Exploring Phthalimide as the Acid Component in the Passerini Reaction
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38227542
PubMed Central
PMC10845143
DOI
10.1021/acs.orglett.3c03962
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Multicomponent reactions, particularly the Passerini reaction, serve as efficient tools for the synthesis of druglike molecules and the creation of compound libraries. Despite the effectiveness of the Passerini reaction, the limited alternatives to the crucial carboxylic acid component pose a structural constraint. Here, we have discovered that the phthalimide moiety and its derivatives react in the Passerini reaction as an acid component. We explored their potential in synthesizing diverse and intricate molecules. The phthalimide moiety stands out as a favorable building block due to its oxidative stability, heat-stable characteristics, and resistance to solvents. Our approach introduces a novel perspective to multicomponent reactions by incorporating NH-based acid components, addressing the ongoing need for the development of innovative molecular scaffolds.
Zobrazit více v PubMed
Zarganes-Tzitzikas T.; Chandgude A. L.; Dömling A. Multicomponent reactions, union of MCRs and beyond. Chem. Rec. 2015, 15 (5), 981–996. 10.1002/tcr.201500201. PubMed DOI
Dömling A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev. 2006, 106 (1), 17–89. 10.1021/cr0505728. PubMed DOI
Dömling A.; Ugi I. Multicomponent reactions with isocyanides. Angew. Chem., Int. Ed. 2000, 39 (18), 3168–3210. 10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U. PubMed DOI
Passerini M.; Simone L. Sopra gli isonitrili (I). Composto del p-isonitril-azobenzolo con acetone ed acido acetico. Gazz. Chim. Ital. 1921, 51 (II), 126–129.
Ugi I. Versuche mit isonitrilen. Angew. Chem., Int. Ed. 1959, 71 (11), 386–386.
El Kaim L.; Grimaud L. Beyond the Ugi reaction: less conventional interactions between isocyanides and iminium species. Tetrahedron 2009, 65 (11), 2153–2171. 10.1016/j.tet.2008.12.002. DOI
Hooshmand S. E.; Zhang W. Ugi Four-Component Reactions Using Alternative Reactants. Molecules 2023, 28 (4), 1642.10.3390/molecules28041642. PubMed DOI PMC
El Kaim L.; Gizolme M.; Grimaud L. O-arylative Passerini reactions. Org. Lett. 2006, 8 (22), 5021–5023. 10.1021/ol0617502. PubMed DOI
El Kaim L.; Gizolme M.; Grimaud L.; Oble J. Smiles rearrangements in Ugi-and Passerini-type couplings: New multicomponent access to O- and N-arylamides. J. Org. Chem. 2007, 72 (11), 4169–4180. 10.1021/jo070202e. PubMed DOI
Yanai H.; Oguchi T.; Taguchi T. Direct alkylative Passerini reaction of aldehydes, isocyanides, and free aliphatic alcohols catalyzed by indium (III) triflate. J. Org. Chem. 2009, 74 (10), 3927–3929. 10.1021/jo900354e. PubMed DOI
Soeta T.; Kojima Y.; Ukaji Y.; Inomata K. O-Silylative Passerini reaction: A new one-pot synthesis of α-siloxyamides. Org. Lett. 2010, 12 (19), 4341–4343. 10.1021/ol101763w. PubMed DOI
Soeta T.; Matsuzaki S.; Ukaji Y. A One-Pot O-Phosphinative Passerini/Pudovik Reaction: Efficient Synthesis of Highly Functionalized α-(Phosphinyloxy) amide Derivatives. Chem.–Eur. J. 2014, 20 (17), 5007–5012. 10.1002/chem.201304618. PubMed DOI
Chandgude A. L.; Dömling A. Unconventional Passerini Reaction toward α-Aminoxy-amides. Org. Lett. 2016, 18 (24), 6396–6399. 10.1021/acs.orglett.6b03293. PubMed DOI
Chandgude A. L.; Dömling A. An efficient Passerini tetrazole reaction (PT-3CR). Green Chem. 2016, 18 (13), 3718–3721. 10.1039/C6GC00910G. PubMed DOI PMC
Saya J. M.; Berabez R.; Broersen P.; Schuringa I.; Kruithof A.; Orru R. V.; Ruijter E. Hexafluoroisopropanol as the Acid Component in the Passerini Reaction: One-Pot Access to β-Amino Alcohols. Org. Lett. 2018, 20 (13), 3988–3991. 10.1021/acs.orglett.8b01561. PubMed DOI PMC
Kushwaha N.; Kaushik D. Recent advances and future prospects of phthalimide derivatives. J. Appl. Pharm. Sci. 2016, 6 (03), 159–171. 10.7324/JAPS.2016.60330. DOI
Singh J.; Singha T.; Naskar A.; Kundu M.; Harwansh R. K.; Mondal A.; Ghosh T.; Maity T. K. Synthesis and anti-proliferative activity of some isoindoline-1,3-dione derivatives against Ehrlich’s ascites carcinoma bearing mice model. Pharmacologyonline 2011, 2 (12), 976–987.
Chan S. H.; Lam K. H.; Chui C. H.; Gambari R.; Yuen M. C. W.; Wong R. S. M.; Cheng G. Y. M.; Lau F. Y.; Au Y. K.; Cheng C. H. The preparation and in vitro antiproliferative activity of phthalimide based ketones on MDAMB-231 and SKHep-1 human carcinoma cell lines. Eur. J. Med. Chem. 2009, 44 (6), 2736–2740. 10.1016/j.ejmech.2008.10.024. PubMed DOI
Miyachi H.; Azuma A.; Ogasawara A.; Uchimura E.; Watanabe N.; Kobayashi Y.; Kato F.; Kato M.; Hashimoto Y. Novel biological response modifiers: phthalimides with tumor necrosis factor-α production-regulating activity. J. Med. Chem. 1997, 40 (18), 2858–2865. 10.1021/jm970109q. PubMed DOI
Alanazi A. M.; El-Azab A. S.; Al-Suwaidan I. A.; ElTahir K. E. H.; Asiri Y. A.; Abdel-Aziz N. I.; Abdel-Aziz A. A.-M. Structure-based design of phthalimide derivatives as potential cyclooxygenase-2 (COX-2) inhibitors: anti-inflammatory and analgesic activities. Eur. J. Med. Chem. 2015, 92, 115–123. 10.1016/j.ejmech.2014.12.039. PubMed DOI
Barbosa M. L. D.; Ramos T. J. F.; de Arantes A. C. S.; Martins M. A.; e Silva P. M. R.; Barreiro E. J.; Lima L. M. Synthesis and pharmacological evaluation of novel phenyl sulfonamide derivatives designed as modulators of pulmonary inflammatory response. Molecules 2012, 17, 14651–14672. 10.3390/molecules171214651. PubMed DOI PMC
Panek D.; Wieckowska A.; Wichur T.; Bajda M.; Godyn J.; Jonczyk J.; Mika K.; Janockova J.; Soukup O.; Knez D.; Korabecny J.; Gobec S.; Malawska B. Design, synthesis and biological evaluation of new phthalimide and saccharin derivatives with alicyclic amines targeting cholinesterases, beta-secretase and amyloid beta aggregation. Eur. J. Med. Chem. 2017, 125, 676–695. 10.1016/j.ejmech.2016.09.078. PubMed DOI
Norman M. H.; Minick D. J.; Rigdon G. C. Effect of linking bridge modifications on the antipsychotic profile of some phthalimide and isoindolinone derivatives. J. Med. Chem. 1996, 39 (1), 149–157. 10.1021/jm9502201. PubMed DOI
Santos J. L.; Yamasaki P. R.; Chin C. M.; Takashi C. H.; Pavan F. R.; Leite C. Q. Synthesis and in vitro anti Mycobacterium tuberculosis activity of a series of phthalimide derivatives. Bioorg. Med. Chem. 2009, 17 (11), 3795–3799. 10.1016/j.bmc.2009.04.042. PubMed DOI
Bhat M. A.; Al-Omar M. A. Synthesis, characterization and in vivo anticonvulsant and neurotoxicity screening of Schiff bases of phthalimide. Acta Pol. Pharm. 2011, 68 (3), 375–380. PubMed
Hassanzadeh F.; Rabbani M.; Fasihi A.; Hakimelahi G. H.; Mohajeri M. Synthesis of phthalimide derivatives and evaluation of their anxiolytic activity. Res. Pharm. Sci. 2008, 2 (1), 35–41.
Selvam P.; Pannecouque C.; De Clercq E. Synthesis, Anti HIV activity and Cytotoxicity of N-Substituted Phthalimide derivatives. Int. J. Pharm. Anal. Res. 2013, 2, 12–14.
Franks M. E.; Macpherson G. R.; Figg W. D. Thalidomide. Lancet 2004, 363 (9423), 1802–1811. 10.1016/S0140-6736(04)16308-3. PubMed DOI
Zerilli T.; Ocheretyaner E. Apremilast (Otezla): A new oral treatment for adults with psoriasis and psoriatic arthritis. Pharm. Therapeut. 2015, 40 (8), 495. PubMed PMC
Barbosa M.; Ramos T.; de Arantes A.; Martins M.; Silva P.; Barreiro E.; Lima L. Synthesis and pharmacological evaluation of novel phenyl sulfonamide derivatives designed as modulators of pulmonary inflammatory response. Molecules 2012, 17 (12), 14651–14672. 10.3390/molecules171214651. PubMed DOI PMC
Gibson M. S.; Bradshaw R. W. Gabriel synthesis of primary amines. Angew. Chem. 1968, 80 (23), 986–996. 10.1002/ange.19680802303. DOI
Lorz P. M.; Towae F. K.; Enke W.; Jäckh R.; Bhargava N.; Hillesheim W.. Phthalic acid and derivatives. In Ullmann’s Encyclopedia of Industrial Chemistry, 2000.
Li J.Substrate Exploitation of Multicomponent Reactions toward Diverse Scaffolds and Applications in Medicinal Chemistry. Ph.D. Thesis, University of Groningen: Groningen, The Netherlands, 2021; 214 pp, 10.33612/diss.150511881. DOI
Banfi L.; Riva R. The P asserini Reaction. Organic reactions 2005, 65 (32), 1–140. 10.1002/0471264180.or065.01. DOI
Patil P.; Ahmadian-Moghaddam M.; Dömling A. Isocyanide 2.0. Green Chem. 2020, 22 (20), 6902–6911. 10.1039/D0GC02722G. DOI
Salimbeni A.; Canevotti R.; Paleari F.; Poma D.; Caliari S.; Fici F.; Cirillo R.; Renzetti A. R.; Subissi A. N-3-substituted pyrimidinones as potent, orally active, AT1 selective angiotensin II receptor antagonists. Journal of medicinal chemistry 1995, 38 (24), 4806–4820. 10.1021/jm00024a008. PubMed DOI
Xie Y.; Wang J. N-Heterocyclic carbene-catalyzed annulation of ynals with amidines: access to 1, 2, 6-trisubstituted pyrimidin-4-ones. Chem. Commun. 2018, 54 (36), 4597–4600. 10.1039/C8CC02023J. PubMed DOI
Tsymbalov S.; Hagen T. J.; Moore W. M.; Jerome G. M.; Connor J. R.; Manning P. T.; Pitzele B. S.; Hallinan E. A. 3-Hydroxy-4-methyl-5-pentyl-2-iminopyrrolidine: a potent and highly selective inducible nitric oxide synthase inhibitor. Bioorganic & medicinal chemistry letters 2002, 12 (22), 3337–3339. 10.1016/S0960-894X(02)00686-8. PubMed DOI
Haarr M. B.; Lopez O.; Fernandez-Bolanos J. G.; Lindback E.; Sydnes M. O. Functionalized d-and l-Arabino-Pyrrolidines as Potent and Selective Glycosidase Inhibitors. Synthesis 2022, 54 (12), 2916–2926. 10.1055/a-1764-8950. DOI