Targeted Inhibition of the PI3K/Akt/mTOR Signaling Axis: Potential for Sarcoma Therapy
Language English Country Netherlands Media print
Document type Journal Article, Review
PubMed
38265369
DOI
10.2174/0113895575270904231129062137
PII: MRMC-EPUB-137681
Knihovny.cz E-resources
- Keywords
- FDA approved drugs, PI3K/Akt/mToR inhibitors, Sarcoma, biomarkers, nanomaterials., phytochemicals,
- MeSH
- Phosphatidylinositol 3-Kinases * metabolism MeSH
- Phosphoinositide-3 Kinase Inhibitors pharmacology therapeutic use MeSH
- Protein Kinase Inhibitors pharmacology chemistry therapeutic use MeSH
- Humans MeSH
- MTOR Inhibitors pharmacology therapeutic use MeSH
- Antineoplastic Agents * pharmacology chemistry therapeutic use MeSH
- Proto-Oncogene Proteins c-akt * metabolism antagonists & inhibitors MeSH
- Sarcoma * drug therapy metabolism pathology MeSH
- Signal Transduction * drug effects MeSH
- TOR Serine-Threonine Kinases * antagonists & inhibitors metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Phosphatidylinositol 3-Kinases * MeSH
- Phosphoinositide-3 Kinase Inhibitors MeSH
- Protein Kinase Inhibitors MeSH
- MTOR Inhibitors MeSH
- MTOR protein, human MeSH Browser
- Antineoplastic Agents * MeSH
- Proto-Oncogene Proteins c-akt * MeSH
- TOR Serine-Threonine Kinases * MeSH
Sarcoma is a heterogeneous group of malignancies often resistant to conventional chemotherapy and radiation therapy. The phosphatidylinositol-3-kinase/ protein kinase B /mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway has emerged as a critical cancer target due to its central role in regulating key cellular processes such as cell growth, proliferation, survival, and metabolism. Dysregulation of this pathway has been implicated in the development and progression of bone sarcomas (BS) and soft tissue sarcomas (STS). PI3K/Akt/mTOR inhibitors have shown promising preclinical and clinical activity in various cancers. These agents can inhibit the activation of PI3K, Akt, and mTOR, thereby reducing the downstream signaling events that promote tumor growth and survival. In addition, PI3K/Akt/mTOR inhibitors have been shown to enhance the efficacy of other anticancer therapies, such as chemotherapy and radiation therapy. The different types of PI3K/Akt/mTOR inhibitors vary in their specificity, potency, and side effect profiles and may be effective depending on the specific sarcoma type and stage. The molecular targeting of PI3K/Akt/mToR pathway using drugs, phytochemicals, nanomaterials (NMs), and microbe-derived molecules as Pan-PI3K inhibitors, selective PI3K inhibitors, and dual PI3K/mTOR inhibitors have been delineated. While there are still challenges to be addressed, the preclinical and clinical evidence suggests that these inhibitors may significantly improve patient outcomes. Further research is needed to understand the potential of these inhibitors as sarcoma therapeutics and to continue developing more selective and effective agents to meet the clinical needs of sarcoma patients.
Biomedical Research Center University Hospital Hradec Kralove Hradec Králové Czechia
Department of Biochemistry and Biophysics University of North Carolina Chapel Hill NC 27599 USA
Department of Chemistry Faculty of Science University of Hradec Králové Hradec Králové Czechia
King Saud University Zoology Department College of Science Riyadh 11451 Saudi Arabia
School of Bioengineering and Biosciences Lovely Professional University Jalandhar Punjab India
See more in PubMed
Sbaraglia M.; Bellan E.; Dei Tos A.P.; The 2020 WHO classification of soft tissue tumours: News and perspectives. Pathologica 2020,113(2),70-84 PubMed DOI
Raza S.H.A.; Pant S.D.; Wani A.K.; Mohamed H.H.; Khalifa N.E.; Almohaimeed H.M.; Alshanwani A.R.; Assiri R.; Aggad W.S.; Noreldin A.E.; Abdelnour S.A.; Wang Z.; Zan L.; Krüppel-like factors family regulation of adipogenic markers genes in bovine cattle adipogenesis. Mol Cell Probes 2022,65,101850 PubMed DOI
Lee S.E.; Kim Y.J.; Kwon M.J.; Choi D.I.; Lee J.; Cho J.; Seo S.W.; Kim S.J.; Shin Y.K.; Choi Y-L.; High level of CDK4 amplification is a poor prognostic factor in well-differentiated and dedifferentiated liposarcoma. Histol Histopathol 2014,29(1),127-138 PubMed DOI
Ricciotti R.W.; Baraff A.J.; Jour G.; Kyriss M.; Wu Y.; Liu Y.; Li S.C.; Hoch B.; Liu Y.J.; High amplification levels of MDM2 and CDK4 correlate with poor outcome in patients with dedifferentiated liposarcoma: A cytogenomic microarray analysis of 47 cases. Cancer Genet 2017,218-219,69-80 PubMed DOI
Ravi V.; Patel S.; Benjamin R.S.; Chemotherapy for soft-tissue sarcomas. Oncology 2015,29(1),43-50 PubMed
Ye F.; Dewanjee S.; Li Y.; Jha N.K.; Chen Z-S.; Kumar A.; Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol Cancer 2023,22,105 PubMed DOI
Ayodele O.; Razak A.R.A.; Immunotherapy in soft-tissue sarcoma. Curr Oncol 2020,27(11),17-23 PubMed DOI
Peng Y.; Wang Y.; Zhou C.; Mei W.; Zeng C.; PI3K/Akt/MTOR pathway and its role in cancer therapeutics: Are we making headway? Front Oncol 2022,12,819128 PubMed DOI
Mir T.G.; Wani A.K.; Singh J.; Shukla S.; Therapeutic application and toxicity associated with Crocus sativus (saffron) and its phytochemicals. Pharmacol. Res. -. Modern Chinese Med, 2022,4,100136 DOI
Wani A.K.; Akhtar N.; Sharma A.; El-Zahaby S.A.; fighting carcinogenesis with plant metabolites by weakening proliferative signaling and disabling replicative immortality networks of rapidly dividing and invading cancerous cells. Curr Drug Deliv 2022,12,122-139 PubMed
Ortega M.A.; Fraile-Martínez O.; Asúnsolo Á.; Buján J.; García-Honduvilla N.; Coca S.; Signal transduction pathways in breast cancer: The important role of PI3K/Akt/mTOR. J Oncol 2020,2020,1-11 PubMed DOI
Wilker E.; Lu J.; Rho O.; Carbajal S.; Beltrán L.; DiGiovanni J.; Role of PI3K/Akt signaling in insulin‐like growth factor‐1 (IGF‐1) skin tumor promotion. Mol Carcinog 2005,44(2),137-145 PubMed DOI
Song J.H.; Padi S.K.R.; Luevano L.A.; Minden M.D.; DeAngelo D.J.; Hardiman G.; Ball L.E.; Warfel N.A.; Kraft A.S.; Insulin receptor substrate 1 is a substrate of the Pim protein kinases. Oncotarget 2016,7(15),20152-20165 PubMed DOI
Aziz A.; Farid S.; Qin K.; Wang H.; Liu B.; PIM kinases and their relevance to the PI3K/AKT/mTOR pathway in the regulation of ovarian cancer. Biomolecules 2018,8(1),7 PubMed DOI
Kyriazoglou A.; Gkaralea L.; Kotsantis I.; Anastasiou M.; Pantazopoulos A.; Prevezanou M.; Chatzidakis I.; Kavourakis G.; Economopoulou P.; Nixon I.; Psyrri A.; Tyrosine kinase inhibitors in sarcoma treatment. Oncol Lett [Review2022,23(6),183 PubMed DOI
Dibble C.C.; Manning B.D.; Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat Cell Biol 2013,15(6),555-564 PubMed DOI
Wani A.K.; Akhtar N.; Mir T.G.; Singh R.; Jha P.K.; Mallik S.K.; Sinha S.; Tripathi S.K.; Jain A.; Jha A.; Devkota H.P.; Prakash A.; Targeting apoptotic pathway of cancer cells with phytochemicals and plant-based nanomaterials. Biomolecules 2023,13(2),194 PubMed DOI
Fusco N.; Sajjadi E.; Venetis K.; Gaudioso G.; Lopez G.; Corti C.; Guerini Rocco E.; Criscitiello C.; Malapelle U.; Invernizzi M.; PTEN alterations and their role in cancer management: Are we making headway on precision medicine? Genes 2020,11(7),719 PubMed DOI
Arcaro A.; Guerreiro A.; The phosphoinositide 3-kinase pathway in human cancer: Genetic alterations and therapeutic implications. Curr Genomics 2007,8(5),271-306 PubMed DOI
Perry J.A.; Kiezun A.; Tonzi P.; Van Allen E.M.; Carter S.L.; Baca S.C.; Cowley G.S.; Bhatt A.S.; Rheinbay E.; Pedamallu C.S.; Helman E.; Taylor-Weiner A.; McKenna A.; DeLuca D.S.; Lawrence M.S.; Ambrogio L.; Sougnez C.; Sivachenko A.; Walensky L.D.; Wagle N.; Mora J.; de Torres C.; Lavarino C.; Dos Santos Aguiar S.; Yunes J.A.; Brandalise S.R.; Mercado-Celis G.E.; Melendez-Zajgla J.; Cárdenas-Cardós R.; Velasco-Hidalgo L.; Roberts C.W.M.; Garraway L.A.; Rodriguez-Galindo C.; Gabriel S.B.; Lander E.S.; Golub T.R.; Orkin S.H.; Getz G.; Janeway K.A.; Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. Proc Natl Acad Sci 2014,111(51),E5564-E5573 PubMed DOI
Zając A.; Król S.K.; Rutkowski P.; Czarnecka A.M.; Biological heterogeneity of chondrosarcoma: From (Epi) genetics through stemness and deregulated signaling to immunophenotype. Cancers 2021,13(6),1317 PubMed DOI
Jiang Y.; Subbiah V.; Janku F.; Ludwig J.A.; Naing A.; Benjamin R.S.; Brown R.E.; Anderson P.; Kurzrock R.; Novel secondary somatic mutations in Ewing’s sarcoma and desmoplastic small round cell tumors. PLoS One 2014,9(8),e93676 PubMed DOI
Huang C.H.; Mandelker D.; Schmidt-Kittler O.; Samuels Y.; Velculescu V.E.; Kinzler K.W.; Vogelstein B.; Gabelli S.B.; Amzel L.M.; The structure of a human p110alpha/p85alpha complex elucidates the effects of oncogenic PI3Kalpha mutations. Science 2007,318(5857),1744-1748 PubMed DOI
Ren J.; Wang X.; Zhou Y.; Yue X.; Chen S.; Ding X.; Zeng S.; Jiang X.; Liu X.; Guo Q.; A novel SERPINE1‐FOSB fusion gene in pseudomyogenic hemangioendothelioma results in activation of intact FOSB and the PI3K‐AKT‐mTOR signaling pathway and responsiveness to sirolimus. J Dermatol 2021,48(12),1900-1906 PubMed DOI
Wan H.; Zhang D.; Hu W.; Xie Z.; Du Q.; Xia Q.; Wen T.; Jia H.; Aberrant PTEN, PIK3CA, pMAPK, and TP53 expression in human scalp and face angiosarcoma. Medicine 2021,100(30),e26779 PubMed DOI
Yoon C.; Lu J.; Yi B.C.; Chang K.K.; Simon M.C.; Ryeom S.; Yoon S.S.; PI3K/Akt pathway and Nanog maintain cancer stem cells in sarcomas. Oncogenesis 2021,10(1),12 PubMed DOI
Jin Z.; Tao S.; Zhang C.; Xu D.; Zhu Z.; KIF20A promotes the development of fibrosarcoma via PI3K-Akt signaling pathway. Exp Cell Res 2022,420(1),113322 PubMed DOI
Presneau N.; Shalaby A.; Idowu B.; Gikas P.; Cannon S.R.; Gout I.; Diss T.; Tirabosco R.; Flanagan A.M.; Potential therapeutic targets for chordoma: PI3K/AKT/TSC1/TSC2/mTOR pathway. Br J Cancer 2009,100(9),1406-1414 PubMed DOI
Dewaele B.; Maggiani F.; Floris G.; Ampe M.; Vanspauwen V.; Wozniak A.; Debiec-Rychter M.; Sciot R.; Frequent activation of EGFR in advanced chordomas. Clin Sarcoma Res 2011,1(1),4 PubMed DOI
Schuetz A.N.; Rubin B.P.; Goldblum J.R.; Shehata B.; Weiss S.W.; Liu W.; Wick M.R.; Folpe A.L.; Intercellular junctions in Ewing sarcoma/primitive neuroectodermal tumor: Additional evidence of epithelial differentiation. Mod Pathol 2005,18(11),1403-1410 PubMed DOI
Trautmann M.; Cyra M.; Isfort I.; Jeiler B.; Krüger A.; Grünewald I.; Steinestel K.; Altvater B.; Rossig C.; Hafner S.; Simmet T.; Becker J.; Åman P.; Wardelmann E.; Huss S.; Hartmann W.; Phosphatidylinositol-3-kinase (PI3K)/Akt signaling is functionally essential in myxoid liposarcoma. Mol Cancer Ther 2019,18(4),834-844 PubMed DOI
Cuppens T.; Annibali D.; Coosemans A.; Trovik J.; ter Haar N.; Colas E.; Garcia-Jimenez A.; Van de Vijver K.; Kruitwagen R.P.M.; Brinkhuis M.; Zikan M.; Dundr P.; Huvila J.; Carpén O.; Haybaeck J.; Moinfar F.; Salvesen H.B.; Stukan M.; Mestdagh C.; Zweemer R.P.; Massuger L.F.; Mallmann M.R.; Wardelmann E.; Mints M.; Verbist G.; Thomas D.; Gommé E.; Hermans E.; Moerman P.; Bosse T.; Amant F.; Potential targets’ analysis reveals dual PI3K/mTOR pathway inhibition as a promising therapeutic strategy for uterine leiomyosarcomas-an ENITEC Group initiative. Clin Cancer Res 2017,23(5),1274-1285 PubMed DOI
Zhu B.; Davie J.K.; New insights into signalling-pathway alterations in rhabdomyosarcoma. Br J Cancer 2015,112(2),227-231 PubMed DOI
Kilic-Eren M.; Boylu T.; Tabor V.; Targeting PI3K/Akt represses hypoxia inducible factor-1α activation and sensitizes rhabdomyosarcoma and ewing’s sarcoma cells for apoptosis. Cancer Cell Int 2013,13(1),36 PubMed DOI
Friedrichs N.; Trautmann M.; Endl E.; Sievers E.; Kindler D.; Wurst P.; Czerwitzki J.; Steiner S.; Renner M.; Penzel R.; Koch A.; Larsson O.; Tanaka S.; Kawai A.; Schirmacher P.; Mechtersheimer G.; Wardelmann E.; Buettner R.; Hartmann W.; Phosphatidylinositol‐3′‐kinase/AKT signaling is essential in synovial sarcoma. Int J Cancer 2011,129(7),1564-1575 PubMed DOI
Bourcier K.; Le Cesne A.; Tselikas L.; Adam J.; Mir O.; Honore C.; de Baere T.; Basic knowledge in soft tissue sarcoma. Cardiovasc Intervent Radiol 2019,42(9),1255-1261 PubMed DOI
Criscitiello C.; viale, G.; Curigliano, G.; Goldhirsch, A. Profile of buparlisib and its potential in the treatment of breast cancer: Evidence to date. Breast Cancer 2018,10,23-29 PubMed DOI
Bhat A.A.; Singh I.; Tandon N.; Tandon R.; Structure activity relationship (SAR) and anticancer activity of pyrrolidine derivatives: Recent developments and future prospects (A review). Eur J Med Chem 2023,246,114954 PubMed DOI
Bhat A.A.; Wani A.K.; Mir T.; Introduction to ivermectin 2023,1-21
Harrison D.; Gill J.; Roth M.; Hingorani P.; Zhang W.; Teicher B.; Earley E.; Erickson S.; Gatto G.; Kurmasheva R.; Houghton P.; Smith M.; Anders Kolb E.; Gorlick R.; Evaluation of the pan‐class I phosphoinositide 3‐kinase (PI3K) inhibitor copanlisib in the pediatric preclinical testing consortium in vivo models of osteosarcoma. Pediatr Blood Cancer 2023,70(1),e30017 PubMed DOI
Antonescu C.R.; Owosho A.A.; Zhang L.; Chen S.; Deniz K.; Huryn J.M.; Kao Y.C.; Huang S.C.; Singer S.; Tap W.; Schaefer I.M.; Fletcher C.D.; Sarcomas with CIC-rearrangements are a distinct pathologic entity with aggressive outcome. Am J Surg Pathol 2017,41(7),941-949 PubMed DOI
Carrabotta M.; Laginestra M.A.; Durante G.; Mancarella C.; Landuzzi L.; Parra A.; Ruzzi F.; Toracchio L.; De Feo A.; Giusti V.; Pasello M.; Righi A.; Lollini P.L.; Palmerini E.; Donati D.M.; Manara M.C.; Scotlandi K.; Integrated molecular characterization of patient-derived models reveals therapeutic strategies for treating CIC-DUX4 sarcoma. Cancer Res 2022,82(4),708-720 PubMed DOI
Grignani G.; Le Cesne A.; Martín-Broto J.; Trabectedin as second-line treatment in advanced soft tissue sarcoma: Quality of life and safety outcomes. Future Oncol 2022,18(30s),13-22 PubMed DOI
Dolly S.O.; Wagner A.J.; Bendell J.C.; Kindler H.L.; Krug L.M.; Seiwert T.Y.; Zauderer M.G.; Lolkema M.P.; Apt D.; Yeh R.F.; Fredrickson J.O.; Spoerke J.M.; Koeppen H.; Ware J.A.; Lauchle J.O.; Burris H.A.; de Bono J.S.; Phase I study of apitolisib (GDC-0980), dual phosphatidylinositol-3-kinase and mammalian target of rapamycin kinase inhibitor, in patients with advanced solid tumors. Clin Cancer Res 2016,22(12),2874-2884 PubMed DOI
Choo F.; Odintsov I.; Nusser K.; Nicholson K.S.; Davis L.; Corless C.L.; Stork L.; Somwar R.; Ladanyi M.; Davis J.L.; Davare M.A.; Functional impact and targetability of PI3KCA, GNAS, and PTEN mutations in a spindle cell rhabdomyosarcoma with MYOD1 L122R mutation. Molecular Case Studies 2022,8(1),a006140 PubMed DOI
Piazzi M.; Bavelloni A.; Cenni V.; Salucci S.; Bartoletti Stella A.; Tomassini E.; Scotlandi K.; Blalock W.L.; Faenza I.; Combined treatment with PI3K inhibitors BYL-719 and CAL-101 is a promising antiproliferative strategy in human rhabdomyosarcoma cells. Molecules 2022,27(9),2742 PubMed DOI
Roeker L.E.; Feldman T.A.; Soumerai J.D.; Falco V.; Panton G.; Dorsey C.; Zelenetz A.D.; Falchi L.; Park J.H.; Straus D.J.; Pena Velasquez C.; Lebowitz S.; Fox Y.; Battiato K.; Laudati C.; Thompson M.C.; McCarthy E.; Kdiry S.; Martignetti R.; Turpuseema T.; Purdom M.; Paskalis D.; Miskin H.P.; Sportelli P.; Leslie L.A.; Mato A.R.; Adding umbralisib and ublituximab (U2) to ibrutinib in patients with CLL: A phase II study of an MRD-driven approach. Clin Cancer Res 2022,28(18),3958-3964 PubMed DOI
Munoz J.; Follows G.A.; Nastoupil L.J.; Copanlisib for the treatment of malignant lymphoma: Clinical experience and future perspectives. Target Oncol 2021,16(3),295-308 PubMed DOI
Horwitz S.M.; Koch R.; Porcu P.; Oki Y.; Moskowitz A.; Perez M.; Myskowski P.; Officer A.; Jaffe J.D.; Morrow S.N.; Allen K.; Douglas M.; Stern H.; Sweeney J.; Kelly P.; Kelly V.; Aster J.C.; Weaver D.; Foss F.M.; Weinstock D.M.; Activity of the PI3K-δ,γ inhibitor duvelisib in a phase 1 trial and preclinical models of T-cell lymphoma. Blood 2018,131(8),888-898 PubMed DOI
Markham A.; Idelalisib: First global approval. Drugs 2014,74(14),1701-1707 PubMed DOI
Liu M.; Zhang W.E.; Xing K.; Zhou P.; Li J.; Inhibitory effect of PD-1/PD-L1 and blockade immunotherapy in leukemia. Comb Chem High Throughput Screen 2022,25(9),1399-1410 PubMed DOI
Anderson J.L.; Park A.; Akiyama R.; Tap W.D.; Denny C.T.; Federman N.; Evaluation of in vitro activity of the class I PI3K inhibitor buparlisib (BKM120) in pediatric bone and soft tissue sarcomas. PLoS One 2015,10(9),e0133610 PubMed DOI
Liu T-J.; Koul D.; LaFortune T.; Tiao N.; Shen R.J.; Maira S-M.; Garcia-Echevrria C.; Alfred Yung W.K.; NVP-BEZ235, A novel dual PI3K/MTOR inhibitor, elicits multifaceted antitumor activities in human gliomas. Mol Cancer Ther 2009,8,2204-2210 PubMed DOI
Rao V.K.; Webster S.; Šedivá A.; Plebani A.; Schuetz C.; Shcherbina A.; Conlon N.; Coulter T.I.; Dalm V.A.; Trizzino A.; Randomized, placebo-controlled, phase 3 trial of PI3Kδ inhibitor leniolisib for activated PI3Kδ syndrome. Blood 2022,2022,018546 DOI
Fukuhara N.; Suehiro Y.; Kato H.; Kusumoto S.; Coronado C.; Rappold E.; Zhao W.; Li J.; Gilmartin A.; Izutsu K.; Parsaclisib in Japanese patients with relapsed or refractory B‐cell lymphoma (CITADEL‐111): A phase Ib study. Cancer Sci 2022,113(5),1702-1711 PubMed DOI
Hanan E.J.; Braun M.G.; Heald R.A.; MacLeod C.; Chan C.; Clausen S.; Edgar K.A.; Eigenbrot C.; Elliott R.; Endres N.; Friedman L.S.; Gogol E.; Gu X.H.; Thibodeau R.H.; Jackson P.S.; Kiefer J.R.; Knight J.D.; Nannini M.; Narukulla R.; Pace A.; Pang J.; Purkey H.E.; Salphati L.; Sampath D.; Schmidt S.; Sideris S.; Song K.; Sujatha-Bhaskar S.; Ultsch M.; Wallweber H.; Xin J.; Yeap S.; Young A.; Zhong Y.; Staben S.T.; Discovery of GDC-0077 (Inavolisib), a highly selective inhibitor and degrader of mutant PI3Kα. J Med Chem 2022,65(24),16589-16621 PubMed DOI
Goto H.; Izutsu K.; Ennishi D.; Mishima Y.; Makita S.; Kato K.; Hanaya M.; Hirano S.; Narushima K.; Teshima T.; Nagai H.; Ishizawa K.; Zandelisib (ME-401) in Japanese patients with relapsed or refractory indolent non-Hodgkin’s lymphoma: An open-label, multicenter, dose-escalation phase 1 study. Int J Hematol 2022,116(6),911-921 PubMed DOI
Omeljaniuk W.J.; Krętowski R.; Ratajczak-Wrona W.; Jabłońska E.; Cechowska-Pasko M.; Novel dual PI3K/mTOR inhibitor, apitolisib (GDC-0980), inhibits growth and induces apoptosis in human glioblastoma cells. Int J Mol Sci 2021,22(21),11511 PubMed DOI
Hsin I.L.; Shen H.P.; Chang H.Y.; Ko J.L.; Wang P.H.; Suppression of PI3K/Akt/mTOR/c-Myc/mtp53 positive feedback loop induces cell cycle arrest by dual PI3K/mTOR inhibitor PQR309 in endometrial cancer cell lines. Cells 2021,10(11),2916 PubMed DOI
Xu Y.; Afify S.M.; Du J.; Liu B.; Hassan G.; Wang Q.; Li H.; Liu Y.; Fu X.; Zhu Z.; Chen L.; Seno M.; The efficacy of PI3Kγ and EGFR inhibitors on the suppression of the characteristics of cancer stem cells. Sci Rep 2022,12(1),347 PubMed DOI
Liu C.; Xing W.; Yu H.; Zhang W.; Si T.; ABCB1 and ABCG2 restricts the efficacy of gedatolisib (PF-05212384), a PI3K inhibitor in colorectal cancer cells. Cancer Cell Int 2021,21(1),108 PubMed DOI
Liang C.; Yu X.; Xiong N.; Zhang Z.; Sun Z.; Dong Y.; Pictilisib enhances the antitumor effect of doxorubicin and prevents tumor-mediated bone destruction by blockade of PI3K/AKT pathway. Front Oncol 2021,10,615146 PubMed DOI
Zhu D.; Dong J.; Xu Y.; Zhang X.; Fu S.; Liu W.; Omipalisib inhibits esophageal squamous cell carcinoma growth through inactivation of phosphoinositide 3-kinase (PI3K)/AKT/Mammalian Target of Rapamycin (mTOR) and ERK signaling. Med Sci Monit 2020,26,e927106 PubMed DOI
Zhou S.; Ma Y.; Xu R.; Tang X.; Nanoparticles loaded with gsk1059615 combined with sorafenib inhibited programmed cell death 1 ligand 1 expression by negatively regulating the PI3K/Akt/NF- κ B Pathway, thereby reversing the drug resistance of hepatocellular carcinoma to sorafenib. J Biomed Nanotechnol 2022,18(3),693-704 PubMed DOI
Kater A.P.; Tonino S.H.; Spiering M.; Chamuleau M.E.D.; Liu R.; Adewoye A.H.; Gao J.; Dreiling L.; Xin Y.; Doorduijn J.K.; Kersten M.J.; Final results of a phase 1b study of the safety and efficacy of the PI3Kδ inhibitor acalisib (GS-9820) in relapsed/refractory lymphoid malignancies. Blood Cancer J 2018,8(2),16 PubMed DOI
Ceccarelli M.; D’Andrea G.; Micheli L.; Gentile G.; Cavallaro S.; Merlino G.; Papoff G.; Tirone F.; Tumor growth in the high frequency medulloblastoma mouse model Ptch1+/−/Tis21KO has a specific activation signature of the PI3K/AKT/mTOR pathway and is counteracted by the pi3k inhibitor MEN1611. Front Oncol 2021,11,692053 PubMed DOI
Akhtar N.; Wani A.K.; Mir T-U.G.; Kumar N.; Mannan M.A-U.; Sapindus mukorossi: Ethnomedicinal uses, phytochemistry, and pharmacological activities. Plant Cell Biotechnol Mol Biol 2021,300-319
Selwal N.; Rahayu F.; Herwati A.; Latifah E.; Suhara C.; Suastika I.B.K.; Mahayu W.M.; Wani A.K.; Enhancing secondary metabolite production in plants: Exploring traditional and modern strategies. J Agric Food Res 2023,100702
Jang J.Y.; Mechanism of resveratrol-induced programmed cell death and new drug discovery against cancer: A review. Int J Mol Sci 2022,23 DOI
Tong X.; Pelling J.; Targeting the PI3K/Akt/mTOR axis by apigenin for cancer prevention. Anticancer Agents Med Chem 2013,13(7),971-978 PubMed DOI
Kiptiyah K.; Widodo W.; Ciptadi G.; Aulanni’am A.; Widodo M.A.; Sumitro S.B.; 10-Gingerol as an inducer of apoptosis through HTR1A in cumulus cells: In-vitro and in-silico studies. J Taibah Univ Med Sci 2017,12(5),397-406 PubMed DOI
Chen B.H.; Hsieh C.H.; Tsai S.Y.; Wang C.Y.; Wang C.C.; Anticancer effects of epigallocatechin-3-gallate nanoemulsion on lung cancer cells through the activation of AMP-activated protein kinase signaling pathway. Sci Rep 2020,10(1),5163 PubMed DOI
Paulraj F.; Abas F.H.; Lajis N.; Othman I.; Naidu R.; Molecular pathways modulated by curcumin analogue, diarylpentanoids in cancer. Biomolecules 2019,9(7),270 PubMed DOI
Gan L.; Leng Y.; Min J.; Luo X.M.; Wang F.; Zhao J.; Kaempferol promotes the osteogenesis in rBMSCs via mediation of SOX2/miR-124-3p/PI3K/Akt/mTOR axis. Eur J Pharmacol 2022,927,174954 PubMed DOI
Lewandowski D.; Szewczyk A.; Radzka J.; Dubińska-Magiera M.; Kazimierczak W.; Daczewska M.; Migocka-Patrzałek M.; The natural origins of cytostatic compounds used in rhabdomyosarcoma therapy. Adv Clin Exp Med 2023,32(10),1179-1191 DOI
Zhai Y.; Jiang S.; Li B.; Miao L.; Wang J.; Li S.; Potential mechanisms of yanghe decoction in the treatment of soft tissue sarcoma and arteriosclerosis obliterans based on network pharmacology. Chinese Med Nat Prod 2022,2(2),e77-e88 DOI
Khiewkamrop P.; Surangkul D.; Srikummool M.; Richert L.; Pekthong D.; Parhira S.; Somran J.; Srisawang P.; Epigallocatechin gallate triggers apoptosis by suppressing de novo lipogenesis in colorectal carcinoma cells. FEBS Open Bio 2022,12(5),937-958 PubMed DOI
Kondo A.; Takeda T.; Li B.; Tsuiji K.; Kitamura M.; Wong T.F.; Yaegashi N.; Epigallocatechin-3-gallate potentiates curcumin’s ability to suppress uterine leiomyosarcoma cell growth and induce apoptosis. Int J Clin Oncol 2013,18(3),380-388 PubMed DOI
Guo L.; Qu B.; Song C.; Zhu S.; Gong N.; Sun J.; Celastrol attenuates 6-hydroxydopamine-induced neurotoxicity by regulating the miR-146a/PI3K/Akt/mTOR signaling pathways in differentiated rat pheochromocytoma cells. J Affect Disord 2022,316,233-242 PubMed DOI
Farhan M.; Silva M.; Xingan X.; Zhou Z.; Zheng W.; Artemisinin inhibits the migration and invasion in uveal melanoma via inhibition of the PI3K/AKT/mTOR signaling pathway. Oxid Med Cell Longev 2021,2021,1-16 PubMed DOI
Wang Z.; Li Y.; Zhou F.; Piao Z.; Hao J.; β elemene enhances anticancer bone neoplasms efficacy of paclitaxel through regulation of GPR124 in bone neoplasms cells. Oncol Lett 2018,16(2),2143-2150 PubMed DOI
Chan W.K.; Tan L.; Chan K.G.; Lee L.H.; Goh B.H.; Nerolidol: A sesquiterpene alcohol with multi-faceted pharmacological and biological activities. Molecules 2016,21(5),529 PubMed DOI
Yu Y.; Velu P.; Ma Y.; Vijayalakshmi A.; Nerolidol induced apoptosis via PI3K/JNK regulation through cell cycle arrest in MG ‐63 osteosarcoma cells. Environ Toxicol 2022,37(7),1750-1758 PubMed DOI
Fang Y.; Li H.; Ji B.; Cheng K.; Wu B.; Li Z.; Zheng C.; Hua H.; Li D.; Renieramycin-type alkaloids from marine-derived organisms: Synthetic chemistry, biological activity and structural modification. Eur J Med Chem 2021,210,113092 PubMed DOI
Chen S.; Jin Z.; Dai L.; Wu H.; Wang J.; Wang L.; Zhou Z.; Yang L.; Gao W.; Aloperine induces apoptosis and inhibits invasion in MG-63 and U2OS human osteosarcoma cells. Biomed Pharmacother 2018,97,45-52 PubMed DOI
Shinji S.; Nakamura S.; Nihashi Y.; Umezawa K.; Takaya T.; Berberine and palmatine inhibit the growth of human rhabdomyosarcoma cells. Biosci Biotechnol Biochem 2020,84(1),63-75 PubMed DOI
Grohar P.J.; Helman L.J.; Prospects and challenges for the development of new therapies for Ewing sarcoma. Pharmacol Ther 2013,137(2),216-224 PubMed DOI
Zhou J.; Huang Z.; Ni X.; Lv C.; Piperlongumine induces apoptosis and G2/M phase arrest in human osteosarcoma cells by regulating ROS/PI3K/Akt pathway. Toxicol In Vitro 2020,65,104775 PubMed DOI
Zhang Y.; Sun S.; Chen J.; Ren P.; Hu Y.; Cao Z.; Sun H.; Ding Y.; Oxymatrine induces mitochondria dependent apoptosis in human osteosarcoma MNNG/HOS cells through inhibition of PI3K/Akt pathway. Tumour Biol 2014,35(2),1619-1625 PubMed DOI
Li X.; Yang Z.; Han W.; Lu X.; Jin S.; Yang W.; Li J.; He W.; Qian Y.; Fangchinoline suppresses the proliferation, invasion and tumorigenesis of human osteosarcoma cells through the inhibition of PI3K and downstream signaling pathways. Int J Mol Med 2017,40(2),311-318 PubMed DOI
Zhang Y.; Li M.; Zhang Q.; Wang Z.; Li X.; Bao J.; Zhang H.; Arthpyrone L, a new pyridone alkaloid from a deep‐sea arthrinium sp., inhibits proliferation of MG63 osteosarcoma cells by inducing G0/G1 arrest and apoptosis. Chem Biodivers 2021,18(2),e2000639 PubMed DOI
Frasinariu O.; Serban R.; Trandafir L.M.; Miron I.; Starcea M.; Vasiliu I.; Alisi A.; Temneanu O.R.; The role of phytosterols in nonalcoholic fatty liver disease. Nutrients 2022,14(11),2187 PubMed DOI
Han B.; Jiang L.; Jiang P.; Zhou D.; Jia X.; Li X.; Ye X.; Daucosterol linolenate from sweet potato suppresses MCF7-Xenograft-tumor growth through regulating PI3K/AKT pathway. Planta Med 2020,86(11),767-775 PubMed DOI
Zhang H.; Song Y.; Feng C.; Improvement of cerebral ischemia/reperfusion injury by daucosterol palmitate-induced neuronal apoptosis inhibition via PI3K/Akt/mTOR signaling pathway. Metab Brain Dis 2020,35(6),1035-1044 PubMed DOI
Moon D.O.; Lee K.J.; Choi Y.H.; Kim G.Y.; β-Sitosterol-induced-apoptosis is mediated by the activation of ERK and the downregulation of Akt in MCA-102 murine fibrosarcoma cells. Int Immunopharmacol 2007,7(8),1044-1053 PubMed DOI
Tsuchiya H.; Sugimoto N.; Shirai T.; Hayashi K.; Nishida H.; Ohnari I.; Takeuchi A.; Yachie A.; Tsuchiya H.; Caffeine activates tumor suppressor PTEN in sarcoma cells. Int J Oncol 2011,39(2),465-472 PubMed DOI
Eo S.H.; Kim J.H.; Kim S.J.; Induction of G 2/M arrest by berberine via activation of PI3K/Akt and p38 in human chondrosarcoma cell line. Oncol Res 2015,22(3),147-157 PubMed DOI
Chetty C.; Lakka S.S.; Bhoopathi P.; Rao J.S.; MMP‐2 alters VEGF expression via αVβ3 integrin‐mediated PI3K/AKT signaling in A549 lung cancer cells. Int J Cancer 2010,127(5),1081-1095 PubMed DOI
Chen J.; Liu C.; Yang Q.Q.; Ma R.B.; Ke Y.; Dong F.; Wu X.E.; Isoliquiritigenin suppresses osteosarcoma U2OS cell proliferation and invasion by regulating the PI3K/Akt signalling pathway. Chemotherapy 2018,63(3),155-161 PubMed DOI
Gao K.; Su Z.; Liu H.; Liu Y.; RETRACTED: Anti-proliferation and anti-metastatic effects of sevoflurane on human osteosarcoma U2OS and Saos-2 cells. Exp Mol Pathol 2019,108,121-130 PubMed DOI
Ma K.; Zhang C.; Li W.; Gamabufotalin suppressed osteosarcoma stem cells through the TGF-β/periostin/PI3K/AKT pathway. Chem Biol Interact 2020,331,109275 PubMed DOI
Meng Z.J.; Wu N.; Liu Y.; Shu K.J.; Zou X.; Zhang R.X.; Pi C.J.; He B.C.; Ke Z.Y.; Chen L.; Deng Z.L.; Yin L.J.; Evodiamine inhibits the proliferation of human osteosarcoma cells by blocking PI3K/Akt signaling. Oncol Rep 2015,34(3),1388-1396 PubMed DOI
Yang J.; Zou Y.; Jiang D.; Honokiol suppresses proliferation and induces apoptosis via regulation of the miR 21/PTEN/PI3K/AKT signaling pathway in human osteosarcoma cells. Int J Mol Med 2018,41(4),1845-1854 PubMed DOI
Krajarng A.; Nakamura Y.; Suksamrarn S.; Watanapokasin R.; α-Mangostin induces apoptosis in human chondrosarcoma cells through downregulation of ERK/JNK and Akt signaling pathway. J Agric Food Chem 2011,59(10),5746-5754 PubMed DOI
Zheng M.; Wu Y.; Piceatannol suppresses proliferation and induces apoptosis by regulation of the microRNA 21/phosphatase and tensin homolog/protein kinase B signaling pathway in osteosarcoma cells. Mol Med Rep 2020,22(5),3985-3993 PubMed DOI
Hwang Y.P.; Yun H.J.; Choi J.H.; Han E.H.; Kim H.G.; Song G.Y.; Kwon K.; Jeong T.C.; Jeong H.G.; Suppression of EGF‐induced tumor cell migration and matrix metalloproteinase‐9 expression by capsaicin via the inhibition of EGFR‐mediated FAK/Akt, PKC/Raf/ERK, p38 MAPK, and AP‐1 signaling. Mol Nutr Food Res 2011,55(4),594-605 PubMed DOI
Miyata Y.; Sato T.; Ito A.; Triptolide, a diterpenoid triepoxide, induces antitumor proliferation via activation of c-Jun NH2-terminal kinase 1 by decreasing phosphatidylinositol 3-kinase activity in human tumor cells. Biochem Biophys Res Commun 2005,336(4),1081-1086 PubMed DOI
Huang Y.; Chen J.; Yang S.; Tan T.; Wang N.; Wang Y.; Zhang L.; Yang C.; Huang H.; Luo J.; Luo X.; Cinnamaldehyde inhibits the function of osteosarcoma by suppressing the Wnt/β-Catenin and PI3K/Akt signaling pathways. Drug Des Devel Ther 2020,14,4625-4637 PubMed DOI
Wang Y.; Chen J.; Huang Y.; Yang S.; Tan T.; Wang N.; Zhang J.; Ye C.; Wei M.; Luo J.; Luo X.; Schisandrin B suppresses osteosarcoma lung metastasis in vivo by inhibiting the activation of the Wnt/β catenin and PI3K/Akt signaling pathways. Oncol Rep 2022,47(3),50 PubMed DOI
Zhang R.X.; Li Y.; Tian D.D.; Liu Y.; Nian W.; Zou X.; Chen Q.Z.; Zhou L.Y.; Deng Z.L.; He B.C.; Ursolic acid inhibits proliferation and induces apoptosis by inactivating Wnt/β-catenin signaling in human osteosarcoma cells. Int J Oncol 2016,49(5),1973-1982 PubMed DOI
Zhu J.; Sun Y.; Lu Y.; Jiang X.; Ma B.; Yu L.; Zhang J.; Dong X.; Zhang Q.; Glaucocalyxin A.; Glaucocalyxin A exerts anticancer effect on osteosarcoma by inhibiting GLI1 nuclear translocation via regulating PI3K/Akt pathway. Cell Death Dis 2018,9(6),708 PubMed DOI
Gweon E.J.; Kim S.J.; Resveratrol attenuates matrix metalloproteinase-9 and -2- regulated differentiation of HTB94 chondrosarcoma cells through the p38 kinase and JNK pathways. Oncol Rep 2014,32(1),71-78 PubMed DOI
Zhang Y.; Weng Q.; Han J.; Chen J.; Alantolactone suppresses human osteosarcoma through the PI3K/AKT signaling pathway. Mol Med Rep 2019,21(2),675-684 PubMed DOI
Huang H.; Lu Q.; Yuan X.; Zhang P.; Ye C.; Wei M.; Yang C.; Zhang L.; Huang Y.; Luo X.; Luo J.; Andrographolide inhibits the growth of human osteosarcoma cells by suppressing Wnt/β-catenin, PI3K/AKT and NF-κB signaling pathways. Chem Biol Interact 2022,365,110068 PubMed DOI
Liu M.Y.; Liu F.; Li Y.J.; Yin J.N.; Gao Y.L.; Wang X.Y.; Yang C.; Liu J.G.; Li H.J.; Ginsenoside Rg5 inhibits human osteosarcoma cell proliferation and induces cell apoptosis through PI3K/Akt/mTORC1-Related LC3 autophagy pathway. Oxid Med Cell Longev 2021,2021,1-12 PubMed DOI
Mickymaray S.; Alfaiz F.A.; Paramasivam A.; Veeraraghavan V.P.; Periadurai N.D.; Surapaneni K.M.; Niu G.; Rhaponticin suppresses osteosarcoma through the inhibition of PI3K-Akt-mTOR pathway. Saudi J Biol Sci 2021,28(7),3641-3649 PubMed DOI
Bhat A.A.; Thoker B.A.; Wani A.K.; Sheergojri G.A.; Kaloo M.A.; Bhat B.A.; Ahmad Rizvi S.M.; Rizvi M.; Synthesis and characterization of copper oxide nanoparticles by coprecipitation method: Electronic and antimicrobial properties. Chem Sci Eng Res 2021,3(6),25-29 DOI
Bilal Ahmad T.; Asif A.B.; Atif Khurshid; Masood, A.K.; Gulzar Ahmad, S. Preparation and characterization of SnO2 nanoparticles for antibacterial properties. Nanomat Chem Technol 2020,1–5,1-5 DOI
Xue X.; Wang F.; Liu X.; Emerging functional nanomaterials for therapeutics. J Mater Chem 2011,21(35),13107-13127 DOI
Benton J.Z.; Williams R.J.; Patel A.; Meichner K.; Tarigo J.; Nagata K.; Pethel T.D.; Gogal R.M.; Gold nanoparticles enhance radiation sensitization and suppress colony formation in a feline injection site sarcoma cell line, in vitro. Res Vet Sci 2018,117,104-110 PubMed DOI
Naumann J.A.; Widen J.C.; Jonart L.A.; Ebadi M.; Tang J.; Gordon D.J.; Harki D.A.; Gordon P.M.; SN-38 conjugated gold nanoparticles activated by ewing sarcoma specific mRNAs exhibit in vitro and in vivo efficacy. Bioconjug Chem 2018,29(4),1111-1118 PubMed DOI
Chakraborty B.; Pal R.; Ali M.; Singh L.M.; Shahidur Rahman D.; Kumar Ghosh S.; Sengupta M.; Immunomodulatory properties of silver nanoparticles contribute to anticancer strategy for murine fibrosarcoma. Cell Mol Immunol 2016,13(2),191-205 PubMed DOI
Sanaei M.J.; Razi S.; Pourbagheri-Sigaroodi A.; Bashash D.; The PI3K/Akt/mTOR pathway in lung cancer; oncogenic alterations, therapeutic opportunities, challenges, and a glance at the application of nanoparticles. Transl Oncol 2022,18,101364 PubMed DOI
Fu Y.; He G.; Liu Z.; Wang J.; Li M.; Zhang Z.; Bao Q.; Wen J.; Zhu X.; Zhang C.; Zhang W.; DNA base pairing‐inspired supramolecular nanodrug camouflaged by cancer‐cell membrane for osteosarcoma treatment. Small 2022,18(30),2202337 PubMed DOI
Demirbolat G.M.; Altintas L.; Yilmaz S.; Degim I.T.; Development of orally applicable, combinatorial drug-loaded nanoparticles for the treatment of fibrosarcoma. J Pharm Sci 2018,107(5),1398-1407 PubMed DOI
Tian Z.; Dong S.; Yang Y.; Gao S.; Yang Y.; Yang J.; Zhang P.; Wang X.; Yao W.; Nanoparticle albumin-bound paclitaxel and PD-1 inhibitor (sintilimab) combination therapy for soft tissue sarcoma: A retrospective study. BMC Cancer 2022,22(1),56 PubMed DOI
Dodd R.D.; Scherer A.; Huang W.; McGivney G.R.; Gutierrez W.R.; Laverty E.A.; Ashcraft K.A.; Stephens V.R.; Yousefpour P.; Saha S.; Knepper-Adrian V.; Floyd W.; Chen M.; Ma Y.; Mastria E.M.; Cardona D.M.; Eward W.C.; Chilkoti A.; Kirsch D.G.; Tumor subtype determines therapeutic response to chimeric polypeptide nanoparticle-based chemotherapy in Pten -deleted mouse models of sarcoma. Clin Cancer Res 2020,26(18),5036-5047 PubMed DOI
Wani A.K.; Akhtar N.; Sher F.; Navarrete A.A.; Américo-Pinheiro J.H.P.; Microbial adaptation to different environmental conditions: Molecular perspective of evolved genetic and cellular systems. Arch Microbiol 2022,204(2),144 PubMed DOI
Wani A.K.; Chopra C.; Singh R.; Ahmad S.; Américo-Pinheiro J.H.P.; Mining microbial tapestry using high-throughput sequencing and in silico analysis of Trehalose synthase (TreS) derived from hot spring metagenome. Biocatal Agric Biotechnol 2023,52,102829 DOI
Dhanjal D.S.; Singh S.; Kumar V.; Ramamurthy P.C.; Chopra C.; Wani A.K.; Singh R.; Singh J.; Isolation and characterization of cellulase-producing myxobacterial strain from the unique niche of mirgund wetland from the north-western himalayas. J Appl Biol Biotechnol 2023,11,119-125 DOI
Wani A.K.; Akhtar N.; Datta B.; Pandey J.; Mannan M.A.; Volatiles and metabolites of microbes 2021,283-303 DOI
Bhat A.A.; Tandon N.; Singh I.; Tandon R.; Structure-activity relationship (SAR) and antibacterial activity of pyrrolidine based hybrids: A review. J Mol Struct 2023,1283,135175 DOI
Diwan D.; Cheng L.; Usmani Z.; Sharma M.; Holden N.; Willoughby N.; Sangwan N.; Baadhe R.R.; Liu C.; Gupta V.K.; Microbial Cancer Therapeutics: A Promising Approach 2021
Agrawal S.; Acharya D.; Adholeya A.; Barrow C.J.; Deshmukh S.K.; Nonribosomal peptides from marine microbes and their antimicrobial and anticancer potential. Front Pharmacol 2017,8,828 PubMed DOI
Franco Y.L.; Vaidya T.R.; Ait-Oudhia S.; Anticancer and cardio-protective effects of liposomal doxorubicin in the treatment of breast cancer. Breast Cancer 2018,10,131-141
Taymaz-Nikerel H.; Karabekmez M.E.; Eraslan S.; Kırdar B.; Doxorubicin induces an extensive transcriptional and metabolic rewiring in yeast cells. Sci Rep 2018,8(1),13672 PubMed DOI
Liu Y.; Zhou H.; Ma X.; Lin C.; Lu L.; Liu D.; Ma D.; Gao X.; Qian X.Y.; Prodigiosin inhibits proliferation, migration, and invasion of nasopharyngeal cancer cells. Cell Physiol Biochem 2018,48(4),1556-1562 PubMed DOI
Cassier P.A.; Dufresne A.; Blay J-Y.; Fayette J.; Trabectedin and its potential in the treatment of soft tissue sarcoma. Ther Clin Risk Manag 2008,4(1),109-116 PubMed
Mogi T.; Kita K.; Gramicidin S and polymyxins: The revival of cationic cyclic peptide antibiotics. Cell Mol Life Sci 2009,66(23),3821-3826 PubMed DOI
Liu S.; Cao C.; Zhang Y.; Liu G.; Ren W.; Ye Y.; Sun T.; PI3K/Akt inhibitor partly decreases TNF-α-induced activation of fibroblast-like synoviocytes in osteoarthritis. J Orthop Surg Res 2019,14(1),425 PubMed DOI
Hideshima T.; Catley L.; Yasui H.; Ishitsuka K.; Raje N.; Mitsiades C.; Podar K.; Munshi N.C.; Chauhan D.; Richardson P.G.; Anderson K.C.; Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood 2006,107(10),4053-4062 PubMed DOI
Juricic P.; Lu Y.X.; Leech T.; Drews L.F.; Paulitz J.; Lu J.; Nespital T.; Azami S.; Regan J.C.; Funk E.; Fröhlich J.; Grönke S.; Partridge L.; Long-lasting geroprotection from brief rapamycin treatment in early adulthood by persistently increased intestinal autophagy. Nature Aging 2022,2(9),824-836 PubMed DOI
Zhang C.; Wan J.; Liu Q.; Long F.; Wen Z.; Liu Y.; METTL3 upregulates COPS5 expression in osteosarcoma in an m6A-related manner to promote osteosarcoma progression. Exp Cell Res 2022,420(2),113353 PubMed DOI
Althobaiti N.A.; Raza S.H.A.; The potential therapeutic role of camel milk exosomes. Ann Anim Sci 2022,10,67-91
Babichev Y.; Kabaroff L.; Datti A.; Uehling D.; Isaac M.; Al-awar R.; Prakesch M.; Sun R.X.; Boutros P.C.; Venier R.; Dickson B.C.; Gladdy R.A.; PI3K/AKT/mTOR inhibition in combination with doxorubicin is an effective therapy for leiomyosarcoma. J Transl Med 2016,14(1),67 PubMed DOI
Rossetti A.; Petragnano F.; Milazzo L.; Vulcano F.; Macioce G.; Codenotti S.; Cassandri M.; Pomella S.; Cicchetti F.; Fasciani I.; Antinozzi C.; Di Luigi L.; Festuccia C.; De Felice F.; Vergine M.; Fanzani A.; Rota R.; Maggio R.; Polimeni A.; Tombolini V.; Gravina G.L.; Marampon F.; Romidepsin (FK228) fails in counteracting the transformed phenotype of rhabdomyosarcoma cells but efficiently radiosensitizes, in vitro and in vivo, the alveolar phenotype subtype. Int J Radiat Biol 2021,97(7),943-957 PubMed DOI
Lien W.C.; Chen T.Y.; Sheu S.Y.; Lin T.C.; Kang F.C.; Yu C.H.; Kuan T.S.; Huang B.M.; Wang C.Y.; 7‐hydroxy‐staurosporine, UCN‐01, induces DNA damage response, and autophagy in human osteosarcoma U2‐OS cells. J Cell Biochem 2018,119(6),4729-4741 PubMed DOI
Nesic K.; Ivanovic S.; Nesic V.; Fusarial toxins: Secondary metabolites of Fusarium fungi. Rev Environ Contam Toxicol 2014,228,101-120 PubMed DOI
Yao P.; Yang D.; Hu D.; Role of PI3K/AKT pathways in mitomycin-mediated apoptosis of WB-F344 cells. Zhonghua Gan Zang Bing Za Zhi 2015,23(3),200-203 PubMed DOI
Heinilä L.M.P.; Jokela J.; Ahmed M.N.; Wahlsten M.; Kumar S.; Hrouzek P.; Permi P.; Koistinen H.; Fewer D.P.; Sivonen K.; Discovery of varlaxins, new aeruginosin-type inhibitors of human trypsins. Org Biomol Chem 2022,20(13),2681-2692 PubMed DOI
Thomas S.; Quinn B.A.; Das S.K.; Dash R.; Emdad L.; Dasgupta S.; Wang X.Y.; Dent P.; Reed J.C.; Pellecchia M.; Sarkar D.; Fisher P.B.; Targeting the Bcl-2 family for cancer therapy. Expert Opin Ther Targets 2013,17(1),61-75 PubMed DOI
Araki Y.; Hanaki Y.; Kita M.; Hayakawa K.; Irie K.; Nokura Y.; Nakazaki A.; Nishikawa T.; Total synthesis and biological evaluation of oscillatoxins D, E, and F. Biosci Biotechnol Biochem 2021,85(6),1371-1382 PubMed DOI
Chilczuk T.; Steinborn C.; Breinlinger S.; Zimmermann-Klemd A.M.; Huber R.; Enke H.; Enke D.; Niedermeyer T.H.J.; Gründemann C.; Hapalindoles from the cyanobacterium hapalosiphon sp. inhibit T cell proliferation. Planta Med 2020,86(2),96-103 PubMed DOI
Nakano K.; Takahashi S.; Current molecular targeted therapies for bone and soft tissue sarcomas. Int J Mol Sci 2018,19(3),739 PubMed DOI
Liu Q.; Li J.; Zheng H.; Yang S.; Hua Y.; Huang N.; Kleeff J.; Liao Q.; Wu W.; Adoptive cellular immunotherapy for solid neoplasms beyond CAR-T. Mol Cancer 2023,22(1),28 PubMed DOI
Paskeh M.D.A.; Ghadyani F.; Hashemi M.; Abbaspour A.; Zabolian A.; Javanshir S.; Razzazan M.; Mirzaei S.; Entezari M.; Goharrizi M.A.S.B.; Salimimoghadam S.; Aref A.R.; Kalbasi A.; Rajabi R.; Rashidi M.; Taheriazam A.; Sethi G.; Biological impact and therapeutic perspective of targeting PI3K/Akt signaling in hepatocellular carcinoma: Promises and Challenges. Pharmacol Res 2023,187,106553 PubMed DOI
Hopkins B.D.; Pauli C.; Du X.; Wang D.G.; Li X.; Wu D.; Amadiume S.C.; Goncalves M.D.; Hodakoski C.; Lundquist M.R.; Bareja R.; Ma Y.; Harris E.M.; Sboner A.; Beltran H.; Rubin M.A.; Mukherjee S.; Cantley L.C.; Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature 2018,560(7719),499-503 PubMed DOI
Fakih M.G.; Kopetz S.; Kuboki Y.; Kim T.W.; Munster P.N.; Krauss J.C.; Falchook G.S.; Han S.W.; Heinemann V.; Muro K.; Strickler J.H.; Hong D.S.; Denlinger C.S.; Girotto G.; Lee M.A.; Henary H.; Tran Q.; Park J.K.; Ngarmchamnanrith G.; Prenen H.; Price T.J.; Sotorasib for previously treated colorectal cancers with KRASG12C mutation (CodeBreaK100): A prespecified analysis of a single-arm, phase 2 trial. Lancet Oncol 2022,23(1),115-124 PubMed DOI