The tellurite resistance gene cluster of pathogenic bacteria and its effect on oxidative stress response
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
APVV-17-0099
Agentúra na Podporu Výskumu a Vývoja
APVV-20-054005
Agentúra na Podporu Výskumu a Vývoja
PubMed
38261148
PubMed Central
PMC11003894
DOI
10.1007/s12223-024-01133-8
PII: 10.1007/s12223-024-01133-8
Knihovny.cz E-resources
- Keywords
- Oxidative stress response, Pathogen evolution, Pathogenesis, Tellurite resistance gene cluster, Uropathogenic Escherichia coli,
- MeSH
- Escherichia coli * MeSH
- Multigene Family MeSH
- Oxidative Stress MeSH
- Tellurium * pharmacology metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- tellurous acid MeSH Browser
- Tellurium * MeSH
Tellurite resistance gene clusters have been identified in numerous pathogenic bacteria, including clinical isolates of Escherichia coli. The rareness of tellurium in host organisms and the noncontaminated environment raises a question about the true functionality of tellurite resistance gene clusters in pathogenesis and their possible contribution to bacterial fitness. The study aims to point out the beneficial effects of the tellurite resistance gene cluster of pathogenic bacteria to survive in ROS-rich environments. Here, we analysed the bacterial response to oxidative stress conditions with and without tellurite resistance gene clusters, which are composed of terWY1XY2Y3 and terZABCDEF genes. By measuring the levels of protein carbonylation, lipid peroxidation, and expression changes of oxidative stress genes upon oxidative stress, we propose a tellurite resistance gene cluster contribution to the elimination of oxidative damage, potentially increasing fitness and resistance to reactive oxygen species during macrophage attack. We have shown a different beneficial effect of various truncated versions of the tellurite resistance gene cluster on cell survival. The terBCDEF genes increased the survival of E. coli strain MC4100 by 13.21%, terW and terZABCDEF by 10.09%, and terWY1XY2Y3 and terZABCDEF by 25.57%, respectively. The ability to survive tellurite treatment is the most significant at 44.8% in wild clinical strain KL53 compared to laboratory strain E. coli MC4100 due to a complete wild-type plasmid presence.
See more in PubMed
Alonso G, Gomes C, González C, Rodríguez Lemoine V. On the mechanism of resistance to channel-forming colicins (PacB) and tellurite, encoded by plasmid Mip233 (IncHI3) FEMS Microbiol Lett. 2000;192:257–261. doi: 10.1111/j.1574-6968.2000.tb09391.x. PubMed DOI
Behuliak M, Palffy R, Gardlik R, Hodosy J, Halcak L, Celec P. Variability of thiobarbituric acid reacting substances in saliva. Dis Markers. 2009;26:49–53. doi: 10.3233/DMA-2009-0606. PubMed DOI PMC
Belzile N, Chen YW. Tellurium in the environment: a critical review focused on natural waters, soils, sediments and air-borne particles. Appl Geochem. 2015;63:83–92. doi: 10.1016/j.apgeochem.2015.07.002. DOI
Borghese R, Borsetti F, Foladori P, Ziglio F, Zannoni D. Effects of the metalloid oxyanion tellurite (TeO32-) on growth characteristics of the phototrophic bacterium Rhodobacter capsulatus. Appl Environ Microbiol. 2004;70:6595–6602. doi: 10.1128/aem.70.11.6595-6602.2004. PubMed DOI PMC
Borsetti F, Borghese R, Francia F, Randi MR, Fedi S, Zannoni D. Reduction of potassium tellurite to elemental tellurium and its effect on the plasma membrane redox components of the facultative phototroph Rhodobacter capsulatus. Protoplasma. 2003;221:153–161. doi: 10.1007/s00709-002-0058-z. PubMed DOI
Bowler C, Montagu MV, Inze D. Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol. 1992;43:83–116. doi: 10.1146/annurev.pp.43.060192.000503. DOI
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. doi: 10.1006/abio.1976.9999. PubMed DOI
Burian J, Beno J, Macor M, Guller L, Siekel P. Inducible resistance to tellurite in a human isolate of Escherichia coli. Biologia. 1990;45:1021–1026.
Burian J, Tu N, Klucar L, Guller L, Lloyd-Jones G, Stuchlik S, Fejdi P, Siekel P, Turna J. In vivo and in vitro cloning and phenotype characterization of tellurite resistance determinant conferred by plasmid pTE53 of a clinical isolate of Escherichia coli. Folia Microbiol. 1998;43:589–599. doi: 10.1007/bf02816374. PubMed DOI
Carty JL, Bevan R, Waller H, Mistry N, Cooke M, Lunec J, et al. The effects of vitamin C supplementation on protein oxidation in healthy volunteers. Biochem Biophys Res Commun. 2000;273:729–735. doi: 10.1006/bbrc.2000.3014. PubMed DOI
Cassier-Chauvat C, Marceau F, Farci S, Ouchane S, Chauvat F. The glutathione system: a journey from cyanobacteria to higher eukaryotes. Antioxidants. 2023;2:1199. doi: 10.3390/antiox12061199. PubMed DOI PMC
Chasteen TG, Fuentes DE, Tantaleán JC, Vásquez CC. Tellurite: history, oxidative stress, and molecular mechanisms of resistance. FEMS Microbiol Rev. 2009;33:820–832. doi: 10.1111/j.1574-6976.2009.00177.x. PubMed DOI
Chen YT, Chang HY, Lai YC, Pan CC, Tsai SF, Peng HL. Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43. Gene. 2004;337:89–198. doi: 10.1016/j.gene.2004.05.008. PubMed DOI
Devasagayam TPA, Boloor KK, Ramasarma T. Methods for estimating lipid peroxidation: an analysis of merits and demerits. Indian J Biochem Biophys. 2003;40:300–308. PubMed
Drapper HH, Squires EJ, Mahmoodi H, Wu J, Agarwal S, Hadley M. A comparative evaluation of thiobarbituric acid methods for the determination of malondialdehyde in biological materials. Free Radic Biol Med. 1993;15:353–363. doi: 10.1016/0891-5849(93)90035-s. PubMed DOI
Fang FC, Frawley ER, Tapscott T, Vázquez-Torres A. Bacterial stress responses during host infection. Cell Host Microbe. 2016;20:133–143. doi: 10.1016/j.chom.2016.07.009. PubMed DOI PMC
Farias P, Francisco R, Morais PV (2022) Potential of tellurite resistance in heterotrophic bacteria from mining environments. iScience 25:104566. 10.1016/j.isci.2022.104566 PubMed PMC
Filella M, Reimann C, Biver M, Rodushkin I, Rodushkina K. Tellurium in the environment: current knowledge and identification of gaps. Environ Chem. 2019;16:215–228. doi: 10.1071/EN18229. DOI
Fridovich I. Superoxide radicals, superoxide dismutases and the aerobic lifestyle. Photochem Photobiol. 1978;28:733–741. doi: 10.1111/j.1751-1097.1978.tb07009.x. PubMed DOI
Garzoni C, Kelley WL. Staphylococcus aureus: new evidence for intracellular persistence. Trends Microbiol. 2009;17:59–65. doi: 10.1016/j.tim.2008.11.005. PubMed DOI
Grayfer L, Hodgkinson JW, Belosevic M. Antimicrobial responses of teleost phagocytes and innate immune evasion strategies of intracellular bacteria. Dev Comp Immunol. 2014;43:223–242. doi: 10.1016/j.dci.2013.08.003. PubMed DOI
Hassan H, Troxell B. Transcriptional regulation by ferric uptake regulator (Fur) in pathogenic bacteria. Front Cell Infect Microbiol. 2013;3:59. doi: 10.3389/fcimb.2013.00059. PubMed DOI PMC
Jobling MG, Ritchie DA. Genetic and physical analysis of plasmid genes expressing inducible resistance of tellurite in Escherichia coli. Mol Gen Genet. 1987;208:288–293. doi: 10.1007/bf00330455. PubMed DOI
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Lloy RV, Hanna PM, Mason RP. The origin of the hydroxyl radical oxygen in the Fenton reaction. Free Radic Biol Med. 1997;22:885–888. doi: 10.1016/s0891-5849(96)00432-7. PubMed DOI
Mandell GL. Catalase, superoxide dismutase, and virulence of Staphylococcus aureus. In vitro and in vivo studies with emphasis on staphylococcal-leukocyte interaction. J Clin Invest. 1975;55:561–566. doi: 10.1172/jci107963. PubMed DOI PMC
Medina E, Rohde M, Chhatwal GS. Intracellular survival of Streptococcus pyogenes in polymorphonuclear cells results in increased bacterial virulence. Infect Immun. 2003;71:5376–5380. doi: 10.1128/iai.71.9.5376-5380.2003. PubMed DOI PMC
Miller G, Shulaev V, Mittler R. Reactive oxygen signaling and abiotic stress. Physiol Plant. 2008;133:481–489. doi: 10.1111/j.1399-3054.2008.01090.x. PubMed DOI
Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7:405–410. doi: 10.1016/s1360-1385(02)02312-9. PubMed DOI
Mittler R, Vanderauwera S, Gollery M, Breusegem FV. Reactive oxygen gene network of plants. Trends Plant Sci. 2004;9:490–498. doi: 10.1016/j.tplants.2004.08.009. PubMed DOI
Muñoz-Villagrán CM, Mendez KN, Cornejo F, Figueroa M, Undabarrena A, Morales EH, Arenas-Salinas M, Arenas FA, Castro-Nallar E, Vásquez CC. Comparative genomic analysis of a new tellurite-resistant Psychrobacter strain isolated from the Antarctic Peninsula. PeerJ. 2018;6:e4402. doi: 10.7717/peerj.4402. PubMed DOI PMC
Nebe-von-Caron G, Stephens PJ, Hewitt CJ, Powell JR, Badley RA. Analysis of bacterial function by multi-colour fluorescence flow cytometry and single cell sorting. J Microbiol Methods. 2000;42:97–114. doi: 10.1016/s0167-7012(00)00181-0. PubMed DOI
Nguyen TTH, Kikuchi T, Tokunaga T, Iyoda S, Iguchi A. Diversity of the tellurite resistance gene operon in Escherichia coli. Front Microbiol. 2021;12:681175. doi: 10.3389/fmicb.2021.681175. PubMed DOI PMC
Peng W, Wang Y, Fu Y, Deng Z, Lin S, Liang R. Characterization of the tellurite-resistance properties and identification of the core function genes for tellurite resistance in Pseudomonas citronellolis SJTE-3. Microorganisms. 2022;10:95. doi: 10.3390/microorganisms10010095. PubMed DOI PMC
Perna NT, Plunkett G, Burland V, Mau B, Glasner JD, Rose DJ, Mayhew GF, Evans PS, et al. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature. 2001;409:529–533. doi: 10.1038/35054089. PubMed DOI
Peterhans E, Grob M, Bürge T, Zanoni R. Virus-induced formation of reactive oxygen intermediates in phagocytic cells. Free Radic Res Commun. 1987;3:39–46. doi: 10.3109/10715768709069768. PubMed DOI
Ponnusamy D, Clinkenbear KD. Role of tellurite resistance operon in filamentous growth of Yersinia pestis in macrophages. PLoS One. 2015;10:-–-. doi: 10.1371/journal.pone.0141984. PubMed DOI PMC
Qin Y, Lin G, Chen W, Huang B, Huang W, Yan Q. Flagellar motility contributes to the invasion and survival of Aeromonas hydrophila in Anguilla japonica macrophages. Fish Shellfish Immunol. 2014;39:273–279. doi: 10.1016/j.fsi.2014.05.016. PubMed DOI
Rice-Evans CA, Diplock AT, Symons MCR. Techniques in free radical research. Amsterdam: Elsevier Science; 1991.
Schwarz KB. Oxidative stress during viral infection: a review. Free Radic Biol Med. 1996;21:641–649. doi: 10.1016/0891-5849(96)00131-1. PubMed DOI
Seixas AF, Quendera AP, Sousa JP, Silva AFQ, Arraiano CM, Andrade JM. Bacterial response to oxidative stress and RNA oxidation. Front Genet. 2022;12:821535. doi: 10.3389/fgene.2021.821535. PubMed DOI PMC
Semchyshyn H, Bagnyukova T, Lushchak V. Involvement of soxRS regulon in response of Escherichia coli to oxidative stress induced by hydrogen peroxide. Biochemistry. 2005;70:1238–1244. doi: 10.1007/s10541-005-0253-6. PubMed DOI
Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. 2012;2012:-–-. doi: 10.1155/2012/217037. DOI
Silhavy TJ, Berman ML, Enquist LW. Experiments with gene fusions. New York: Cold Spring Harbor Laboratory Press; 1984.
Soltys K, Vavrova S, Budis J, Palkova L, Minarik G, Grones J. Draft genome sequence of Escherichia coli KL53. Genome Announc. 2018;6(-):-–-. doi: 10.1128/genomeA.00220-18. PubMed DOI PMC
Stiefel P, Schmidt-Emrich S, Maniura-Weber K, Ren Q. Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide. BMC Microbiol. 2015;15:36. doi: 10.1186/s12866-015-0376-x. PubMed DOI PMC
Sun D, Crowell SA, Harding CM, Malaka De Silva P, Harrison A, Fernando DM, et al. KatG and KatE confer Acinetobacter resistance to hydrogen peroxide but sensitize bacteria to killing by phagocytic respiratory burst. Life Sci. 2016;148:31–40. doi: 10.1016/j.lfs.2016.02.015. PubMed DOI PMC
Tarr PI, Bilge SS, Vary JC, Jelacic S, Habeeb RL, Ward TR, Baylor MR, Besser TE. Iha: a novel Escherichia coli O157:H7 adherence-conferring molecule encoded on a recently acquired chromosomal island of conserved structure. Infect Immun. 2000;68:1400–1407. doi: 10.1128/iai.68.3.1400-1407.2000. PubMed DOI PMC
Taylor DE. Bacterial tellurite resistance. Trends Microbiol. 1999;7:111–115. doi: 10.1016/s0966-842x(99)01454-7. PubMed DOI
Taylor DE, Rooker M, Keelan M, Ng LK, Martin I, Perna NT, et al. Genomic variability of O islands encoding tellurite resistance in enterohemorrhagic Escherichia coli O157:H7 isolates. J Bacteriol. 2002;184:4690–4698. doi: 10.1128/JB.184.17.4690-4698.2002. PubMed DOI PMC
Tremaroli V, Fedi S, Zannoni D. Evidence for a tellurite-dependent generation of reactive oxygen species and absence of a tellurite-mediated adaptive response to oxidative stress in cells of Pseudomonas pseudoalcaligenes KF707. Arch Microbiol. 2007;187:127–135. doi: 10.1007/s00203-006-0179-4. PubMed DOI
Turkovicova L, Smidak R, Jung G, Turna J, Lubec G, Aradska J. Proteomic analysis of the TerC interactome: novel links to tellurite resistance and pathogenicity. J Proteomics. 2016;136:167–173. doi: 10.1016/j.jprot.2016.01.003. PubMed DOI
Valkova D, Valkovicova L, Vavrova S, Kovacova E, Mravec J, Turna J. The contribution of tellurite resistance genes to the fitness of Escherichia coli uropathogenic strains. Cent Eur J Bio. 2007;2:182–191. doi: 10.2478/s11535-007-0019-9. DOI
Vavrova S, Valkova D, Drahovska H, Kokavec J, Mravec J, Turna J. Analysis of the tellurite resistance determinant on the pNT3B derivative of the pTE53 plasmid from uropathogenic Escherichia coli. Biometals. 2006;19:453–460. doi: 10.1007/s10534-005-4862-8. PubMed DOI
Vornhagen J, Bassis CM, Ramakrishnan S, Hein R, Mason S, Bergman Y, Sunshine N, Fan Y, Holmes CL, Timp W, Schatz MC, Young VB, Simner PJ, Bachman MA. A plasmid locus associated with Klebsiella clinical infections encodes a microbiome-dependent gut fitness factor. PLoS Pathog. 2021;17:e1009537. doi: 10.1371/journal.ppat.1009537. PubMed DOI PMC
Walter EG, Taylor DE. Plasmid-mediated resistance to tellurite: expressed and cryptic. Plasmid. 1992;27:52–64. doi: 10.1016/0147-619x(92)90006-v. PubMed DOI
Whelan KF, Colleran E, Taylor DE. Phage inhibition, colicin resistance, and tellurite resistance are encoded by a single cluster of genes on the IncHI2 plasmid R478. J Bacteriol. 1995;177:5016–5027. doi: 10.1128/jb.177.17.5016-5027.1995. PubMed DOI PMC
Xiao J, Chen T, Wang Q, Zhang Y. Comparative analysis of the roles of catalases KatB and KatG in the physiological fitness and pathogenesis of fish pathogen Edwardsiella tarda. Lett Appl Microbiol. 2012;54:425–432. doi: 10.1111/j.1472-765X.2012.03225.x. PubMed DOI
Yin X, Wheatcroft R, Chambers JR, Liu B, Zhu J, Gyles CL. Contributions of O island 48 to adherence of enterohemorrhagic Escherichia coli O157:H7 to epithelial cells in vitro and in ligated pig ileal loops. Appl Environ Microbiol. 2009;75:5779–5786. doi: 10.1128/AEM.00507-09. PubMed DOI PMC
Zhang M, Yan Q, Mao L, Wang S, Huang L, Xu X, et al. KatG plays an important role in Aeromonas hydrophila survival in fish macrophages and escape for further infection. Gene. 2018;672:156–164. doi: 10.1016/j.gene.2018.06.029. PubMed DOI