Stimulation of Osteogenic Activity of Autologous Teeth Hard Tissues as Bone Augmentation Material

. 2024 Jan 11 ; 13 (1) : . [epub] 20240111

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38248471

The issue of bone volume loss is playing an increasing role in bone tissue engineering. Research has focused on studying the preparation and use of different types of human or xenogenic materials and their osteogenic properties. An alternative source for this purpose could be autologous extracted teeth. The simple preparation protocol, minimal immune response, and rapid organizing of the newly formed bone with optimal mechanical properties predispose autologous hard teeth tissues (HTTs) as a promising material suitable in the indication of augmentation of maxillary and mandible defects, comparable to other high-end augmentation materials. The aim of this study was to experimentally evaluate the osteogenic potential of ground native autologous HTTs prepared by different demineralization procedures, aimed at potentiating the osteoinductive and osteoconductive properties of their organic components. The results indicate that the most effective preparation process for HTT stimulation is the application of Cleanser for 10 min followed by exposure to 0.6 N HCl for 5 min with a wash in phosphate-buffered saline solution.

Zobrazit více v PubMed

Carini F., Longoni S., Amosso E., Paleari J., Carini S., Porcaro G. Bone augmentation with TiMesh. autologous bone versus autologous bone and bone substitutes. A systematic review. Ann. Stomatol. 2014;5:27–36. PubMed PMC

Um I.-W., Ku J.-K., Kim Y.-M., Yun P.-Y., Chang N.-H., Kim Y.-K., Choi Y. Allogeneic Demineralized Dentin Matrix Graft for guided Bone Regeneration in Dental Implants. Appl. Sci. 2020;10:4661. doi: 10.3390/app10134661. DOI

Pang K.M., Um I.W., Kim Y.K., Woo J.M., Kim S.M., Lee J.H. Autogenous demineralized dentin matrix from extracted tooth for the augmentation of alveolar bone defect: A prospective randomized clinical trial in comparison with anorganic bovine bone. Clin. Oral Implant. Res. 2017;28:809–815. doi: 10.1111/clr.12885. PubMed DOI

Kim Y.-K., Kim S.-G., Oh J.-S., Jin S.-C., Son J.-S., Kim S.-Y., Lim S.-Y. Analysis of the inorganic component of autogenous tooth bone graft material. J. Nanosci. Nanotechnol. 2011;11:7442–7445. doi: 10.1166/jnn.2011.4857. PubMed DOI

Fernandes A.M., Mauad de Abreu F.A., Fernandes M.L.D.M.F., Alves J.B. Demineralized Human Dentin Matrix as an Osteoinductor in the Dental Socket: An Experimental Study in Wistar Rats. Int. J. Oral Maxillofac. Implant. 2020;35:910–916. doi: 10.11607/jomi.8279. PubMed DOI

Ding T., Kang W., Li J., Yu L., Ge S. An in situ tissue engineering scaffold with growth factors combining angiogenesis and osteoimmunomodulatory functions for advanced periodontal bone regeneration. J. Nanobiotechnol. 2021;19:247. doi: 10.1186/s12951-021-00992-4. PubMed DOI PMC

Guo R., Zhang R., Liu S., Yang Y., Dong W., Wang M., Mi H., Liu M., Sun J., Zhang X., et al. Biomimetic, biodegradable and osteoinductive treated dentin matrix/α-calcium sulphate hemihydrate composite material for bone tissue engineering. Regen. Biomater. 2023;10:rbad061. doi: 10.1093/rb/rbad061. PubMed DOI PMC

Reis-Filho C.R., Silva E.R., Martins A.B., Pessoa F.F., Gomes P.V., de Araújo M.S., Miziara M.N., Alves J.B. Demineralised human dentine matrix stimulates the expression of VEGF and accelerates the bone repair in tooth sockets of rats. Arch. Oral Biol. 2012;57:469–476. doi: 10.1016/j.archoralbio.2011.10.011. PubMed DOI

Niwa T., Yamakoshi Y., Yamazaki H., Karakida T., Chiba R., Hu J.C.-C., Nagano T., Yamamoto R., Simmer J.P., Margolis H.C., et al. The dynamics of TGF-β in dental pulp, odontoblasts and dentin. Sci. Rep. 2018;8:4450. doi: 10.1038/s41598-018-22823-7. PubMed DOI PMC

Ferreira C.L., de Abreu F.A.M., Silva G.A.B., Silveira F.F., Barreto L.B.A., Paulino T.d.P., Miziara M.N., Alves J.B. TGF-β1 and BMP-4 carried by liposomes enhance the healing process in alveolar bone. Arch. Oral Biol. 2013;58:646–656. doi: 10.1016/j.archoralbio.2012.11.013. PubMed DOI

Li R., Guo W., Yang B., Guo L., Sheng L., Chen G., Li Y., Zou Q., Xie D., An X., et al. Human treated dentin matrix as a natural scaffold for complete human dentin tissue regeneration. Biomaterials. 2011;32:4525–4538. doi: 10.1016/j.biomaterials.2011.03.008. PubMed DOI

Moraes G.F., Caetano R.O., Prochnow F.H.O., Pupo Y.M., Schussel J.L., Schwartz-Filho H.O. Demineralized human dentin matrix for alveolar ridge preservation using a volumetric and histologic analyses in rats. Braz. Dent. J. 2022;33:82–91. doi: 10.1590/0103-6440202204648. PubMed DOI PMC

Tabatabaei F.S., Tatari S., Samadi R., Moharamzadeh K. Different methods of dentin processing for application in bone tissue engineering: A systematic review. J. Biomed. Mater. Res. Part A. 2016;104:2616–2627. doi: 10.1002/jbm.a.35790. PubMed DOI

Minetti E., Palermo A., Malcangi G., Inchingolo A.D., Mancini A., Dipalma G., Inchingolo F., Patano A., Inchingolo A.M. Dentin, Dentin Graft, and Bone Graft: Microscopic and Spectroscopic Analysis. J. Funct. Biomater. 2023;14:272. doi: 10.3390/jfb14050272. PubMed DOI PMC

Solyom E., Szalai E., Czumbel M.L., Szabo B., Váncsa S., Mikulas K., Radoczy-Drajko Z., Varga G., Hegyi P., Molnar B., et al. The use of autogenous tooth bone graft is an efficient method of alveolar ridge preservation-meta-analysis and systematic review. BMC Oral Health. 2023;23:226. doi: 10.1186/s12903-023-02930-2. PubMed DOI PMC

Elfana A., El-Kholy S., Saleh H.A., Fawzy El-Sayed K. Alveolar ridge preservation using autogenous whole-tooth versus demineralized dentin grafts: A randomized controlled clinical trial. Clin. Oral Implant. Res. 2021;32:539–548. doi: 10.1111/clr.13722. PubMed DOI

Kadkhodazadeh M., Ghasemianpour M., Soltanian N., Sultanian G.R., Ahmadpour S., Amid R. Effects of fresh mineralized dentin and cementum on socket healing: A preliminary study in dogs. J. Korean Assoc. Oral Maxillofac. Surg. 2015;41:119–123. doi: 10.5125/jkaoms.2015.41.3.119. PubMed DOI PMC

Lee H.-J., Hong J.-S., Kim Y.-K., Um I.-W., Lee J.-I. Osteogenic potential of demineralized dentin matrix as bone graft material. J. Hard Tissue Biol. 2017;26:223–230. doi: 10.2485/jhtb.26.223. DOI

Jin S.-Y., Kim S.-G., Oh J.-S., You J.-S., Lim S.-C., Jeong M.-A., Kim J.-S. Histomorphometric Analysis of Contaminated Autogenous Tooth Graft Materials after Various Sterilization. Implant. Dent. 2016;25:83–89. doi: 10.1097/ID.0000000000000351. PubMed DOI

Binderman I., Hallel G., Nardy G., Yaffe A., Sapoznikov L.A. Novel procedure to process extracted teeth for immediate grafting of autogenous dentin. J. Interdiscip. Med. Dent. Sci. 2014;2:6.

Kosasih F.U., Cacovich S., Divitini G., Ducati C. Nanometric Chemical Analysis of Beam-Sensitive Materials: A Case Study of STEM-EDX on Perovskite Solar Cells. Small Methods. 2021;5:e2000835. doi: 10.1002/smtd.202000835. PubMed DOI

Matousek P., Stone N. Prospects for the diagnosis of breast cancer by noninvasive probing of calcifications using transmission Raman spectroscopy. J. Biomed. Opt. 2007;12:024008. doi: 10.1117/1.2718934. PubMed DOI

Rehman I., Movasaghi Z., Rehman S. Vibrational Spectroscopy for Tissue Analysis. CRC Press; Boca Raton, FL, USA: 2012. p. 271. (Series in Medical Physics and Biomedical Engineering).

Andrejovská J., Petruš O., Medveď D., Vojtko M., Riznič M., Kizek P., Dusza J. Hardness and indentation modulus of human enamel and dentin. Surf. Interface Anal. 2022;55:270–278. doi: 10.1002/sia.7187. DOI

Meijering E., Dzyubachyk O., Smal I. Methods for cell and particle tracking. Methods Enzymol. 2012;504:183–200. doi: 10.1016/B978-0-12-391857-4.00009-4. PubMed DOI

Stephens D.J., Allan V.J. Light microscopy techniques for live cell imaging. Science. 2003;300:82–86. doi: 10.1126/science.1082160. PubMed DOI

Yeomans J.D., Urist M.R. Bone induction by decalcified dentine implanted into oral, osseous and muscle tissues. Arch. Oral Biol. 1967;12:999–1008. doi: 10.1016/0003-9969(67)90095-7. PubMed DOI

MacBeth N., Trullenque-Eriksson A., Donos N., Mardas N. Hard and soft tissue changes following alveolar ridge preservation: A systematic review. Clin. Oral Implant. Res. 2017;28:982–1004. doi: 10.1111/clr.12911. PubMed DOI

Arbez B., Kun-Darbois J.D., Convert T., Guillaume B., Mercier P., Hubert L., Chappard D. Biomaterial granules used for filling bone defects constitute 3D scaffolds: Porosity, microarchitecture and molecular composition analyzed by microCT and Raman microspectroscopy. J. Biomed. Mater. Res. Part B Appl. Biomater. 2019;107:415–423. doi: 10.1002/jbm.b.34133. PubMed DOI

Cardaropoli D., Nevins M., Schupbach P. New Bone Formation Using an Extracted Tooth as a Biomaterial: A Case Report with Histologic Evidence. Int. J. Periodontics Restor. Dent. 2019;39:157–163. doi: 10.11607/prd.4045. PubMed DOI

Cenicante J., Botelho J., Machado V., Mendes J.J., Mascarenhas P., Alcoforado G., Santos A. The use of autogenous teeth for alveolar ridge preservation: A literature review. Appl. Sci. 2021;11:1853. doi: 10.3390/app11041853. DOI

Canellas J., Soares B.N., Ritto F.G., Vettore M.V., Vidigal Júnior G.M., Fischer R.G., Medeiros P.J.D. What grafting materials produce greater alveolar ridge preservation after tooth extraction? A systematic review and network meta-analysis. J. Cranio-Maxillofac. Surg. 2021;49:1064–1071. doi: 10.1016/j.jcms.2021.06.005. PubMed DOI

Dwivedi A., Kour M. A neoteric procedure for alveolar ridge preservation using autogenous fresh mineralized tooth graft prepared at chair side. J. Oral Biol. Craniofac. Res. 2020;10:535–541. doi: 10.1016/j.jobcr.2020.07.018. PubMed DOI PMC

Mahardawi B., Rochanavibhata S., Jiaranuchart S., Arunjaroensuk S., Mattheos N., Pimkhaokham A. Autogenous tooth bone graft material prepared chairside and its clinical applications: A systematic review. Int. J. Oral Maxillofac. Surg. 2023;52:132–141. doi: 10.1016/j.ijom.2022.04.018. PubMed DOI

Atieh M.A., Alsabeeha N.H., Payne A.G., Ali S., Faggion C.M.J., Esposito M. Interventions for replacing missing teeth: Alveolar ridge preservation techniques for dental implant site development. Cochrane Database Syst. Rev. 2021;4:Cd010176. doi: 10.1002/14651858.CD010176.pub2. PubMed DOI PMC

Wang Y., Zhang Y., Jing D., Shuang Y., Miron R.J. Enamel matrix derivative improves gingival fibroblast cell behavior cultured on titanium surfaces. Clin. Oral Investig. 2016;20:685–695. doi: 10.1007/s00784-015-1558-5. PubMed DOI

Chappard D., Stancu I.C. Porosity imaged by a vector projection algorithm correlates with fractal dimension measured on 3D models obtained by microCT. J. Microsc. 2015;258:24–30. doi: 10.1111/jmi.12212. PubMed DOI

Chappard D., Terranova L., Mallet R., Mercier P. 3D Porous Architecture of Stacks of β-TCP Granules Compared with That of Trabecular Bone: A microCT, Vector Analysis, and Compression Study. Front. Endocrinol. 2015;6:161. doi: 10.3389/fendo.2015.00161. PubMed DOI PMC

Pennycook S.J., Li C., Li M., Tang C., Okunishi E., Varela M., Kim Y.-M., Jang J.H. Material structure, properties, and dynamics through scanning transmission electron microscopy. J. Anal. Sci. Technol. 2018;9:11. doi: 10.1186/s40543-018-0142-4. PubMed DOI PMC

Zhang Y., Ren L., Wang Q., Wen Z., Liu C., Ding Y. Raman Spectroscopy: A Potential Diagnostic Tool for Oral Diseases. Front. Cell. Infect. Microbiol. 2022;12:775236. doi: 10.3389/fcimb.2022.775236. PubMed DOI PMC

Ralbovsky N.M., Zou L., Chen B., Zhang N.R., Hines C.D., Vavrek M., Zhong W., Smith J.P., Bu X. Simultaneous multielement imaging of liver tissue using laser ablation inductively coupled plasma mass spectrometry. Talanta. 2021;235:122725. doi: 10.1016/j.talanta.2021.122725. PubMed DOI

Ingendoh-Tsakmakidis A., Nolte L., Winkel A., Meyer H., Koroleva A., Shpichka A., Ripken T., Heisterkamp A., Stiesch M. Time resolved 3D live-cell imaging on implants. PLoS ONE. 2018;13:e0205411. doi: 10.1371/journal.pone.0205411. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...