Lithiated porous silicon nanowires stimulate periodontal regeneration
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MC_PC_16048
Medical Research Council - United Kingdom
PubMed
38216556
PubMed Central
PMC10786831
DOI
10.1038/s41467-023-44581-5
PII: 10.1038/s41467-023-44581-5
Knihovny.cz E-zdroje
- MeSH
- beta-katenin * MeSH
- křemík farmakologie MeSH
- kyselina křemičitá farmakologie MeSH
- lithium farmakologie MeSH
- myši MeSH
- nanodráty * MeSH
- poréznost MeSH
- zubní cement (tkáň) MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- beta-katenin * MeSH
- křemík MeSH
- kyselina křemičitá MeSH
- lithium MeSH
Periodontal disease is a significant burden for oral health, causing progressive and irreversible damage to the support structure of the tooth. This complex structure, the periodontium, is composed of interconnected soft and mineralised tissues, posing a challenge for regenerative approaches. Materials combining silicon and lithium are widely studied in periodontal regeneration, as they stimulate bone repair via silicic acid release while providing regenerative stimuli through lithium activation of the Wnt/β-catenin pathway. Yet, existing materials for combined lithium and silicon release have limited control over ion release amounts and kinetics. Porous silicon can provide controlled silicic acid release, inducing osteogenesis to support bone regeneration. Prelithiation, a strategy developed for battery technology, can introduce large, controllable amounts of lithium within porous silicon, but yields a highly reactive material, unsuitable for biomedicine. This work debuts a strategy to lithiate porous silicon nanowires (LipSiNs) which generates a biocompatible and bioresorbable material. LipSiNs incorporate lithium to between 1% and 40% of silicon content, releasing lithium and silicic acid in a tailorable fashion from days to weeks. LipSiNs combine osteogenic, cementogenic and Wnt/β-catenin stimuli to regenerate bone, cementum and periodontal ligament fibres in a murine periodontal defect.
Centre for Craniofacial and Regenerative Biology King's College London London SE1 9RT UK
Centre for Oral Clinical and Translational Sciences King's College London London SE1 9RT UK
Department of Chemistry University College London London WC1H 0AJ UK
Department of Materials Imperial College London London SW72AZ UK
Department of Physics and Astronomy University of Turku Turku 20014 Finland
HarwellXPS Research Complex at Harwell Rutherford Appleton Labs Didcot OX11 0DE UK
Institute of Animal Physiology and Genetics Czech Academy of Sciences Brno 602 00 Czech Republic
Institute of Pharmaceutical Science King's College London London SE1 9NH UK
London Centre for Nanotechnology King's College London London WC2R 2LS UK
Otto Schott Institute of Materials Research Friedrich Schiller University Jena Jena 07743 Germany
Postnova Analytics GmbH Rankinestr 1 Landsberg am Lech 86899 Germany
School of Chemical and Process Engineering University of Leeds Leeds LS2 9JT UK
Zobrazit více v PubMed
Lindhe, J., Lang, N. P., Karring, T. Clinical periodontology and implant dentistry. 5th ed. (Wiley-Blackwell, Oxford, 2008).
Moreno Sancho F, et al. Cell-based therapies for alveolar bone and periodontal regeneration: concise review. Stem Cells Transl. Med. 2019;8:1286–1295. doi: 10.1002/sctm.19-0183. PubMed DOI PMC
Bao J, Yang Y, Xia M, Sun W, Chen L. Wnt signaling: an attractive target for periodontitis treatment. Biomed. Pharmacother. 2021;133:110935. doi: 10.1016/j.biopha.2020.110935. PubMed DOI
Nibali L, et al. Periodontal infrabony defects: systematic review of healing by defect morphology following regenerative surgery. J. Clin. Periodontol. 2021;48:101–114. doi: 10.1111/jcpe.13381. PubMed DOI
Yajamanya S, et al. Bioactive glass versus autologous platelet-rich fibrin for treating periodontal intrabony defects: A comparative clinical study. J. Indian Soc. Periodontol. 2017;21:32. doi: 10.4103/0972-124X.201628. PubMed DOI PMC
Cohen P, Goedert M. GSK3 inhibitors: development and therapeutic potential. Nat. Rev. Drug Discov. 2004;3:479–487. doi: 10.1038/nrd1415. PubMed DOI
Han P, Wu C, Chang J, Xiao Y. The cementogenic differentiation of periodontal ligament cells via the activation of Wnt/β-catenin signalling pathway by Li + ions released from bioactive scaffolds. Biomaterials. 2012;33:6370–6379. doi: 10.1016/j.biomaterials.2012.05.061. PubMed DOI
Neves VCM, Babb R, Chandrasekaran D, Sharpe PT. Promotion of natural tooth repair by small molecule GSK3 antagonists. Sci. Rep. 2017;7:39654. doi: 10.1038/srep39654. PubMed DOI PMC
Uhl FE, et al. Preclinical validation and imaging of Wnt-induced repair in human 3D lung tissue cultures. Eur. Respiratory J. 2015;46:1150–1166. doi: 10.1183/09031936.00183214. PubMed DOI
Yuan J, et al. Chitosan/LiCl composite scaffolds promote skin regeneration in full-thickness loss. Sci. China Life Sci. 2020;63:552–562. doi: 10.1007/s11427-018-9389-6. PubMed DOI
Clément-Lacroix P, et al. Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc. Natl Acad. Sci. USA. 2005;102:17406–17411. doi: 10.1073/pnas.0505259102. PubMed DOI PMC
Vestergaard P, Rejnmark L, Mosekilde L. Reduced relative risk of fractures among users of lithium. Calcif. Tissue Int. 2005;77:1–8. doi: 10.1007/s00223-004-0258-y. PubMed DOI
Kook SH, et al. Activation of canonical Wnt/β-catenin signaling inhibits H2O2-induced decreases in proliferation and differentiation of human periodontal ligament fibroblasts. Mol. Cell Biochem. 2016;411:83–94. doi: 10.1007/s11010-015-2570-4. PubMed DOI
Han P, Ivanovski S, Crawford R, Xiao Y. Activation of the canonical Wnt signaling pathway induces cementum regeneration. J. Bone Miner. Res. 2015;30:1160–1174. doi: 10.1002/jbmr.2445. PubMed DOI
Han P, Wu C, Chang J, Xiao Y. The cementogenic differentiation of periodontal ligament cells via the activation of Wnt/β-catenin signalling pathway by Li+ ions released from bioactive scaffolds. Biomaterials. 2012;33:6370–6379. doi: 10.1016/j.biomaterials.2012.05.061. PubMed DOI
Mousa M, Evans ND, Oreffo ROC, Dawson JI. Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity. Biomaterials. 2018;159:204–214. doi: 10.1016/j.biomaterials.2017.12.024. PubMed DOI
Liu Z, et al. Close-loop dynamic nanohybrids on collagen-ark with: In situ gelling transformation capability for biomimetic stage-specific diabetic wound healing. Mater. Horiz. 2019;6:385–393. doi: 10.1039/C8MH01145A. DOI
Miguez-Pacheco V, et al. Development and characterization of lithium-releasing silicate bioactive glasses and their scaffolds for bone repair. J. Non Cryst. Solids. 2016;432:65–72. doi: 10.1016/j.jnoncrysol.2015.03.027. DOI
Mousa M, et al. The role of lithium in the osteogenic bioactivity of clay nanoparticles. Biomater. Sci. 2021;9:3150–3161. doi: 10.1039/D0BM01444C. PubMed DOI
Wang PY, et al. Screening mesenchymal stem cell attachment and differentiation on porous silicon gradients. Adv. Funct. Mater. 2012;22:3414–3423. doi: 10.1002/adfm.201200447. DOI
Canham LT. Bioactive silicon structure fabrication through nanoetching techniques. Adv. Mater. 1995;7:1033–1037. doi: 10.1002/adma.19950071215. DOI
Henstock JR, Ruktanonchai UR, Canham LT, Anderson SI. Porous silicon confers bioactivity to polycaprolactone composites in vitro. J. Mater. Sci. Mater. Med. 2014;25:1087–1097. doi: 10.1007/s10856-014-5140-5. PubMed DOI
Kaasalainen et al. Size, stability, and porosity of mesoporous nanoparticles characterized with light scattering. Nanoscale Res. Lett. 12, 10.1186/s11671-017-1853-y (2017). PubMed PMC
Bimbo LM, et al. Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats. ACS Nano. 2010;4:3023–3032. doi: 10.1021/nn901657w. PubMed DOI
Zhang BC, et al. Centimeter-long single-crystalline Si nanowires. Nano Lett. 2017;17:7323–7329. doi: 10.1021/acs.nanolett.7b02967. PubMed DOI
Anderson SHC, Elliott H, Wallis DJ, Canham LT, Powell JJ. Dissolution of different forms of partially porous silicon wafers under simulated physiological conditions. Phys. Status Solidi A. 2003;197:331–335. doi: 10.1002/pssa.200306519. DOI
Martinez JO, et al. Biomaterials engineering multi-stage nanovectors for controlled degradation and tunable release kinetics. Biomaterials. 2013;34:8469–8477. doi: 10.1016/j.biomaterials.2013.07.049. PubMed DOI PMC
Jalkanen T, et al. Selective optical response of hydrolytically stable stratified Si rugate mirrors to liquid infiltration. ACS Appl Mater. Interfaces. 2014;6:2884–2892. doi: 10.1021/am405436d. PubMed DOI
McSweeney W, Geaney H, O’Dwyer C. Metal-assisted chemical etching of silicon and the behavior of nanoscale silicon materials as Li-ion battery anodes. Nano Res. 2015;8:1395–1442. doi: 10.1007/s12274-014-0659-9. DOI
McDowell MT, Lee SW, Nix WD, Cui Y. 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 2013;25:4966–4985. doi: 10.1002/adma.201301795. PubMed DOI
Zhang J, et al. 3D-printed magnetic Fe3O4/MBG/PCL composite scaffolds with multifunctionality of bone regeneration, local anticancer drug delivery and hyperthermia. J. Mater. Chem. B. 2014;2:7583–7595. doi: 10.1039/C4TB01063A. PubMed DOI
Holtstiege F, Bärmann P, Nölle R, Winter M, Placke T. Pre-lithiation strategies for rechargeable energy storage technologies: concepts, promises and challenges. Batteries. 2018;4:4. doi: 10.3390/batteries4010004. DOI
Liu N, Hu L, McDowell MT, Jackson A, Cui Y. Prelithiated silicon nanowires as an anode for lithium ion batteries. ACS Nano. 2011;5:6487–6493. doi: 10.1021/nn2017167. PubMed DOI
Ge M, Rong J, Fang X, Zhou C. Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 2012;12:2318–2323. doi: 10.1021/nl300206e. PubMed DOI
Ikonen T, et al. Electrochemically anodized porous silicon: towards simple and affordable anode material for Li-ion batteries. Sci. Rep. 2017;7:7880. doi: 10.1038/s41598-017-08285-3. PubMed DOI PMC
Zhao J, et al. Metallurgically lithiated SiO x anode with high capacity and ambient air compatibility. Proc. Natl Acad. Sci. 2016;113:7408–7413. doi: 10.1073/pnas.1603810113. PubMed DOI PMC
Chiappini C, Liu X, Fakhoury JR, Ferrari M. Biodegradable porous silicon barcode nanowires with defined geometry. Adv. Funct. Mater. 2010;20:2231–2239. doi: 10.1002/adfm.201000360. PubMed DOI PMC
Ge M, Fang X, Rong J, Zhou C. Review of porous silicon preparation and its application for lithium-ion battery anodes. Nanotechnology. 2013;24:422001. doi: 10.1088/0957-4484/24/42/422001. PubMed DOI
Kadlečíková M, et al. Raman spectroscopy of porous silicon substrates. Opttik. 2018;174:347–353. doi: 10.1016/j.ijleo.2018.08.084. DOI
Turishchev SY, et al. Surface deep profile synchrotron studies of mechanically modified top-down silicon nanowires array using ultrasoft X-ray absorption near edge structure spectroscopy. Sci. Rep. 2019;9:1–7. doi: 10.1038/s41598-019-44555-y. PubMed DOI PMC
Montazerian M, Zanotto ED. Bioactive and inert dental glass-ceramics. J. Biomed. Mater. Res A. 2017;105:619–639. doi: 10.1002/jbm.a.35923. PubMed DOI
Maçon ALB, et al. Lithium-silicate sol–gel bioactive glass and the effect of lithium precursor on structure–property relationships. J. Solgel Sci. Technol. 2017;81:84–94. doi: 10.1007/s10971-016-4097-x. PubMed DOI PMC
Roguljic, H. et al. In vivo identification of periodontal progenitor cells. Published online 10.1177/002203451349343 (2013). PubMed PMC
Tylkowski M, Brauer DS. Mixed alkali effects in Bioglass® 45S5. J. Non Cryst. Solids. 2013;376:175–181. doi: 10.1016/j.jnoncrysol.2013.05.039. DOI
Alaohali A, Brauer DS, Gentleman E, Sharpe PT. A modified glass ionomer cement to mediate dentine repair. Dent. Mater. 2021;37:1307–1315. doi: 10.1016/j.dental.2021.05.003. PubMed DOI
da Silva JG, et al. Optimisation of lithium-substituted bioactive glasses to tailor cell response for hard tissue repair. J. Mater. Sci. 2017;52:8832–8844. doi: 10.1007/s10853-017-0838-7. PubMed DOI PMC
Loni A, et al. Extremely high surface area metallurgical-grade porous silicon powder prepared by metal-assisted etching. Electrochem. Solid-State Lett. 2011;14:K25–K27. doi: 10.1149/1.3548513. DOI
Batchelor L, Loni A, Canham LT, Hasan M, Coffer JL. Manufacture of mesoporous silicon from living plants and agricultural waste: an environmentally friendly and scalable process. Silicon. 2012;4:259–266. doi: 10.1007/s12633-012-9129-8. DOI