Stimulation of Osteogenic Activity of Autologous Teeth Hard Tissues as Bone Augmentation Material
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
38248471
PubMed Central
PMC10813725
DOI
10.3390/biology13010040
PII: biology13010040
Knihovny.cz E-zdroje
- Klíčová slova
- bone augmentation materials, demineralization, natural autologous hard teeth tissues, osteogenic activity,
- Publikační typ
- časopisecké články MeSH
The issue of bone volume loss is playing an increasing role in bone tissue engineering. Research has focused on studying the preparation and use of different types of human or xenogenic materials and their osteogenic properties. An alternative source for this purpose could be autologous extracted teeth. The simple preparation protocol, minimal immune response, and rapid organizing of the newly formed bone with optimal mechanical properties predispose autologous hard teeth tissues (HTTs) as a promising material suitable in the indication of augmentation of maxillary and mandible defects, comparable to other high-end augmentation materials. The aim of this study was to experimentally evaluate the osteogenic potential of ground native autologous HTTs prepared by different demineralization procedures, aimed at potentiating the osteoinductive and osteoconductive properties of their organic components. The results indicate that the most effective preparation process for HTT stimulation is the application of Cleanser for 10 min followed by exposure to 0.6 N HCl for 5 min with a wash in phosphate-buffered saline solution.
Zobrazit více v PubMed
Carini F., Longoni S., Amosso E., Paleari J., Carini S., Porcaro G. Bone augmentation with TiMesh. autologous bone versus autologous bone and bone substitutes. A systematic review. Ann. Stomatol. 2014;5:27–36. PubMed PMC
Um I.-W., Ku J.-K., Kim Y.-M., Yun P.-Y., Chang N.-H., Kim Y.-K., Choi Y. Allogeneic Demineralized Dentin Matrix Graft for guided Bone Regeneration in Dental Implants. Appl. Sci. 2020;10:4661. doi: 10.3390/app10134661. DOI
Pang K.M., Um I.W., Kim Y.K., Woo J.M., Kim S.M., Lee J.H. Autogenous demineralized dentin matrix from extracted tooth for the augmentation of alveolar bone defect: A prospective randomized clinical trial in comparison with anorganic bovine bone. Clin. Oral Implant. Res. 2017;28:809–815. doi: 10.1111/clr.12885. PubMed DOI
Kim Y.-K., Kim S.-G., Oh J.-S., Jin S.-C., Son J.-S., Kim S.-Y., Lim S.-Y. Analysis of the inorganic component of autogenous tooth bone graft material. J. Nanosci. Nanotechnol. 2011;11:7442–7445. doi: 10.1166/jnn.2011.4857. PubMed DOI
Fernandes A.M., Mauad de Abreu F.A., Fernandes M.L.D.M.F., Alves J.B. Demineralized Human Dentin Matrix as an Osteoinductor in the Dental Socket: An Experimental Study in Wistar Rats. Int. J. Oral Maxillofac. Implant. 2020;35:910–916. doi: 10.11607/jomi.8279. PubMed DOI
Ding T., Kang W., Li J., Yu L., Ge S. An in situ tissue engineering scaffold with growth factors combining angiogenesis and osteoimmunomodulatory functions for advanced periodontal bone regeneration. J. Nanobiotechnol. 2021;19:247. doi: 10.1186/s12951-021-00992-4. PubMed DOI PMC
Guo R., Zhang R., Liu S., Yang Y., Dong W., Wang M., Mi H., Liu M., Sun J., Zhang X., et al. Biomimetic, biodegradable and osteoinductive treated dentin matrix/α-calcium sulphate hemihydrate composite material for bone tissue engineering. Regen. Biomater. 2023;10:rbad061. doi: 10.1093/rb/rbad061. PubMed DOI PMC
Reis-Filho C.R., Silva E.R., Martins A.B., Pessoa F.F., Gomes P.V., de Araújo M.S., Miziara M.N., Alves J.B. Demineralised human dentine matrix stimulates the expression of VEGF and accelerates the bone repair in tooth sockets of rats. Arch. Oral Biol. 2012;57:469–476. doi: 10.1016/j.archoralbio.2011.10.011. PubMed DOI
Niwa T., Yamakoshi Y., Yamazaki H., Karakida T., Chiba R., Hu J.C.-C., Nagano T., Yamamoto R., Simmer J.P., Margolis H.C., et al. The dynamics of TGF-β in dental pulp, odontoblasts and dentin. Sci. Rep. 2018;8:4450. doi: 10.1038/s41598-018-22823-7. PubMed DOI PMC
Ferreira C.L., de Abreu F.A.M., Silva G.A.B., Silveira F.F., Barreto L.B.A., Paulino T.d.P., Miziara M.N., Alves J.B. TGF-β1 and BMP-4 carried by liposomes enhance the healing process in alveolar bone. Arch. Oral Biol. 2013;58:646–656. doi: 10.1016/j.archoralbio.2012.11.013. PubMed DOI
Li R., Guo W., Yang B., Guo L., Sheng L., Chen G., Li Y., Zou Q., Xie D., An X., et al. Human treated dentin matrix as a natural scaffold for complete human dentin tissue regeneration. Biomaterials. 2011;32:4525–4538. doi: 10.1016/j.biomaterials.2011.03.008. PubMed DOI
Moraes G.F., Caetano R.O., Prochnow F.H.O., Pupo Y.M., Schussel J.L., Schwartz-Filho H.O. Demineralized human dentin matrix for alveolar ridge preservation using a volumetric and histologic analyses in rats. Braz. Dent. J. 2022;33:82–91. doi: 10.1590/0103-6440202204648. PubMed DOI PMC
Tabatabaei F.S., Tatari S., Samadi R., Moharamzadeh K. Different methods of dentin processing for application in bone tissue engineering: A systematic review. J. Biomed. Mater. Res. Part A. 2016;104:2616–2627. doi: 10.1002/jbm.a.35790. PubMed DOI
Minetti E., Palermo A., Malcangi G., Inchingolo A.D., Mancini A., Dipalma G., Inchingolo F., Patano A., Inchingolo A.M. Dentin, Dentin Graft, and Bone Graft: Microscopic and Spectroscopic Analysis. J. Funct. Biomater. 2023;14:272. doi: 10.3390/jfb14050272. PubMed DOI PMC
Solyom E., Szalai E., Czumbel M.L., Szabo B., Váncsa S., Mikulas K., Radoczy-Drajko Z., Varga G., Hegyi P., Molnar B., et al. The use of autogenous tooth bone graft is an efficient method of alveolar ridge preservation-meta-analysis and systematic review. BMC Oral Health. 2023;23:226. doi: 10.1186/s12903-023-02930-2. PubMed DOI PMC
Elfana A., El-Kholy S., Saleh H.A., Fawzy El-Sayed K. Alveolar ridge preservation using autogenous whole-tooth versus demineralized dentin grafts: A randomized controlled clinical trial. Clin. Oral Implant. Res. 2021;32:539–548. doi: 10.1111/clr.13722. PubMed DOI
Kadkhodazadeh M., Ghasemianpour M., Soltanian N., Sultanian G.R., Ahmadpour S., Amid R. Effects of fresh mineralized dentin and cementum on socket healing: A preliminary study in dogs. J. Korean Assoc. Oral Maxillofac. Surg. 2015;41:119–123. doi: 10.5125/jkaoms.2015.41.3.119. PubMed DOI PMC
Lee H.-J., Hong J.-S., Kim Y.-K., Um I.-W., Lee J.-I. Osteogenic potential of demineralized dentin matrix as bone graft material. J. Hard Tissue Biol. 2017;26:223–230. doi: 10.2485/jhtb.26.223. DOI
Jin S.-Y., Kim S.-G., Oh J.-S., You J.-S., Lim S.-C., Jeong M.-A., Kim J.-S. Histomorphometric Analysis of Contaminated Autogenous Tooth Graft Materials after Various Sterilization. Implant. Dent. 2016;25:83–89. doi: 10.1097/ID.0000000000000351. PubMed DOI
Binderman I., Hallel G., Nardy G., Yaffe A., Sapoznikov L.A. Novel procedure to process extracted teeth for immediate grafting of autogenous dentin. J. Interdiscip. Med. Dent. Sci. 2014;2:6.
Kosasih F.U., Cacovich S., Divitini G., Ducati C. Nanometric Chemical Analysis of Beam-Sensitive Materials: A Case Study of STEM-EDX on Perovskite Solar Cells. Small Methods. 2021;5:e2000835. doi: 10.1002/smtd.202000835. PubMed DOI
Matousek P., Stone N. Prospects for the diagnosis of breast cancer by noninvasive probing of calcifications using transmission Raman spectroscopy. J. Biomed. Opt. 2007;12:024008. doi: 10.1117/1.2718934. PubMed DOI
Rehman I., Movasaghi Z., Rehman S. Vibrational Spectroscopy for Tissue Analysis. CRC Press; Boca Raton, FL, USA: 2012. p. 271. (Series in Medical Physics and Biomedical Engineering).
Andrejovská J., Petruš O., Medveď D., Vojtko M., Riznič M., Kizek P., Dusza J. Hardness and indentation modulus of human enamel and dentin. Surf. Interface Anal. 2022;55:270–278. doi: 10.1002/sia.7187. DOI
Meijering E., Dzyubachyk O., Smal I. Methods for cell and particle tracking. Methods Enzymol. 2012;504:183–200. doi: 10.1016/B978-0-12-391857-4.00009-4. PubMed DOI
Stephens D.J., Allan V.J. Light microscopy techniques for live cell imaging. Science. 2003;300:82–86. doi: 10.1126/science.1082160. PubMed DOI
Yeomans J.D., Urist M.R. Bone induction by decalcified dentine implanted into oral, osseous and muscle tissues. Arch. Oral Biol. 1967;12:999–1008. doi: 10.1016/0003-9969(67)90095-7. PubMed DOI
MacBeth N., Trullenque-Eriksson A., Donos N., Mardas N. Hard and soft tissue changes following alveolar ridge preservation: A systematic review. Clin. Oral Implant. Res. 2017;28:982–1004. doi: 10.1111/clr.12911. PubMed DOI
Arbez B., Kun-Darbois J.D., Convert T., Guillaume B., Mercier P., Hubert L., Chappard D. Biomaterial granules used for filling bone defects constitute 3D scaffolds: Porosity, microarchitecture and molecular composition analyzed by microCT and Raman microspectroscopy. J. Biomed. Mater. Res. Part B Appl. Biomater. 2019;107:415–423. doi: 10.1002/jbm.b.34133. PubMed DOI
Cardaropoli D., Nevins M., Schupbach P. New Bone Formation Using an Extracted Tooth as a Biomaterial: A Case Report with Histologic Evidence. Int. J. Periodontics Restor. Dent. 2019;39:157–163. doi: 10.11607/prd.4045. PubMed DOI
Cenicante J., Botelho J., Machado V., Mendes J.J., Mascarenhas P., Alcoforado G., Santos A. The use of autogenous teeth for alveolar ridge preservation: A literature review. Appl. Sci. 2021;11:1853. doi: 10.3390/app11041853. DOI
Canellas J., Soares B.N., Ritto F.G., Vettore M.V., Vidigal Júnior G.M., Fischer R.G., Medeiros P.J.D. What grafting materials produce greater alveolar ridge preservation after tooth extraction? A systematic review and network meta-analysis. J. Cranio-Maxillofac. Surg. 2021;49:1064–1071. doi: 10.1016/j.jcms.2021.06.005. PubMed DOI
Dwivedi A., Kour M. A neoteric procedure for alveolar ridge preservation using autogenous fresh mineralized tooth graft prepared at chair side. J. Oral Biol. Craniofac. Res. 2020;10:535–541. doi: 10.1016/j.jobcr.2020.07.018. PubMed DOI PMC
Mahardawi B., Rochanavibhata S., Jiaranuchart S., Arunjaroensuk S., Mattheos N., Pimkhaokham A. Autogenous tooth bone graft material prepared chairside and its clinical applications: A systematic review. Int. J. Oral Maxillofac. Surg. 2023;52:132–141. doi: 10.1016/j.ijom.2022.04.018. PubMed DOI
Atieh M.A., Alsabeeha N.H., Payne A.G., Ali S., Faggion C.M.J., Esposito M. Interventions for replacing missing teeth: Alveolar ridge preservation techniques for dental implant site development. Cochrane Database Syst. Rev. 2021;4:Cd010176. doi: 10.1002/14651858.CD010176.pub2. PubMed DOI PMC
Wang Y., Zhang Y., Jing D., Shuang Y., Miron R.J. Enamel matrix derivative improves gingival fibroblast cell behavior cultured on titanium surfaces. Clin. Oral Investig. 2016;20:685–695. doi: 10.1007/s00784-015-1558-5. PubMed DOI
Chappard D., Stancu I.C. Porosity imaged by a vector projection algorithm correlates with fractal dimension measured on 3D models obtained by microCT. J. Microsc. 2015;258:24–30. doi: 10.1111/jmi.12212. PubMed DOI
Chappard D., Terranova L., Mallet R., Mercier P. 3D Porous Architecture of Stacks of β-TCP Granules Compared with That of Trabecular Bone: A microCT, Vector Analysis, and Compression Study. Front. Endocrinol. 2015;6:161. doi: 10.3389/fendo.2015.00161. PubMed DOI PMC
Pennycook S.J., Li C., Li M., Tang C., Okunishi E., Varela M., Kim Y.-M., Jang J.H. Material structure, properties, and dynamics through scanning transmission electron microscopy. J. Anal. Sci. Technol. 2018;9:11. doi: 10.1186/s40543-018-0142-4. PubMed DOI PMC
Zhang Y., Ren L., Wang Q., Wen Z., Liu C., Ding Y. Raman Spectroscopy: A Potential Diagnostic Tool for Oral Diseases. Front. Cell. Infect. Microbiol. 2022;12:775236. doi: 10.3389/fcimb.2022.775236. PubMed DOI PMC
Ralbovsky N.M., Zou L., Chen B., Zhang N.R., Hines C.D., Vavrek M., Zhong W., Smith J.P., Bu X. Simultaneous multielement imaging of liver tissue using laser ablation inductively coupled plasma mass spectrometry. Talanta. 2021;235:122725. doi: 10.1016/j.talanta.2021.122725. PubMed DOI
Ingendoh-Tsakmakidis A., Nolte L., Winkel A., Meyer H., Koroleva A., Shpichka A., Ripken T., Heisterkamp A., Stiesch M. Time resolved 3D live-cell imaging on implants. PLoS ONE. 2018;13:e0205411. doi: 10.1371/journal.pone.0205411. PubMed DOI PMC