Photoelectrochemical Enzyme Biosensor for Malate Using Quantum Dots on Indium Tin Oxide/Plastics as a Sensing Surface

. 2023 Dec 24 ; 14 (1) : . [epub] 20231224

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38248388

Grantová podpora
MUNI/A/1313/2022 Masaryk University

A photoelectrochemical biosensor for malate was developed using an indium tin oxide (ITO) layer deposited on a poly(ethylene terephthalate) plastic sheet as a transparent electrode material for the immobilization of malate dehydrogenase together with CdTe quantum dots. Different approaches were compared for the construction of the bioactive layer; the highest response was achieved by depositing malate dehydrogenase together with CdTe nanoparticles and covering it with a Nafion/water (1:1) mixture. The amperometric signal of this biosensor was recorded during irradiation with a near-UV LED in the flow-through mode. The limit of detection was 0.28 mmol/L, which is adequate for analyzing malic acid levels in drinks such as white wines and fruit juices. The results confirm that the cheap ITO layer deposited on the plastic sheet after cutting into rectangular electrodes allows for the economic production of photoelectrochemical (bio)sensors. The combination of NAD+-dependent malate dehydrogenase with quantum dots was also compatible with such an ITO surface.

Zobrazit více v PubMed

Zhao W.-W., Xiong M., Li X.-R., Xu J.-J., Chen H.-Y. Photoelectrochemical bioanalysis: A mini review. Electrochem. Commun. 2014;38:40–43. doi: 10.1016/j.elecom.2013.10.035. DOI

Zhao W.-W., Xu J.-J., Chen H.-Y. Photoelectrochemical DNA Biosensors. Chem. Rev. 2014;114:7421–7441. doi: 10.1021/cr500100j. PubMed DOI

Zhang Z.-X., Zhao C.-Z. Progress of Photoelectrochemical Analysis and Sensors. Chin. J. Anal. Chem. 2013;41:436–444. doi: 10.1016/S1872-2040(13)60637-4. DOI

Devadoss A., Sudhagar P., Terashima C., Nakata K., Fujishima A. Photoelectrochemical biosensors: New insight into promising photoelectrodes and signal amplification strategies. J. Photochem. Photobiol. C Photochem. Reviews. 2015;24:43–63. doi: 10.1016/j.jphotochemrev.2015.06.002. DOI

Zhao W.-W., Xu J.-J., Chen H.-Y. Photoelectrochemical bioanalysis: The state of the art. Chem. Soc. Rev. 2015;44:729–741. doi: 10.1039/C4CS00228H. PubMed DOI

Zhao W.-W., Xu J.-J., Chen H.-Y. Photoelectrochemical enzymatic biosensors. Biosens. Bioelectron. 2017;92:294–304. doi: 10.1016/j.bios.2016.11.009. PubMed DOI

Jafari F., Salimi A., Navaee A. Electrochemical and Photoelectrochemical Sensing og NADH and Ethanol Based on Immobilization of Electrogenerated Chlorpromazine Sulfoxide onto Graphene-CdS Quantum Dot/Ionic Liquid Nanocomposite. Electroanalysis. 2014;26:530–540. doi: 10.1002/elan.201300508. DOI

Teymourian H., Salimi A., Hallaj R. Low potential detection of NADH based on Fe3O4 nanoparticles/multiwalled carbon nanotubes composite: Fabrication of integrated dehydrogenase-based lactate biosensor. Biosens. Bioelectron. 2012;33:60–68. doi: 10.1016/j.bios.2011.12.031. PubMed DOI

Aydın E.B., Sezgintürk M.K. Indium tin oxide (ITO): A promising material in biosensing technology. Trends Anal. Chem. 2017;97:309–3015. doi: 10.1016/j.trac.2017.09.021. DOI

Mattox D.M., Mattox V.H. 50 Years of Vacuum Coating Technology and the Growth of the Society of Vacuum Coaters. Society of Vacuum Coaters; Albuquerque, NM, USA: 2007. Chapter: Review of transparent conductive oxides (TCO)

Stadler A. Transparent Conducting Oxides—An Up-To-Date Overview. Materials. 2012;5:661–683. doi: 10.3390/ma5040661. PubMed DOI PMC

Mistra M., Hwang D.-K., Kim Y.C., Myoung J.-M., Lee T.I. Eco-friendly method of fabricating indium-tin-oxide thin films using pure aqueous sol-gel. Ceram. Int. 2018;44:2927–2933. doi: 10.1016/j.ceramint.2017.11.041. DOI

Gökceli G., Karatepe N. Improving the properties of indium tin oxide thin films by the incorporation of carbon nanotubes with solution-based techniques. Thin Solid Film. 2020;697:137844. doi: 10.1016/j.tsf.2020.137844. DOI

Aydin E.B., Aydin M., Sezgintürk M.K. The development of an ultra-sensitive electrochemical immunosensor using a PPyr-NHS functionalized disposable ITO sheet for the detection of interleukin 6 in real human serums. New J. Chem. 2020;44:14228. doi: 10.1039/D0NJ03183F. DOI

Alam M.J., Cameron D.C. Optical and electrical properties of transparent conductive ITO thin films deposited by sol-gel process. Thin Solid Film. 2000;377:455–459. doi: 10.1016/S0040-6090(00)01369-9. DOI

Demirhan Y., Koseoglu H., Turkoglu F., Uyanik Z., Ozdemir M., Aygun G., Ozyuzer L. The controllable deposition of large area roll-to-roll sputtered ito thin films for photovoltaic applications. Renew. Energy. 2020;146:1549–1559. doi: 10.1016/j.renene.2019.07.038. DOI

Zhang J., Au K.H., Zhu Z.Q., O’Shea S. Sol-gel preparation of poly(ethylene glycol) doped indium tin oxide thin films for sensing applications. Opt. Mater. 2004;26:47–55. doi: 10.1016/j.optmat.2004.01.018. DOI

Wang J., Wang L., Di J., Tu Y. Disposable biosensor based on immobilization of glucose oxidase at gold nanoparticles electrodeposited on indium tin oxide electrode. Sens. Actuators B Chem. 2008;135:283–288. doi: 10.1016/j.snb.2008.08.023. DOI

Karaboga M.N.S., Simsek C.S., Sezgintürk M.K. AuNPs modified, disposable, ITO based biosensor: Early diagnosis of heat shock protein 70. Biosens. Bioelectron. 2016;81:22–29. doi: 10.1016/j.bios.2015.08.044. PubMed DOI

Zhang N., Zhang L., Ruan Y.-F., Zhao W.-W., Xu J.-J., Chen H.-Y. Quantum-dots-based photoelectrochemical bioanalysis highlighted with recent examples. Biosens. Bioelectron. 2017;94:207–2018. doi: 10.1016/j.bios.2017.03.011. PubMed DOI

Riedel M., Sabir N., Scheller F.W., Parak W.J., Lisdat F. Connecting quantum dots with enzymes: Mediator-based approaches for the light-directed read-out of glucose and fructose oxidation. Nanoscale. 2017;9:2814–2823. doi: 10.1039/C7NR00091J. PubMed DOI

Petryayeva E., Algar W.R., Medintz I.L. Quantum dots in bioanalysis: A review of applications across various platforms for fluorescence spectroscopy and imaging. Appl. Spectrosc. 2013;67:215–252. doi: 10.1366/12-06948. PubMed DOI

Tanne J., Schäfer D., Khalid W., Parak W.J., Lisdat F. Light-Controlled Bioelectrochemical Sensor Based on CdSe/ZnS Quantum Dots. Anal. Chem. 2011;83:7778–7785. doi: 10.1021/ac201329u. PubMed DOI

Gill R., Zayats M., Willner I. Semiconductor Quantum Dots for Bioanalysis. Angew. Chem. Int. Ed. Engl. 2008;47:7602–7625. doi: 10.1002/anie.200800169. PubMed DOI

Pellegrino T., Kudera S., Liedl T., Javier A.M., Manna L., Parak W.J. On the Development of Colloidal Nanoparticles towards Multifunctional Structures and their Possible Use for Biological Applications. Small. 2005;1:48–63. doi: 10.1002/smll.200400071. PubMed DOI

Cheng W., Zheng Z., Yang J., Chen M., Yao Q., Chen Y., Gao W. The visible light-driven and self-powered photoelectrochemical biosensor for organophosphate pesticides detection based on nitrogen doped carbon quantum dots for the signal amplification. Electrochim. Acta. 2019;296:627–636. doi: 10.1016/j.electacta.2018.11.086. DOI

Chen Y., Zhou Y., Yin H., Li F., Li H., Guo R., Han Y., Ai S. Photoelectrochemical biosensor for histone acetyltrasferase detection based on ZnO quantum dots inhibited photoactivity of BiOI nanoflower. Sens. Actuators B Chem. 2020;307:127633. doi: 10.1016/j.snb.2019.127633. DOI

McAlister-Henn L. Evolutionary relationships among the malate dehydrogenases. Trends Biochem. Sci. 1988;13:178–181. doi: 10.1016/0968-0004(88)90146-6. PubMed DOI

Hall M.D., Levitt D.G., Banaszak L.J. Crystal Structure of Escherichia coli Malate Dehydrogenase. A Complex of the Apoenzyme and Citrate at 1.87 A Resolution. J. Mol. Biol. 1992;226:867–882. doi: 10.1016/0022-2836(92)90637-Y. PubMed DOI

Goward C.R., Nicholls D. Malate dehydrogenase: A model for structure, evolution, and catalysis. Protein Sci. 1994;3:1883–1888. doi: 10.1002/pro.5560031027. PubMed DOI PMC

Porzani S.J., Samaneh J., Lorenzi A.S., Eghtedari M., Nowruzi B. Interaction of Dehydrogenase Enzymes with Nanoparticles in Industrial and Medical Applications, and the Associated Challenges: A Mini-review. Mini Rev. Med. Chem. 2021;21:1351–1366. doi: 10.2174/1570193X17666201119152944. PubMed DOI

Ravariu C., Srinivasulu A., Mihaiescu D.E., Musala S. Generalized Analytical Model for Enzymatic BioFET Transistors. Biosensors. 2022;12:474. doi: 10.3390/bios12070474. PubMed DOI PMC

Gur B., Isik M., Kiransan K.D., Alanyalioglu M., Beydemir S., Meral K. High enzymatic activity preservation of malate dehydrogenase immobilized in a Langmuir-Blodgett film and its electrochemical biosensor application for malic acid detection. RSC Adv. 2016;6:79792–79797. doi: 10.1039/C6RA17465E. DOI

Matthews C.J., Andrews E.S.V., Patrick W.M. Enzyme-based amperometric biosensors for malic acid—A review. Anal. Chim. Acta. 2021;1156:338218. doi: 10.1016/j.aca.2021.338218. PubMed DOI

Palleschi G., Volpe G., Compagnone D., Notte E.L., Esti M. Bioelectrochemical determination of lactic and malic acids in wine. Talanta. 1994;41:917–923. doi: 10.1016/0039-9140(94)E0044-R. PubMed DOI

Arvinte A., Rotariu L., Bala C. Amperometric Low-Potential Detection of Malic Acid Using Single-Wall Carbon Nanotubes Based Electrodes. Sensors. 2008;8:1497–1507. doi: 10.3390/s8031497. PubMed DOI PMC

Gimenez-Gomez P., Gutierrez-Capitan M., Capdevila F., Puig-Pujol A., Fernandez-Sanchez C., Jimenez-Jorquera C. Robust l-malate bienzymatic biosensor to enable the on-site monitoring of malolactic fermentation of red wines. Anal. Chim. Acta. 2017;954:105–113. doi: 10.1016/j.aca.2016.11.061. PubMed DOI

Monošík R., Streďanský M., Greif G., Šturdík E. Comparison of biosensors based on gold and nanocomposite electrodes for monitoring of malic acid in wine. Cent. Eur. J. Chem. 2012;10:157–164. doi: 10.2478/s11532-011-0118-3. DOI

Vasilescu A., Fanjul-Bolado P., Titoiu A.M., Porum R., Epure P. Progress in Electrochemical (Bio)Sensors for Monitoring Wine Production. Chemosensors. 2019;7:66. doi: 10.3390/chemosensors7040066. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...