MiR-4646-5p Acts as a Tumor-Suppressive Factor in Triple Negative Breast Cancer and Targets the Cholesterol Transport Protein GRAMD1B

. 2023 Dec 26 ; 10 (1) : . [epub] 20231226

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38250802

Grantová podpora
W 1226 Austrian Science Fund FWF - Austria
DK-MCD W1226 FWF Austrian Science Fund
LX22NPO5102 National Institute for Cancer Research, Next Generation EU, EXCELES
Scholarship Austrian Society of Hemato-Oncology (ÖGHO)
Hertha-Firnberg project FWF Austrian Science Fund

MicroRNAs (miRNAs) are crucial post-transcriptional regulators of gene expression, and their deregulation contributes to many aspects of cancer development and progression. Thus, miRNAs provide insight into oncogenic mechanisms and represent promising targets for new therapeutic approaches. A type of cancer that is still in urgent need of improved treatment options is triple negative breast cancer (TNBC). Therefore, we aimed to characterize a novel miRNA with a potential role in TNBC. Based on a previous study, we selected miR-4646-5p, a miRNA with a still unknown function in breast cancer. We discovered that higher expression of miR-4646-5p in TNBC patients is associated with better survival. In vitro assays showed that miR-4646-5p overexpression reduces growth, proliferation, and migration of TNBC cell lines, whereas inhibition had the opposite effect. Furthermore, we found that miR-4646-5p inhibits the tube formation ability of endothelial cells, which may indicate anti-angiogenic properties. By whole transcriptome analysis, we not only observed that miR-4646-5p downregulates many oncogenic factors, like tumor-promoting cytokines and migration- and invasion-related genes, but were also able to identify a direct target, the GRAM domain-containing protein 1B (GRAMD1B). GRAMD1B is involved in cellular cholesterol transport and its knockdown phenocopied the growth-reducing effects of miR-4646-5p. We thus conclude that GRAMD1B may partly contribute to the diverse tumor-suppressive effects of miR-4646-5p in TNBC.

Zobrazit více v PubMed

Visvader J.E. Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev. 2009;23:2563–2577. doi: 10.1101/gad.1849509. PubMed DOI PMC

Yin L., Duan J.-J., Bian X.-W., Yu S. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22:61. doi: 10.1186/s13058-020-01296-5. PubMed DOI PMC

Johnson J.M., Edwards S., Shoemaker D., Schadt E.E. Dark matter in the genome: Evidence of widespread transcription detected by microarray tiling experiments. Trends Genet. 2005;21:93–102. doi: 10.1016/j.tig.2004.12.009. PubMed DOI

Mattick J.S., Makunin I.V. Non-coding RNA. Hum. Mol. Genet. 2006;15:R17–R29. doi: 10.1093/hmg/ddl046. PubMed DOI

Ling H., Vincent K., Pichler M., Fodde R., Berindan-Neagoe I., Slack F.J., Calin G.A. Junk DNA and the long non-coding RNA twist in cancer genetics. Oncogene. 2015;34:5003–5011. doi: 10.1038/onc.2014.456. PubMed DOI PMC

Lagos-Quintana M., Rauhut R., Lendeckel W., Tuschl T. Identification of Novel Genes Coding for Small Expressed RNAs. Science. 2001;294:853–858. doi: 10.1126/science.1064921. PubMed DOI

Bartel D.P. MicroRNAs. Cell. 2004;116:281–297. doi: 10.1016/S0092-8674(04)00045-5. PubMed DOI

Lee Y. MicroRNA maturation: Stepwise processing and subcellular localization. EMBO J. 2002;21:4663–4670. doi: 10.1093/emboj/cdf476. PubMed DOI PMC

Lee Y., Ahn C., Han J., Choi H., Kim J., Yim J., Lee J., Provost P., Rådmark O., Kim S., et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425:415–419. doi: 10.1038/nature01957. PubMed DOI

Cullen B.R. Transcription and Processing of Human microRNA Precursors. Mol. Cell. 2004;16:861–865. doi: 10.1016/j.molcel.2004.12.002. PubMed DOI

Hutvágner G., McLachlan J., Pasquinelli A.E., Bálint É., Tuschl T., Zamore P.D. A Cellular Function for the RNA-Interference Enzyme Dicer in the Maturation of the let-7 Small Temporal RNA. Science. 2001;293:834–838. doi: 10.1126/science.1062961. PubMed DOI

Hammond S.M., Bernstein E., Beach D., Hannon G.J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. 2000;404:293–296. doi: 10.1038/35005107. PubMed DOI

Gregory R.I., Chendrimada T.P., Cooch N., Shiekhattar R. Human RISC Couples MicroRNA Biogenesis and Posttranscriptional Gene Silencing. Cell. 2005;123:631–640. doi: 10.1016/j.cell.2005.10.022. PubMed DOI

Ruby J.G., Jan C.H., Bartel D.P. Intronic microRNA precursors that bypass Drosha processing. Nature. 2007;448:83–86. doi: 10.1038/nature05983. PubMed DOI PMC

Kohlhapp F.J., Mitra A.K., Lengyel E., Peter M.E. MicroRNAs as mediators and communicators between cancer cells and the tumor microenvironment. Oncogene. 2015;34:5857–5868. doi: 10.1038/onc.2015.89. PubMed DOI PMC

Rupaimoole R., Calin G.A., Lopez-Berestein G., Sood A.K. miRNA Deregulation in Cancer Cells and the Tumor Microenvironment. Cancer Discov. 2016;6:235–246. doi: 10.1158/2159-8290.CD-15-0893. PubMed DOI PMC

Loh H.-Y., Norman B.P., Lai K.-S., Rahman N.M.A.N.A., Alitheen N.B.M., Osman M.A. The Regulatory Role of MicroRNAs in Breast Cancer. Int. J. Mol. Sci. 2019;20:4940. doi: 10.3390/ijms20194940. PubMed DOI PMC

Dragomir M.P., Knutsen E., Calin G.A. Classical and noncanonical functions of miRNAs in cancers. Trends Genet. 2022;38:379–394. doi: 10.1016/j.tig.2021.10.002. PubMed DOI

Schwarzenbacher D., Klec C., Pasculli B., Cerk S., Rinner B., Karbiener M., Ivan C., Barbano R., Ling H., Wulf-Goldenberg A., et al. MiR-1287-5p inhibits triple negative breast cancer growth by interaction with phosphoinositide 3-kinase CB, thereby sensitizing cells for PI3Kinase inhibitors. Breast Cancer Res. 2019;21:20. doi: 10.1186/s13058-019-1104-5. PubMed DOI PMC

Song Y., Zeng S., Zheng G., Chen D., Li P., Yang M., Luo K., Yin J., Gu Y., Zhang Z., et al. FOXO3a-driven miRNA signatures suppresses VEGF-A/NRP1 signaling and breast cancer metastasis. Oncogene. 2021;40:777–790. doi: 10.1038/s41388-020-01562-y. PubMed DOI PMC

Zeng F., Yao M., Wang Y., Zheng W., Liu S., Hou Z., Cheng X., Sun S., Li T., Zhao H., et al. Fatty acid β-oxidation promotes breast cancer stemness and metastasis via the miRNA-328-3p-CPT1A pathway. Cancer Gene Ther. 2022;29:383–395. doi: 10.1038/s41417-021-00348-y. PubMed DOI PMC

Surapaneni S.K., Bhat Z.R., Tikoo K. MicroRNA-941 regulates the proliferation of breast cancer cells by altering histone H3 Ser 10 phosphorylation. Sci. Rep. 2020;10:17954. doi: 10.1038/s41598-020-74847-7. PubMed DOI PMC

Kim Y., Ko J.Y., Lee S.-B., Oh S., Park J.W., Kang H.-G., Kim D.-H., Chung D., Lim S., Kong H., et al. Reduced miR-371b-5p expression drives tumor progression via CSDE1/RAC1 regulation in triple-negative breast cancer. Oncogene. 2022;41:3151–3161. doi: 10.1038/s41388-022-02326-6. PubMed DOI PMC

Kashyap D., Kaur H. Cell-free miRNAs as non-invasive biomarkers in breast cancer: Significance in early diagnosis and metastasis prediction. Life Sci. 2020;246:117417. doi: 10.1016/j.lfs.2020.117417. PubMed DOI

Kara G., Arun B., Calin G.A., Ozpolat B. miRacle of microRNA-Driven Cancer Nanotherapeutics. Cancers. 2022;14:3818. doi: 10.3390/cancers14153818. PubMed DOI PMC

Ho P.T.B., Clark I.M., Le L.T.T. MicroRNA-Based Diagnosis and Therapy. Int. J. Mol. Sci. 2022;23:7167. doi: 10.3390/ijms23137167. PubMed DOI PMC

Pichler M., Calin G.A. MicroRNAs in cancer: From developmental genes in worms to their clinical application in patients. Br. J. Cancer. 2015;113:569–573. doi: 10.1038/bjc.2015.253. PubMed DOI PMC

Dontu G., Abdallah W.M., Foley J.M., Jackson K.W., Clarke M.F., Kawamura M.J., Wicha M.S. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003;17:1253–1270. doi: 10.1101/gad.1061803. PubMed DOI PMC

He L., Wick N., Germans S.K., Peng Y. The Role of Breast Cancer Stem Cells in Chemoresistance and Metastasis in Triple-Negative Breast Cancer. Cancers. 2021;13:6209. doi: 10.3390/cancers13246209. PubMed DOI PMC

Yang L., Hou Y., Du Y., Li Q., Zhou F., Li Y., Zeng H., Jin T., Wan X., Guan S., et al. Mirtronic miR-4646-5p promotes gastric cancer metastasis by regulating ABHD16A and metabolite lysophosphatidylserines. Cell Death Differ. 2021;28:2708–2727. doi: 10.1038/s41418-021-00779-y. PubMed DOI PMC

Lánczky A., Nagy Á., Bottai G., Munkácsy G., Szabó A., Santarpia L., Győrffy B. miRpower: A web-tool to validate survival-associated miRNAs utilizing expression data from 2178 breast cancer patients. Breast Cancer Res. Treat. 2016;160:439–446. doi: 10.1007/s10549-016-4013-7. PubMed DOI

Torres A.G., Fabani M.M., Vigorito E., Gait M.J. MicroRNA fate upon targeting with anti-miRNA oligonucleotides as revealed by an improved Northern-blot-based method for miRNA detection. RNA. 2011;17:933–943. doi: 10.1261/rna.2533811. PubMed DOI PMC

Svoronos A.A., Engelman D.M., Slack F.J. OncomiR or Tumor Suppressor? The Duplicity of MicroRNAs in Cancer. Cancer Res. 2016;76:3666–3670. doi: 10.1158/0008-5472.CAN-16-0359. PubMed DOI PMC

Friedl P., Wolf K. Tumour-cell invasion and migration: Diversity and escape mechanisms. Nat. Rev. Cancer. 2003;3:362–374. doi: 10.1038/nrc1075. PubMed DOI

Chambers A.F., Groom A.C., MacDonald I.C. Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer. 2002;2:563–572. doi: 10.1038/nrc865. PubMed DOI

Banerjee S., Dowsett M., Ashworth A., Martin L.-A. Mechanisms of Disease: Angiogenesis and the management of breast cancer. Nat. Clin. Pract. Oncol. 2007;4:536–550. doi: 10.1038/ncponc0905. PubMed DOI

Hussen B.M., Salihi A., Abdullah S.T., Rasul M.F., Hidayat H.J., Hajiesmaeili M., Ghafouri-Fard S. Signaling pathways modulated by miRNAs in breast cancer angiogenesis and new therapeutics. Pathol.-Res. Pract. 2022;230:153764. doi: 10.1016/j.prp.2022.153764. PubMed DOI

Agarwal V., Bell G.W., Nam J.-W., Bartel D.P. Predicting effective microRNA target sites in mammalian mRNAs. eLife. 2015;4:e05005. doi: 10.7554/eLife.05005. PubMed DOI PMC

Dweep H., Gretz N. miRWalk2.0: A comprehensive atlas of microRNA-target interactions. Nat. Methods. 2015;12:697. doi: 10.1038/nmeth.3485. PubMed DOI

Chen Y., Wang X. miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48:D127–D131. doi: 10.1093/nar/gkz757. PubMed DOI PMC

Gatta A.T., Wong L.H., Sere Y.Y., Calderón-Noreña D.M., Cockcroft S., Menon A.K., Levine T.P. A new family of StART domain proteins at membrane contact sites has a role in ER-PM sterol transport. eLife. 2015;4:e07253. doi: 10.7554/eLife.07253. PubMed DOI PMC

Ercan B., Naito T., Koh D.H.Z., Dharmawan D., Saheki Y. Molecular basis of accessible plasma membrane cholesterol recognition by the GRAM domain of GRAMD1b. EMBO J. 2021;40:e106524. doi: 10.15252/embj.2020106524. PubMed DOI PMC

Khanna P., Chua P.J., Wong B.S.E., Yin C., Thike A.A., Wan W.K., Tan P.H., Baeg G.H. GRAM domain-containing protein 1B (GRAMD1B), a novel component of the JAK/STAT signaling pathway, functions in gastric carcinogenesis. Oncotarget. 2017;8:115370–115383. doi: 10.18632/oncotarget.23265. PubMed DOI PMC

Khanna P., Lee J.S., Sereemaspun A., Lee H., Baeg G.H. GRAMD1B regulates cell migration in breast cancer cells through JAK/STAT and Akt signaling. Sci. Rep. 2018;8:9511. doi: 10.1038/s41598-018-27864-6. PubMed DOI PMC

Győrffy B. Survival analysis across the entire transcriptome identifies biomarkers with the highest prognostic power in breast cancer. Comput. Struct. Biotechnol. J. 2021;19:4101–4109. doi: 10.1016/j.csbj.2021.07.014. PubMed DOI PMC

Anastasiadou E., Jacob L.S., Slack F.J. Non-coding RNA networks in cancer. Nat. Rev. Cancer. 2018;18:5–18. doi: 10.1038/nrc.2017.99. PubMed DOI PMC

Zhao C.L., Zhang G.P., Xiao Z.Z., Ma Z.K., Lei C.P., Song S.Y., Feng Y.Y., Zhao Y.C., Feng X.S. Recombinant Human Granulocyte Colony-Stimulating Factor Promotes Preinvasive and Invasive Estrogen Receptor-Positive Tumor Development in MMTV-erbB2 Mice. J. Breast Cancer. 2015;18:126. doi: 10.4048/jbc.2015.18.2.126. PubMed DOI PMC

Waight J.D., Hu Q., Miller A., Liu S., Abrams S.I. Tumo-Derived G-CSF Facilitates Neoplastic Growth through a Granulocytic Myeloid-Derived Suppressor Cell-Dependent Mechanism. PLoS ONE. 2011;6:e27690. doi: 10.1371/journal.pone.0027690. PubMed DOI PMC

Hollmén M., Karaman S., Schwager S., Lisibach A., Christiansen A.J., Maksimow M., Varga Z., Jalkanen S., Detmar M. G-CSF regulates macrophage phenotype and associates with poor overall survival in human triple-negative breast cancer. OncoImmunology. 2016;5:e1115177. doi: 10.1080/2162402X.2015.1115177. PubMed DOI PMC

Masjedi A., Hashemi V., Hojjat-Farsangi M., Ghalamfarsa G., Azizi G., Yousefi M., Jadidi-Niaragh F. The significant role of interleukin-6 and its signaling pathway in the immunopathogenesis and treatment of breast cancer. Biomed. Pharmacother. 2018;108:1415–1424. doi: 10.1016/j.biopha.2018.09.177. PubMed DOI

Korkaya H., Kim G., Davis A., Malik F., Henry N.L., Ithimakin S., Quraishi A.A., Tawakkol N., D’Angelo R., Paulson A.K., et al. Activation of an IL6 Inflammatory Loop Mediates Trastuzumab Resistance in HER2+ Breast Cancer by Expanding the Cancer Stem Cell Population. Mol. Cell. 2012;47:570–584. doi: 10.1016/j.molcel.2012.06.014. PubMed DOI PMC

Johnson D.E., O’Keefe R.A., Grandis J.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 2018;15:234–248. doi: 10.1038/nrclinonc.2018.8. PubMed DOI PMC

Erhard F., Haas J., Lieber D., Malterer G., Jaskiewicz L., Zavolan M., Dölken L., Zimmer R. Widespread context dependency of microRNA-mediated regulation. Genome Res. 2014;24:906–919. doi: 10.1101/gr.166702.113. PubMed DOI PMC

Hollestelle A., Nagel J.H.A., Smid M., Lam S., Elstrodt F., Wasielewski M., Ng S.S., French P.J., Peeters J.K., Rozendaal M.J., et al. Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines. Breast Cancer Res. Treat. 2010;121:53–64. doi: 10.1007/s10549-009-0460-8. PubMed DOI

Hodge R.G., Ridley A.J. Regulating Rho GTPases and their regulators. Nat. Rev. Mol. Cell Biol. 2016;17:496–510. doi: 10.1038/nrm.2016.67. PubMed DOI

Clayton N.S., Ridley A.J. Targeting Rho GTPase Signaling Networks in Cancer. Front. Cell Dev. Biol. 2020;8:222. doi: 10.3389/fcell.2020.00222. PubMed DOI PMC

Han, Jian-Jun; Du, Bo-Rong; Zhang, Cui-Huan Bioinformatic analysis of prognostic value of ARAP3 in breast cancer and the associated signaling pathways. Eur. Rev. Med. Pharmacol. Sci. 2017;21:2405–2412. PubMed

Wang Q.-X., Chen E.-D., Cai Y.-F., Zhou Y.-L., Zheng Z.-C., Wang Y.-H., Jin Y.-X., Jin W.-X., Zhang X.-H., Wang O.-C. Next-generation sequence detects ARAP3 as a novel oncogene in papillary thyroid carcinoma. OncoTargets Ther. 2016;9:7161–7167. doi: 10.2147/OTT.S115668. PubMed DOI PMC

Cao J., Yang T., Tang D., Zhou F., Qian Y., Zou X. Increased expression of GEF-H1 promotes colon cancer progression by RhoA signaling. Pathol.-Res. Pract. 2019;215:1012–1019. doi: 10.1016/j.prp.2019.02.008. PubMed DOI

Kent O.A., Sandí M.-J., Burston H.E., Brown K.R., Rottapel R. An oncogenic KRAS transcription program activates the RHOGEF ARHGEF2 to mediate transformed phenotypes in pancreatic cancer. Oncotarget. 2017;8:4484–4500. doi: 10.18632/oncotarget.13152. PubMed DOI PMC

Nakao Y., Nakagawa S., Yamashita Y., Umezaki N., Okamoto Y., Ogata Y., Yasuda-Yoshihara N., Itoyama R., Yusa T., Yamashita K., et al. High ARHGEF2 (GEF-H1) Expression is Associated with Poor Prognosis Via Cell Cycle Regulation in Patients with Pancreatic Cancer. Ann. Surg. Oncol. 2021;28:4733–4743. doi: 10.1245/s10434-020-09383-9. PubMed DOI

Wang Q., Lv L., Tang Y., Zhang L., Wang L. MMP-1 is overexpressed in triple-negative breast cancer tissues and the knockdown of MMP-1 expression inhibits tumor cell malignant behaviors in vitro. [(accessed on 25 August 2022)];Oncol. Lett. 2018 17:1732–1740. doi: 10.3892/ol.2018.9779. Available online: http://www.spandidos-publications.com/10.3892/ol.2018.9779. PubMed DOI PMC

Lim J.P., Nair S., Shyamasundar S., Chua P.J., Muniasamy U., Matsumoto K., Gunaratne J., Bay B.H. Silencing Y-box binding protein-1 inhibits triple-negative breast cancer cell invasiveness via regulation of MMP1 and beta-catenin expression. Cancer Lett. 2019;452:119–131. doi: 10.1016/j.canlet.2019.03.014. PubMed DOI

Presta M., Rusnati M., Dell’Era P., Tanghetti E., Urbinati C., Giuliani R., Leali D. Examining New Models for the Study of Autocrine and Paracrine Mechanisms of Angiogenesis Through FGF2-Transfected Endothelial and Tumour Cells. In: Maragoudakis M.E., editor. Angiogenesis. Volume 476. Springer; Boston, MA, USA: 2000. [(accessed on 26 August 2022)]. pp. 7–34. (Advances in Experimental Medicine and Biology). Available online: http://link.springer.com/10.1007/978-1-4615-4221-6_2. PubMed DOI

Zegeye M.M., Andersson B., Sirsjö A., Ljungberg L.U. IL-6 trans-Signaling Impairs Sprouting Angiogenesis by Inhibiting Migration, Proliferation and Tube Formation of Human Endothelial Cells. Cells. 2020;9:1414. doi: 10.3390/cells9061414. PubMed DOI PMC

Geretti E., Shimizu A., Klagsbrun M. Neuropilin structure governs VEGF and semaphorin binding and regulates angiogenesis. Angiogenesis. 2008;11:31–39. doi: 10.1007/s10456-008-9097-1. PubMed DOI

Naito T., Ercan B., Krshnan L., Triebl A., Koh D.H.Z., Wei F.-Y., Tomizawa K., Torta F.T., Wenk M.R., Saheki Y. Movement of accessible plasma membrane cholesterol by the GRAMD1 lipid transfer protein complex. eLife. 2019;8:e51401. doi: 10.7554/eLife.51401. PubMed DOI PMC

Naito T., Saheki Y. GRAMD1-mediated accessible cholesterol sensing and transport. Biochim. Biophys. Acta BBA-Mol. Cell Biol. Lipids. 2021;1866:158957. doi: 10.1016/j.bbalip.2021.158957. PubMed DOI

Sandhu J., Li S., Fairall L., Pfisterer S.G., Gurnett J.E., Xiao X., Weston T.A., Vashi D., Ferrari A., Orozco J.L., et al. Aster Proteins Facilitate Nonvesicular Plasma Membrane to ER Cholesterol Transport in Mammalian Cells. Cell. 2018;175:514–529. doi: 10.1016/j.cell.2018.08.033. PubMed DOI PMC

Ferrari A., He C., Kennelly J.P., Sandhu J., Xiao X., Chi X., Jiang H., Young S.G., Tontonoz P. Aster Proteins Regulate the Accessible Cholesterol Pool in the Plasma Membrane. Mol. Cell. Biol. 2020;40:e00255-20. doi: 10.1128/MCB.00255-20. PubMed DOI PMC

Wu S.Y., Yang X., Gharpure K.M., Hatakeyama H., Egli M., McGuire M.H., Nagaraja A.S., Miyake T.M., Rupaimoole R., Pecot C.V., et al. 2′-OMe-phosphorodithioate-modified siRNAs show increased loading into the RISC complex and enhanced anti-tumour activity. Nat. Commun. 2014;5:3459. doi: 10.1038/ncomms4459. PubMed DOI PMC

Huang B., Song B., Xu C. Cholesterol metabolism in cancer: Mechanisms and therapeutic opportunities. Nat. Metab. 2020;2:132–141. doi: 10.1038/s42255-020-0174-0. PubMed DOI

Voisin M., de Medina P., Mallinger A., Dalenc F., Huc-Claustre E., Leignadier J., Serhan N., Soules R., Ségala G., Mougel A., et al. Identification of a tumor-promoter cholesterol metabolite in human breast cancers acting through the glucocorticoid receptor. [(accessed on 5 September 2022)];Proc. Natl. Acad. Sci. USA. 2017 114:E9346–E9355. doi: 10.1073/pnas.1707965114. Available online: https://pnas.org/doi/full/10.1073/pnas.1707965114. PubMed DOI PMC

Luo J., Jiang L.-Y., Yang H., Song B.-L. Intracellular Cholesterol Transport by Sterol Transfer Proteins at Membrane Contact Sites. Trends Biochem. Sci. 2019;44:273–292. doi: 10.1016/j.tibs.2018.10.001. PubMed DOI

Connelly M.A. SR-BI-mediated HDL cholesteryl ester delivery in the adrenal gland. Mol. Cell. Endocrinol. 2009;300:83–88. doi: 10.1016/j.mce.2008.09.011. PubMed DOI

Llaverias G., Danilo C., Mercier I., Daumer K., Capozza F., Williams T.M., Sotgia F., Lisanti M.P., Frank P.G. Role of Cholesterol in the Development and Progression of Breast Cancer. Am. J. Pathol. 2011;178:402–412. doi: 10.1016/j.ajpath.2010.11.005. PubMed DOI PMC

Danilo C., Gutierrez-Pajares J.L., Mainieri M.A., Mercier I., Lisanti M.P., Frank P.G. Scavenger receptor class B type I regulates cellular cholesterol metabolism and cell signaling associated with breast cancer development. Breast Cancer Res. 2013;15:R87. doi: 10.1186/bcr3483. PubMed DOI PMC

Höglinger D., Burgoyne T., Sanchez-Heras E., Hartwig P., Colaco A., Newton J., Futter C.E., Spiegel S., Platt F.M., Eden E.R. NPC1 regulates ER contacts with endocytic organelles to mediate cholesterol egress. Nat. Commun. 2019;10:4276. doi: 10.1038/s41467-019-12152-2. PubMed DOI PMC

Antalis C.J., Uchida A., Buhman K.K., Siddiqui R.A. Migration of MDA-MB-231 breast cancer cells depends on the availability of exogenous lipids and cholesterol esterification. Clin. Exp. Metastasis. 2011;28:733–741. doi: 10.1007/s10585-011-9405-9. PubMed DOI

Rodrigues dos Santos C., Domingues G., Matias I., Matos J., Fonseca I., de Almeida J.M., Dias S. LDL-cholesterol signaling induces breast cancer proliferation and invasion. Lipids Health Dis. 2014;13:16. doi: 10.1186/1476-511X-13-16. PubMed DOI PMC

Gallagher E.J., Zelenko Z., Neel B.A., Antoniou I.M., Rajan L., Kase N., LeRoith D. Elevated tumor LDLR expression accelerates LDL cholesterol-mediated breast cancer growth in mouse models of hyperlipidemia. Oncogene. 2017;36:6462–6471. doi: 10.1038/onc.2017.247. PubMed DOI PMC

Trop-Steinberg S., Azar Y. AP-1 Expression and its Clinical Relevance in Immune Disorders and Cancer. Am. J. Med. Sci. 2017;353:474–483. doi: 10.1016/j.amjms.2017.01.019. PubMed DOI

Wang B., Guo H., Yu H., Chen Y., Xu H., Zhao G. The Role of the Transcription Factor EGR1 in Cancer. Front. Oncol. 2021;11:642547. doi: 10.3389/fonc.2021.642547. PubMed DOI PMC

Macián F., López-Rodríguez C., Rao A. Partners in transcription: NFAT and AP-1. Oncogene. 2001;20:2476–2489. doi: 10.1038/sj.onc.1204386. PubMed DOI

Xiao W., Hodge D.R., Wang L., Yang X., Zhang X., Farrar W.L. NF-kappaB activates IL-6 expression through cooperation with c-Jun and IL6-AP1 site, But is independent of its IL6-NFkappaB regulatory site in autocrine human multiple myeloma cells. Cancer Biol. Ther. 2004;3:1007–1017. doi: 10.4161/cbt.3.10.1141. PubMed DOI

Wang J., Iwanowycz S., Yu F., Jia X., Leng S., Wang Y., Li W., Huang S., Ai W., Fan D. microRNA-155 deficiency impairs dendritic cell function in breast cancer. OncoImmunology. 2016;5:e1232223. doi: 10.1080/2162402X.2016.1232223. PubMed DOI PMC

Kwantwi L.B., Wang S., Sheng Y., Wu Q. Multifaceted roles of CCL20 (C-C motif chemokine ligand 20): Mechanisms and communication networks in breast cancer progression. Bioengineered. 2021;12:6923–6934. doi: 10.1080/21655979.2021.1974765. PubMed DOI PMC

Yang C., Yu H., Chen R., Tao K., Jian L., Peng M., Li X., Liu M., Liu S. CXCL1 stimulates migration and invasion in ER-negative breast cancer cells via activation of the ERK/MMP2/9 signaling axis. [(accessed on 9 September 2022)];Int. J. Oncol. 2019 55:684–696. doi: 10.3892/ijo.2019.4840. Available online: http://www.spandidos-publications.com/10.3892/ijo.2019.4840. PubMed DOI PMC

Ciummo S.L., D’Antonio L., Sorrentino C., Fieni C., Lanuti P., Stassi G., Todaro M., Di Carlo E. The C-X-C Motif Chemokine Ligand 1 Sustains Breast Cancer Stem Cell Self-Renewal and Promotes Tumor Progression and Immune Escape Programs. Front. Cell Dev. Biol. 2021;9:689286. doi: 10.3389/fcell.2021.689286. PubMed DOI PMC

Tulotta C., Lefley D.V., Freeman K., Gregory W.M., Hanby A.M., Heath P.R., Nutter F., Wilkinson J.M., Spicer-Hadlington A.R., Liu X., et al. Endogenous Production of IL1B by Breast Cancer Cells Drives Metastasis and Colonization of the Bone Microenvironment. Clin. Cancer Res. 2019;25:2769–2782. doi: 10.1158/1078-0432.CCR-18-2202. PubMed DOI

Carpentier G., Berndt S., Ferratge S., Rasband W., Cuendet M., Uzan G., Albanese P. Angiogenesis Analyzer for ImageJ—A comparative morphometric analysis of “Endothelial Tube Formation Assay” and “Fibrin Bead Assay”. Sci. Rep. 2020;10:11568. doi: 10.1038/s41598-020-67289-8. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...