Climate change is associated with asynchrony in arrival between two sympatric cuckoos and both host arrival and prey emergence
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection
Document type Journal Article
PubMed
38234437
PubMed Central
PMC10792391
DOI
10.1098/rsos.231691
PII: rsos231691
Knihovny.cz E-resources
- Keywords
- brood parasite, cuckoo, phenological mismatch, phenology, temperature, temporal trends,
- Publication type
- Journal Article MeSH
Matching the timing of spring arrival to the breeding grounds with hosts and prey is crucial for migratory brood parasites such as cuckoos. Previous studies have focused mostly on phenological mismatch between a single cuckoo species and its hosts but information regarding climate-driven mismatch between multiple sympatric cuckoo species and their hosts and invertebrate prey is still lacking. Here, we analysed long-term data (1988-2023) on the first arrival date of two declining migratory cuckoo species and their 14 migratory host species breeding in sympatry and prey emergence date in Tatarstan (southeast Russia). We found that the common cuckoo (Cuculus canorus; wintering in Africa) generally arrived on breeding grounds earlier than the oriental cuckoo (Cuculus optatus; wintering in southeast Asia and Australia). Both cuckoos have advanced their arrival dates over 36 years but less than their hosts, potentially resulting in an increasing arrival mismatch between cuckoos and their hosts. Moreover, cuckoo arrival advanced less than the emergence date of their prey over time. These observations indicate that climate change may disrupt co-fluctuation in the phenology of important life stages between multiple sympatric brood parasites, their hosts and prey with potential cascading consequences for population dynamics of involved species.
Institute for Advanced Study Technical University of Munich 85748 Garching Germany
Institute of Zoology Poznań University of Life Sciences Wojska Polskiego 71 C 60 625 Poznań Poland
TUM School of Life Sciences Ecoclimatology Technical University of Munich 85354 Freising Germany
See more in PubMed
Menzel A, et al. 2006. European phenological response to climate change matches the warming pattern. Glob. Chang. Biol. 12, 1969-1976. (10.1111/J.1365-2486.2006.01193.X) DOI
Parmesan C. 2006. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637-669. (10.1146/ANNUREV.ECOLSYS.37.091305.110100) DOI
Rosenzweig C, et al. 2008. Attributing physical and biological impacts to anthropogenic climate change. Nature 453, 353-357. (10.1038/nature06937) PubMed DOI
Lehikoinen E, Sparks TH, Zalakevicius M. 2004. Arrival and departure dates. Adv. Ecol. Res. 35, 1-31. (10.1016/S0065-2504(04)35001-4) DOI
Menzel A, Yuan Y, Matiu M, Sparks T, Scheifinger H, Gehrig R, Estrella N. 2020. Climate change fingerprints in recent European plant phenology. Glob. Chang. Biol. 26, 2599-2612. (10.1111/GCB.15000) PubMed DOI
Askeyev O, Askeyev A, Askeyev I, Sparks T. 2022. Extreme temperatures help in identifying thresholds in phenological responses. Glob. Ecol. Biogeogr. 31, 321-331. (10.1111/GEB.13430) DOI
Both C, Visser ME. 2001. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411, 296-298. (10.1038/35077063) PubMed DOI
Beebee TJC, et al. 1998. Breeding phenology and climate. Nature 391, 29-30. (10.1038/34070) PubMed DOI
Mccleery RH, et al. 1999. Climate change related to egg-laying trends. Nature 399, 423. (10.1038/20839) DOI
Askeyev OV, Sparks TH, Askeyev IV, Tishin DV, Tryjanowski P. 2010. East versus west: contrasts in phenological patterns? Glob. Ecol. Biogeogr. 19, 783-793. (10.1111/J.1466-8238.2010.00566.X) DOI
Visser ME, te Marvelde L, Lof ME. 2012. Adaptive phenological mismatches of birds and their food in a warming world. J Ornithol. 153, 75-84. (10.1007/S10336-011-0770-6) DOI
Both C, Van Asch M, Bijlsma RG, Van Den Burg AB, Visser ME. 2009. Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? J. Anim. Ecol. 78, 73-83. (10.1111/J.1365-2656.2008.01458.X) PubMed DOI
Huin N, Sparks TH. 2010. Spring arrival patterns of the cuckoo Cuculus canorus, nightingale Luscinia megarhynchos and spotted flycatcher Musciapa striata in Britain. Bird Study 47, 22-31. (10.1080/00063650009461157) DOI
Saino N, Rubolini D, Lehikoinen E, Sokolov LV, Bonisoli-Alquati A, Ambrosini R, Boncoraglio G, Møller AP. 2009. Climate change effects on migration phenology may mismatch brood parasitic cuckoos and their hosts. Biol. Lett. 5, 539. (10.1098/RSBL.2009.0312) PubMed DOI PMC
Møller AP, et al. 2011. Rapid change in host use of the common cuckoo Cuculus canorus linked to climate change. Proc. R. Soc. B 278, 733-738. (10.1098/RSPB.2010.1592) PubMed DOI PMC
Strode PK. 2015. Phenological asynchrony between migrant songbirds and food resources during early springs: initiation of a trophic cascade a stopover site. In Henological synchrony and bird migration: changing climate and seasonal resources in North America (eds Wood EM, Kellermann JL), pp. 97-116. Boca Raton, FL: CRC Press.
Gwinner E. 1996. Circadian and circannual programmes in avian migration. J. Exp. Biol. 199, 39-48. (10.1242/JEB.199.1.39) PubMed DOI
Erritzøe J, Mann CF, Brammer FP, Fuller RA. 2012. Cuckoos of the world–helm identification guide. London, UK: Christopher Helm.
Winkler DW, Billerman SM, Lovette IJ. 2020. Cuckoos (Cuculidae), version 1.0. In Birds of the World (eds Billerman SM, Keeney BK, Rodewald PG, Schulenberg TS). Ithaca, NY: Cornell Lab of Ornithology.
Aragón S, Møller AP, Soler JJ, Soler M. 1999. Molecular phylogeny of cuckoos supports a polyphyletic origin of brood parasitism. J. Evol. Biol. 12, 495-506. (10.1046/J.1420-9101.1999.00052.X) DOI
Kennerley JA, Somveille M, Hauber ME, Richardson NM, Manica A, Feeney WE. 2022. The overlooked complexity of avian brood parasite–host relationships. Ecol. Lett. 25, 1889-1904. (10.1111/ELE.14062) PubMed DOI PMC
Douglas DJT, Newson SE, Leech DI, Noble DG, Robinson RA. 2010. How important are climate-induced changes in host availability for population processes in an obligate brood parasite, the European cuckoo? Oikos 119, 1834-1840. (10.1111/J.1600-0706.2010.18388.X) DOI
Morelli F, et al. 2015. Cuckoo and biodiversity: testing the correlation between species occurrence and bird species richness in Europe. Biol. Conserv. 190, 123-132. (10.1016/J.BIOCON.2015.06.003) DOI
Mills LJ, Wilson JD, Lange A, Moore K, Henwood B, Knipe H, Chaput DL, Tyler CR. 2020. Using molecular and crowd-sourcing methods to assess breeding ground diet of a migratory brood parasite of conservation concern. J. Avian Biol. 51, e02474. (10.1111/JAV.02474) DOI
BirdLife International. 2023. IUCN red list for birds. See http://datazone.birdlife.org (accessed on 2 August 2023).
Billerman SM, Keeney BK, Rodewald PG, Schulenberg TS. 2023. Birds of the world. Ithaca, NY: Cornell Laboratory of Ornithology. See https://birdsoftheworld.org/bow/home.
Askeyev OV, Sparks TH, Askeyev IV, Tryjanowski P. 2009. Spring migration timing of Sylvia warblers in Tatarstan (Russia) 1957–2008. Cent. Eur. J. Biol. 4, 595-602. (10.2478/S11535-009-0046-9) DOI
Askeyev OV, Sparks TH, Askeyev IV, Tryjanowski P. 2007. Is earlier spring migration of Tatarstan warblers expected under climate warming? Int. J. Biometeorol. 51, 459-463. (10.1007/S00484-007-0085-8) PubMed DOI
Askeyev OV, Sparks TH, Askeyev IV. 2009. Earliest recorded Tatarstan skylark in 2008: non-linear response to temperature suggests advances in arrival dates may accelerate. Clim. Res. 38, 189-192. (10.3354/CR00788) DOI
Chernetsov N. 2006. Habitat selection by nocturnal passerine migrants en route: mechanisms and results. J. Ornithol. 147, 185-191. (10.1007/S10336-006-0064-6/METRICS) DOI
Vega ML, et al. 2016. First-time migration in juvenile common cuckoos documented by satellite tracking. PLoS ONE 11, e0168940. (10.1371/JOURNAL.PONE.0168940) PubMed DOI PMC
Balatsky NN. 2009. The nests of birds of the southern west-Siberian plain. Novosibirsk, Russia: Nauka-Center.
Askeyev IV, Askeyev OV. 1999. Birds of the Tatarstan Republic. Kazan, Russia: Akademia Nauk Tatarstana.
Barrett RT. 2014. Has climate change resulted in a mismatch between the spring arrival of the common cuckoo Cuculus canorus and its hosts in North Norway? Ornis Norv. 37, 11-14. (10.15845/ON.V37I0.608) DOI
Geltsch N, Ban M, Hauber ME, Moskat C. 2016. When should common cuckoos Cuculus canorus lay their eggs in host nests? Bird Study 63, 46-51. (10.1080/00063657.2015.1125851) DOI
Carey C. 2009. The impacts of climate change on the annual cycles of birds. Phil. Trans. R. Soc. B 364, 3321-3330. (10.1098/RSTB.2009.0182) PubMed DOI PMC
Tryjanowski P, Sparks TH. 2001. Is the detection of the first arrival date of migrating birds influenced by population size? A case study of the red-backed shrike Lanius collurio . Int. J. Biometeorol. 45, 217-219. (10.1007/S00484-001-0112-0) PubMed DOI
Ravkin YS, Yu S. 1967. On the procedure of bird census in forest landscapes. In Priroda ochagov kleshchevogo entsefalita na altae (severo-vostochnaya chast’) (ed. Maksinov AA), pp. 66-75. Novosibirsk, Russia: Nauka.
Barbosa AM, Brown J, Jiménez-Valverde A, Real R. 2014. modEvA: model evaluation and analysis. See https://CRAN.R-project.org/package=modEvA (accessed on 24 July 2023).
Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133-142. (10.1111/J.2041-210X.2012.00261.X) DOI
Fox J, et al. . 2020. Package ‘car’. See http://cran.r-project.org/web/packages/car/car.pdf.
Neter J, Kutner MH, Nachtsheim CJ, Wasserman W. 1996. Applied linear statistical models. Chicago, IL: McGraw-Hill/Irwin.
Burnham KP, Anderson DR. 2010. Model selection and multimodel inference. A practical information-theoretic approach. New York, NY: Springer.
Burnham KP, Anderson DR. 2002. Model selection and multimodel inference: A practical information-theoretic approach, 2nd edn. New York, NY: Springer.
Hartig F. 2021. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. See https://CRAN.R-project.org/package=DHARMa (accessed on 24 July 2023).
R Development Core Team. 2022. A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. See https://www.r-project.org/.
Crick HQP. 2004. The impact of climate change on birds. Ibis 146, 48-56. (10.1111/J.1474-919X.2004.00327.X) DOI
Kullberg C, Fransson T, Hedlund J, Jonzén N, Langvall O, Nilsson J, Bolmgren K. 2015. Change in spring arrival of migratory birds under an era of climate change, Swedish data from the last 140 years. Ambio 44, 69-77. (10.1007/S13280-014-0600-1) PubMed DOI PMC
Harrington R, Woiwod I, Sparks T. 1999. Climate change and trophic interactions. Trends Ecol. Evol. 14, 146-150. (10.1016/S0169-5347(99)01604-3) PubMed DOI
Gordo O, Sanz JJ. 2005. Phenology and climate change: a long-term study in a Mediterranean locality. Oecologia 146, 484-495. (10.1007/S00442-005-0240-Z) PubMed DOI
Tryjanowski P, Stenseth NC, Matysioková B. 2013. The Indian Ocean Dipole as an indicator of climatic conditions affecting European birds. Clim. Res. 57, 45-49. (10.3354/CR01162) DOI
Davies JG, Kirkland M, Miller MGR, Pearce-Higgins JW, Atkinson PW, Hewson CM. 2023. Spring arrival of the common cuckoo at breeding grounds is strongly determined by environmental conditions in tropical Africa. Proc. R. Soc. B 290, 20230580. (10.1098/RSPB.2023.0580) PubMed DOI PMC
Franklin KA, Nicoll MAC, Butler SJ, Norris K, Ratcliffe N, Nakagawa S, Gill JA. 2022. Individual repeatability of avian migration phenology: A systematic review and meta-analysis. J. Anim. Ecol. 91, 1416-1430. (10.1111/1365-2656.13697) PubMed DOI PMC
Pedersen L, Jackson K, Thorup K, Tøttrup AP. 2018. Full-year tracking suggests endogenous control of migration timing in a long-distance migratory songbird. Behav. Ecol. Sociobiol. 72, 1-10. (10.1007/S00265-018-2553-Z) DOI
Berthold P. 2009. The endogenous control of bird migration: a survey of experimental evidence. Bird Study 31, 19-27. (10.1080/00063658409476810) DOI
Åkesson S, Helm B. 2020. Endogenous programs and flexibility in bird migration. Front. Ecol. Evol. 8, 488372. (10.3389/FEVO.2020.00078) DOI
Åkesson S, Ilieva M, Karagicheva J, Rakhimberdiev E, Tomotani B, Helm B. 2017. Timing avian long-distance migration: from internal clock mechanisms to global flights. Phil. Trans. R. Soc. B 372, 20160252. (10.1098/RSTB.2016.0252) PubMed DOI PMC
Marra PP, Francis CM, Mulvihill RS, Moore FR. 2005. The influence of climate on the timing and rate of spring bird migration. Oecologia 142, 307-315. (10.1007/S00442-004-1725-X) PubMed DOI
Amélineau F, et al. 2021. Timing of spring departure of long distance migrants correlates with previous year's conditions at their breeding site. Biol. Lett. 17, 20210331. (10.1098/RSBL.2021.0331) PubMed DOI PMC
Jonzén N, et al. 2006. Rapid advance of spring arrival dates in long-distance migratory birds. Science 312, 1959-1961. (10.1126/SCIENCE.1126119) PubMed DOI
Avilés JM, Molina-Morales M, Martínez JG. 2014. Climatic effects and phenological mismatch in cuckoo–host interactions: a role for host phenotypic plasticity in laying date? Oikos 123, 993-1002. (10.1111/OIK.01124) DOI
Coppack T, Pulido F, Czisch M, Auer DP, Berthold P. 2003. Photoperiodic response may facilitate adaptation to climatic change in long-distance migratory birds. Proc. R. Soc. Lond. B 270, S43-S46. (10.1098/RSBL.2003.0005) PubMed DOI PMC
Burgess MD, et al. 2018. Tritrophic phenological match–mismatch in space and time. Nat. Ecol. Evol. 2, 970-975. (10.1038/s41559-018-0543-1) PubMed DOI
Denerley C, Redpath SM, van der Wal R, Newson SE, Chapman JW, Wilson JD. 2019. Breeding ground correlates of the distribution and decline of the common cuckoo Cuculus canorus at two spatial scales. Ibis 161, 346-358. (10.1111/IBI.12612) DOI
Yun S, Lee JW, Yoo JC. 2020. Host-parasite interaction augments climate change effect in an avian brood parasite, the lesser cuckoo Cuculus poliocephalus. Glob. Ecol. Conserv. 22, e00976. (10.1016/J.GECCO.2020.E00976) DOI
Durant JM, Hjermann D, Ottersen G, Stenseth NC. 2007. Climate and the match or mismatch between predator requirements and resource availability. Clim. Res. 33, 271-283. (10.3354/CR033271) DOI
Damien M, Tougeron K. 2019. Prey–predator phenological mismatch under climate change. Curr. Opin. Insect. Sci. 35, 60-68. (10.1016/J.COIS.2019.07.002) PubMed DOI
IPCC. 2007. AR4 climate change 2007: the physical science basis — IPCC. See https://www.ipcc.ch/report/ar4/wg1/ (accessed on 30 October 2023).
Gibbs HL, Sorenson MD, Marchetti K, De Brooke ML, Davies NB, Nakamura H. 2000. Genetic evidence for female host-specific races of the common cuckoo. Nature 407, 183-186. (10.1038/35025058) PubMed DOI
Rothstein SI, Patten MA, Fleischer RC. 2002. Phylogeny, specialization, and brood parasite—host coevolution: some possible pitfalls of parsimony. Behav. Ecol. 13, 1-10. (10.1093/BEHECO/13.1.1) DOI
Barbaro L, Battisti A. 2011. Birds as predators of the pine processionary moth (Lepidoptera: Notodontidae). Biol. Contr. 56, 107-114. (10.1016/J.BIOCONTROL.2010.10.009) DOI
Mikula P, Askeyev OV, Askeyev AO, Askeyev IV, Morelli F, Menzel A, Tryjanowski P, . 2024. Climate change is associated with asynchrony in arrival between two sympatric cuckoos and both host arrival and prey emergence. Figshare. (10.6084/m9.figshare.c.7021191) PubMed DOI PMC
figshare
10.6084/m9.figshare.c.7021191