alveolar bone and periodontal regeneration: concise review. Stem Cells Transl. Med. 2019;8:1286–1295. doi: 10.1002/sctm.19-0183. PubMed DOI PMC

Bao J, Yang Y, Xia M, Sun W, Chen L. Wnt signaling: an attractive target for periodontitis treatment. Biomed. Pharmacother. 2021;133:110935. doi: 10.1016/j.biopha.2020.110935. PubMed DOI

Nibali L, et al. Periodontal infrabony defects: systematic review of healing by defect morphology following regenerative surgery. J. Clin. Periodontol. 2021;48:101–114. doi: 10.1111/jcpe.13381. PubMed DOI

Yajamanya S, et al. Bioactive glass versus autologous platelet-rich fibrin for treating periodontal intrabony defects: A comparative clinical study. J. Indian Soc. Periodontol. 2017;21:32. doi: 10.4103/0972-124X.201628. PubMed DOI PMC

Cohen P, Goedert M. GSK3 inhibitors: development and therapeutic potential. Nat. Rev. Drug Discov. 2004;3:479–487. doi: 10.1038/nrd1415. PubMed DOI

Han P, Wu C, Chang J, Xiao Y. The cementogenic differentiation of periodontal ligament cells via the activation of Wnt/β-catenin signalling pathway by Li + ions released from bioactive scaffolds. Biomaterials. 2012;33:6370–6379. doi: 10.1016/j.biomaterials.2012.05.061. PubMed DOI

Neves VCM, Babb R, Chandrasekaran D, Sharpe PT. Promotion of natural tooth repair by small molecule GSK3 antagonists. Sci. Rep. 2017;7:39654. doi: 10.1038/srep39654. PubMed DOI PMC

Uhl FE, et al. Preclinical validation and imaging of Wnt-induced repair in human 3D lung tissue cultures. Eur. Respiratory J. 2015;46:1150–1166. doi: 10.1183/09031936.00183214. PubMed DOI

Yuan J, et al. Chitosan/LiCl composite scaffolds promote skin regeneration in full-thickness loss. Sci. China Life Sci. 2020;63:552–562. doi: 10.1007/s11427-018-9389-6. PubMed DOI

Clément-Lacroix P, et al. Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc. Natl Acad. Sci. USA. 2005;102:17406–17411. doi: 10.1073/pnas.0505259102. PubMed DOI PMC

Vestergaard P, Rejnmark L, Mosekilde L. Reduced relative risk of fractures among users of lithium. Calcif. Tissue Int. 2005;77:1–8. doi: 10.1007/s00223-004-0258-y. PubMed DOI

Kook SH, et al. Activation of canonical Wnt/β-catenin signaling inhibits H2O2-induced decreases in proliferation and differentiation of human periodontal ligament fibroblasts. Mol. Cell Biochem. 2016;411:83–94. doi: 10.1007/s11010-015-2570-4. PubMed DOI

Han P, Ivanovski S, Crawford R, Xiao Y. Activation of the canonical Wnt signaling pathway induces cementum regeneration. J. Bone Miner. Res. 2015;30:1160–1174. doi: 10.1002/jbmr.2445. PubMed DOI

Han P, Wu C, Chang J, Xiao Y. The cementogenic differentiation of periodontal ligament cells via the activation of Wnt/β-catenin signalling pathway by Li+ ions released from bioactive scaffolds. Biomaterials. 2012;33:6370–6379. doi: 10.1016/j.biomaterials.2012.05.061. PubMed DOI

Mousa M, Evans ND, Oreffo ROC, Dawson JI. Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity. Biomaterials. 2018;159:204–214. doi: 10.1016/j.biomaterials.2017.12.024. PubMed DOI

Liu Z, et al. Close-loop dynamic nanohybrids on collagen-ark with: In situ gelling transformation capability for biomimetic stage-specific diabetic wound healing. Mater. Horiz. 2019;6:385–393. doi: 10.1039/C8MH01145A. DOI

Miguez-Pacheco V, et al. Development and characterization of lithium-releasing silicate bioactive glasses and their scaffolds for bone repair. J. Non Cryst. Solids. 2016;432:65–72. doi: 10.1016/j.jnoncrysol.2015.03.027. DOI

Mousa M, et al. The role of lithium in the osteogenic bioactivity of clay nanoparticles. Biomater. Sci. 2021;9:3150–3161. doi: 10.1039/D0BM01444C. PubMed DOI

Wang PY, et al. Screening mesenchymal stem cell attachment and differentiation on porous silicon gradients. Adv. Funct. Mater. 2012;22:3414–3423. doi: 10.1002/adfm.201200447. DOI

Canham LT. Bioactive silicon structure fabrication through nanoetching techniques. Adv. Mater. 1995;7:1033–1037. doi: 10.1002/adma.19950071215. DOI

Henstock JR, Ruktanonchai UR, Canham LT, Anderson SI. Porous silicon confers bioactivity to polycaprolactone composites in vitro. J. Mater. Sci. Mater. Med. 2014;25:1087–1097. doi: 10.1007/s10856-014-5140-5. PubMed DOI

Kaasalainen et al. Size, stability, and porosity of mesoporous nanoparticles characterized with light scattering. Nanoscale Res. Lett. 12, 10.1186/s11671-017-1853-y (2017). PubMed PMC

Bimbo LM, et al. Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats. ACS Nano. 2010;4:3023–3032. doi: 10.1021/nn901657w. PubMed DOI

Zhang BC, et al. Centimeter-long single-crystalline Si nanowires. Nano Lett. 2017;17:7323–7329. doi: 10.1021/acs.nanolett.7b02967. PubMed DOI

Anderson SHC, Elliott H, Wallis DJ, Canham LT, Powell JJ. Dissolution of different forms of partially porous silicon wafers under simulated physiological conditions. Phys. Status Solidi A. 2003;197:331–335. doi: 10.1002/pssa.200306519. DOI

Martinez JO, et al. Biomaterials engineering multi-stage nanovectors for controlled degradation and tunable release kinetics. Biomaterials. 2013;34:8469–8477. doi: 10.1016/j.biomaterials.2013.07.049. PubMed DOI PMC

Jalkanen T, et al. Selective optical response of hydrolytically stable stratified Si rugate mirrors to liquid infiltration. ACS Appl Mater. Interfaces. 2014;6:2884–2892. doi: 10.1021/am405436d. PubMed DOI

McSweeney W, Geaney H, O’Dwyer C. Metal-assisted chemical etching of silicon and the behavior of nanoscale silicon materials as Li-ion battery anodes. Nano Res. 2015;8:1395–1442. doi: 10.1007/s12274-014-0659-9. DOI

McDowell MT, Lee SW, Nix WD, Cui Y. 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 2013;25:4966–4985. doi: 10.1002/adma.201301795. PubMed DOI

Zhang J, et al. 3D-printed magnetic Fe3O4/MBG/PCL composite scaffolds with multifunctionality of bone regeneration, local anticancer drug delivery and hyperthermia. J. Mater. Chem. B. 2014;2:7583–7595. doi: 10.1039/C4TB01063A. PubMed DOI

Holtstiege F, Bärmann P, Nölle R, Winter M, Placke T. Pre-lithiation strategies for rechargeable energy storage technologies: concepts, promises and challenges. Batteries. 2018;4:4. doi: 10.3390/batteries4010004. DOI

Liu N, Hu L, McDowell MT, Jackson A, Cui Y. Prelithiated silicon nanowires as an anode for lithium ion batteries. ACS Nano. 2011;5:6487–6493. doi: 10.1021/nn2017167. PubMed DOI

Ge M, Rong J, Fang X, Zhou C. Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 2012;12:2318–2323. doi: 10.1021/nl300206e. PubMed DOI

Ikonen T, et al. Electrochemically anodized porous silicon: towards simple and affordable anode material for Li-ion batteries. Sci. Rep. 2017;7:7880. doi: 10.1038/s41598-017-08285-3. PubMed DOI PMC

Zhao J, et al. Metallurgically lithiated SiO x anode with high capacity and ambient air compatibility. Proc. Natl Acad. Sci. 2016;113:7408–7413. doi: 10.1073/pnas.1603810113. PubMed DOI PMC

Chiappini C, Liu X, Fakhoury JR, Ferrari M. Biodegradable porous silicon barcode nanowires with defined geometry. Adv. Funct. Mater. 2010;20:2231–2239. doi: 10.1002/adfm.201000360. PubMed DOI PMC

Ge M, Fang X, Rong J, Zhou C. Review of porous silicon preparation and its application for lithium-ion battery anodes. Nanotechnology. 2013;24:422001. doi: 10.1088/0957-4484/24/42/422001. PubMed DOI

Kadlečíková M, et al. Raman spectroscopy of porous silicon substrates. Opttik. 2018;174:347–353. doi: 10.1016/j.ijleo.2018.08.084. DOI

Turishchev SY, et al. Surface deep profile synchrotron studies of mechanically modified top-down silicon nanowires array using ultrasoft X-ray absorption near edge structure spectroscopy. Sci. Rep. 2019;9:1–7. doi: 10.1038/s41598-019-44555-y. PubMed DOI PMC

Montazerian M, Zanotto ED. Bioactive and inert dental glass-ceramics. J. Biomed. Mater. Res A. 2017;105:619–639. doi: 10.1002/jbm.a.35923. PubMed DOI

Maçon ALB, et al. Lithium-silicate sol–gel bioactive glass and the effect of lithium precursor on structure–property relationships. J. Solgel Sci. Technol. 2017;81:84–94. doi: 10.1007/s10971-016-4097-x. PubMed DOI PMC

Roguljic, H. et al. In vivo identification of periodontal progenitor cells. Published online 10.1177/002203451349343 (2013). PubMed PMC

Tylkowski M, Brauer DS. Mixed alkali effects in Bioglass® 45S5. J. Non Cryst. Solids. 2013;376:175–181. doi: 10.1016/j.jnoncrysol.2013.05.039. DOI

Alaohali A, Brauer DS, Gentleman E, Sharpe PT. A modified glass ionomer cement to mediate dentine repair. Dent. Mater. 2021;37:1307–1315. doi: 10.1016/j.dental.2021.05.003. PubMed DOI

da Silva JG, et al. Optimisation of lithium-substituted bioactive glasses to tailor cell response for hard tissue repair. J. Mater. Sci. 2017;52:8832–8844. doi: 10.1007/s10853-017-0838-7. PubMed DOI PMC

Loni A, et al. Extremely high surface area metallurgical-grade porous silicon powder prepared by metal-assisted etching. Electrochem. Solid-State Lett. 2011;14:K25–K27. doi: 10.1149/1.3548513. DOI

Batchelor L, Loni A, Canham LT, Hasan M, Coffer JL. Manufacture of mesoporous silicon from living plants and agricultural waste: an environmentally friendly and scalable process. Silicon. 2012;4:259–266. doi: 10.1007/s12633-012-9129-8. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...