Production, optimization, scale up and characterization of polyhydoxyalkanoates copolymers utilizing dairy processing waste
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
38238404
PubMed Central
PMC10796949
DOI
10.1038/s41598-024-52098-0
PII: 10.1038/s41598-024-52098-0
Knihovny.cz E-zdroje
- MeSH
- aminokyseliny MeSH
- biopolymery MeSH
- plastické hmoty MeSH
- polyhydroxyalkanoáty * chemie MeSH
- polysorbáty * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminokyseliny MeSH
- biopolymery MeSH
- plastické hmoty MeSH
- polyhydroxyalkanoáty * MeSH
- polysorbáty * MeSH
The microbial biotransformation using low-cost feedstock to produce biopolymers (degradable), an alternative to petrochemical-based synthesis plastics (non-degradable), can be a beneficial approach towards sustainable development. In this study, the dairy industry processes waste (whey) is used in polyhydroxyalkanoate (PHA) copolymer production. Initial screening suggested that Ralstonia eutropha produced higher PHA as compared to Bacillus megaterium. A central composite rotatable design-based optimization using two process variables (amino acid and tween-80) concentration remarkably influenced PHA co-polymer production under physiological conditions of pH (7), temperature (37 °C), and agitation rate of 150 rpm. High polyhydroxybutyrate (PHB) mass fraction yield of 69.3% was observed as compared to predicted yield of 62.8% from deproteinized whey as feed. The combination of tryptophan (50 mg L-1) and tween-80 (3 mL-1) enhanced R. eutropha mass gain to 6.80 g L-1 with PHB contents of 4.71 g L-1. Further, characterization of PHA and its copolymers was done by ESI-MS, FTIR, and TEM. On upscaling up to 3.0 L, the PHA contents and yields were noted as quite similar by R. eutropha. This study demonstrates that dairy waste processing waste can be potentially utilized as inexpensive feed for producing high content of biopolymers to develop a sustainable system of waste management.
Department of Botany University of Lucknow Lucknow 226007 India
Department of Chemical Engineering Konkuk University Seoul 05029 Republic of Korea
Department of Food and Nutrition Science Lady Irwin College Delhi University New Delhi 110001 India
Zobrazit více v PubMed
Shen M, et al. Are biodegradable plastics a promising solution to solve the global plastic pollution? Environ. Pollut. 2020;263:114469. doi: 10.1016/j.envpol.2020.114469. PubMed DOI
Koller M, Rodríguez-Contreras A. Techniques for tracing PHA-producing organisms and for qualitative and quantitative analysis of intra- and extracellular PHA. Eng. Life Sci. 2015;15:558–581. doi: 10.1002/elsc.201400228. DOI
Tripathi A, et al. Recovery and characterization of polyhydroxyalkanoates. Rec. Adv. Biotechnol. 2016;2:266–302. doi: 10.2174/9781681083735116020008. DOI
Menzel G, Harloff H-J, Jung C. Expression of bacterial poly(3-hydroxybutyrate) synthesis genes in hairy roots of sugar beet (Beta vulgaris L.) Appl. Microbiol. Biotechnol. 2003;60:571–576. doi: 10.1007/s00253-002-1152-z. PubMed DOI
Chee JY, et al. Bacterially produced polyhydroxyalkanoate (PHA): Converting renewable resources into bioplastic. Curr. Res. Technol. Educ. Top. Appl. Microbiol. Microbial Biotechnol. 2010;2:1395–1404.
Kalia VC, Singh Patel SK, Shanmugam R, Lee J-K. Polyhydroxyalkanoates: Trends and advances toward biotechnological applications. Bioresour. Technol. 2021;326:124737. doi: 10.1016/j.biortech.2021.124737. PubMed DOI
Bosco F, Chiampo F. Production of polyhydroxyalcanoates (PHAs) using milk whey and dairy wastewater activated sludge. J. Biosci. Bioeng. 2010;109:418–421. doi: 10.1016/j.jbiosc.2009.10.012. PubMed DOI
Tripathi AD, et al. Effect of nutritional supplements on bio-plastics (PHB) production utilizing sugar refinery waste with potential application in food packaging. Preparat. Biochem. Biotechnol. 2019;49:567–577. doi: 10.1080/10826068.2019.1591982. PubMed DOI
Adesra A, Srivastava VK, Varjani S. Valorization of dairy wastes: Integrative approaches for value added products. Indian J. Microbiol. 2021;61:270–278. doi: 10.1007/s12088-021-00943-5. PubMed DOI PMC
Berwig KH, Baldasso C, Dettmer A. Production and characterization of poly(3-hydroxybutyrate) generated by Alcaligenes latus using lactose and whey after acid protein precipitation process. Bioresour. Technol. 2016;218:31–37. doi: 10.1016/j.biortech.2016.06.067. PubMed DOI
Koller M, et al. Potential of various archae- and eubacterial strains as industrial polyhydroxyalkanoate producers from whey. Macromol. Biosci. 2007;7:218–226. doi: 10.1002/mabi.200600211. PubMed DOI
Patel SKS, Gupta RK, Kalia VC, Lee J-K. Synthetic design of methanotroph co-cultures and their immobilization within polymers containing magnetic nanoparticles to enhance methanol production from wheat straw-based biogas. Bioresour. Technol. 2022;364:128032. doi: 10.1016/j.biortech.2022.128032. PubMed DOI
Porwal S, et al. Hydrogen and polyhydroxybutyrate producing abilities of microbes from diverse habitats by dark fermentative process. Bioresour. Technol. 2008;99:5444–5451. doi: 10.1016/j.biortech.2007.11.011. PubMed DOI
Patel SKS, Purohit HJ, Kalia VC. Dark fermentative hydrogen production by defined mixed microbial cultures immobilized on ligno-cellulosic waste materials. Int. J. Hydrogen Energy. 2010;35:10674–10681. doi: 10.1016/j.ijhydene.2010.03.025. DOI
Tripathi AD. Statistical optimization of parameters affecting polyhydroxybutyrate(PHB) recovery by dispersion method from alcaligenes cells and its characterization. J. Bioprocess Biotech. 2015;05:1. doi: 10.4172/2155-9821.1000238. DOI
Law JH, Slepecky RA. Assay of poly-β-hydroxybutyric acid. J. Bacteriol. 1961;82:33–36. doi: 10.1128/jb.82.1.33-36.1961. PubMed DOI PMC
Johnston B, et al. The molecular level characterization of biodegradable polymers originated from polyethylene using non-oxygenated polyethylene wax as a carbon source for polyhydroxyalkanoate production. Bioengineering. 2017;4:73. doi: 10.3390/bioengineering4030073. PubMed DOI PMC
Patel SKS, Kumar P, Singh M, Lee J-K, Kalia VC. Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour. Technol. 2015;176:136–141. doi: 10.1016/j.biortech.2014.11.029. PubMed DOI
Du C, Sabirova J, Soetaert W, Ki S, Lin C. Polyhydroxyalkanoates production from low-cost sustainable raw materials. Curr. Chem. Biol. 2012;6:14–25.
Mozejko-Ciesielska J, et al. Cheese whey mother liquor as dairy waste with potential value for polyhydroxyalkanoate production by extremophilic Paracoccus homiensis. Sustain. Mater. Technol. 2022;33:e00449.
Narayanan A, Ramana KV. Polyhydroxybutyrate production in Bacillus mycoides DFC1 using response surface optimization for physico-chemical process parameters. 3 Biotech. 2012;2:287–296. doi: 10.1007/s13205-012-0054-8. DOI
Wang B, Sharma-Shivappa RR, Olson JW, Khan SA. Production of polyhydroxybutyrate (PHB) by Alcaligenes latus using sugarbeet juice. Ind. Crops Prod. 2013;43:802–811. doi: 10.1016/j.indcrop.2012.08.011. DOI
Sindhu R, Silviya N, Binod P, Pandey A. Pentose-rich hydrolysate from acid pretreated rice straw as a carbon source for the production of poly-3-hydroxybutyrate. Biochem. Eng. J. 2013;78:67–72. doi: 10.1016/j.bej.2012.12.015. DOI
Koller M, Atlić A, Gonzalez-Garcia Y, Kutschera C, Braunegg G. Polyhydroxyalkanoate (PHA) biosynthesis from whey lactose. Macromol. Symp. 2008;272:87–92. doi: 10.1002/masy.200851212. DOI
Thu NTT, et al. Evaluation of polyhydroxyalkanoate (PHA) synthesis by Pichia sp. TSLS24 yeast isolated in Vietnam. Sci. Rep. 2023;13:3137. doi: 10.1038/s41598-023-28220-z. PubMed DOI PMC
Mascarenhas, J. Production and characterization of polyhydroxyalkanoates (pha) by bacillus megaterium strain jha using inexpensive agro-industrial wastes. (2019). 10.13140/RG.2.2.36677.60641.
Sasidharan RS, Bhat SG, Chandrasekaran M. Biocompatible polyhydroxybutyrate (PHB) production by marine Vibrio azureus BTKB33 under submerged fermentation. Ann. Microbiol. 2015;65:455–465. doi: 10.1007/s13213-014-0878-z. DOI
Kelly B, Pearce EL. Amino assets: How amino acids support immunity. Cell Metab. 2020;32:154–175. doi: 10.1016/j.cmet.2020.06.010. PubMed DOI
Mahishi LH, Rawal SK. Effect of amino acid supplementation on the synthesis of poly(3-hydroxybutyrate) by recombinant phaSa+Escherichia coli. World J. Microbiol. Biotechnol. 2002;18:805–810. doi: 10.1023/A:1020451523561. DOI
Colombo B, Pepè Sciarria T, Reis M, Scaglia B, Adani F. Polyhydroxyalkanoates (PHAs) production from fermented cheese whey by using a mixed microbial culture. Bioresour. Technol. 2016;218:692–699. doi: 10.1016/j.biortech.2016.07.024. PubMed DOI
Povolo S, Toffano P, Basaglia M, Casella S. Polyhydroxyalkanoates production by engineered Cupriavidus necator from waste material containing lactose. Bioresour. Technol. 2010;101:7902–7907. doi: 10.1016/j.biortech.2010.05.029. PubMed DOI
Jindal, P. & Tiwari, D. P. Biosynthesis of PHA and it’s copolymers—A review. 4, (2013).
Israni, N. & Shivakumar, S. Evaluation of upstream process parameters influencing the growth associated PHA accumulation in Bacillus sp. Ti3. 74, (2015).
Muhr A, et al. Novel description of mcl-PHA biosynthesis by pseudomonas chlororaphis from animal-derived waste. J. Biotechnol. 2013;165:45–51. doi: 10.1016/j.jbiotec.2013.02.003. PubMed DOI
Tripathi AD, Srivastava SK. Kinetic study of biopolymer (PHB) synthesis in Alcaligenes sp. in submerged fermentation process using TEM. J. Polym. Environ. 2011;19:732–738. doi: 10.1007/s10924-011-0324-2. DOI
Kawalec M, Sobota M, Scandola M, Kowalczuk M, Kurcok P. A convenient route to PHB macromonomers via anionically controlled moderate-temperature degradation of PHB. J. Polym. Sci. A Polym. Chem. 2010;48:5490–5497. doi: 10.1002/pola.24357. DOI
Radecka I, et al. Oxidized polyethylene wax as a potential carbon source for PHA production. Materials. 2016;9:367. doi: 10.3390/ma9050367. PubMed DOI PMC
Thakor N, Trivedi U, Patel KC. Biosynthesis of medium chain length poly(3-hydroxyalkanoates) (mcl-PHAs) by Comamonas testosteroni during cultivation on vegetable oils. Bioresour. Technol. 2005;96:1843–1850. doi: 10.1016/j.biortech.2005.01.030. PubMed DOI
Kumar P, Ray S, Patel SKS, Lee J-K, Kalia VC. Bioconversion of crude glycerol to polyhydroxyalkanoate by Bacillus thuringiensis under non-limiting nitrogen conditions. Int. J. Biol. Macromol. 2015;78:9–16. doi: 10.1016/j.ijbiomac.2015.03.046. PubMed DOI