The Influence of Metabolic Syndrome on Potential Aging Biomarkers in Participants with Metabolic Syndrome Compared to Healthy Controls
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
Research area HEAS
Cooperatio Program
SVV-2023-260656
Charles University, Faculty of Medicine in Hradec Kralove, the Czech Republic
PubMed
38275413
PubMed Central
PMC10813522
DOI
10.3390/biomedicines12010242
PII: biomedicines12010242
Knihovny.cz E-resources
- Keywords
- AGEs, DNA/RNA damage GDF11/15, NAD+, NLRP3, aging, follistatin, klotho, metabolic syndrome, sirtuin 1, telomerase, vitamin D,
- Publication type
- Journal Article MeSH
BACKGROUND: Biological aging is a physiological process that can be altered by various factors. The presence of a chronic metabolic disease can accelerate aging and increase the risk of further chronic diseases. The aim of the study was to determine whether the presence of metabolic syndrome (MetS) affects levels of markers that are associated with, among other things, aging. MATERIAL AND METHODS: A total of 169 subjects (58 with MetS, and 111 without metabolic syndrome, i.e., non-MetS) participated in the study. Levels of telomerase, GDF11/15, sirtuin 1, follistatin, NLRP3, AGEs, klotho, DNA/RNA damage, NAD+, vitamin D, and blood lipids were assessed from blood samples using specific enzyme-linked immunosorbent assay (ELISA) kits. RESULTS: Telomerase (p < 0.01), DNA/RNA damage (p < 0.006) and GDF15 (p < 0.02) were higher in MetS group compared to non-MetS group. Only vitamin D levels were higher in the non-MetS group (p < 0.0002). Differences between MetS and non-MetS persons were also detected in groups divided according to age: in under 35-year-olds and those aged 35-50 years. CONCLUSIONS: Our results show that people with MetS compared to those without MetS have higher levels of some of the measured markers of biological aging. Thus, the presence of MetS may accelerate biological aging, which may be associated with an increased risk of chronic comorbidities that accompany MetS (cardiovascular, inflammatory, autoimmune, neurodegenerative, metabolic, or cancer diseases) and risk of premature death from all causes.
See more in PubMed
López-Otín C., Blasco M.A., Partridge L., Serrano M., Kroemer G. The Hallmarks of Aging. Cell. 2013;153:1194. doi: 10.1016/j.cell.2013.05.039. PubMed DOI PMC
Harvanek Z.M., Fogelman N., Xu K., Sinha R. Psychological and Biological Resilience Modulates the Effects of Stress on Epigenetic Aging. Transl. Psychiatry. 2021;11:601. doi: 10.1038/s41398-021-01735-7. PubMed DOI PMC
Pyrkov T.V., Avchaciov K., Tarkhov A.E., Menshikov L.I., Gudkov A.V., Fedichev P.O. Longitudinal Analysis of Blood Markers Reveals Progressive Loss of Resilience and Predicts Human Lifespan Limit. Nat. Commun. 2021;12:2765. doi: 10.1038/s41467-021-23014-1. PubMed DOI PMC
Vaiserman A., Krasnienkov D. Telomere Length as a Marker of Biological Age: State-of-the-Art, Open Issues, and Future Perspectives. Front. Genet. 2021;11:1816. doi: 10.3389/fgene.2020.630186. PubMed DOI PMC
van der Rijt S., Molenaars M., McIntyre R.L., Janssens G.E., Houtkooper R.H. Integrating the Hallmarks of Aging Throughout the Tree of Life: A Focus on Mitochondrial Dysfunction. Front. Cell Dev. Biol. 2020;8:1422. doi: 10.3389/fcell.2020.594416. PubMed DOI PMC
Liu J., Ding Y., Liu Z., Liang X. Senescence in Mesenchymal Stem Cells: Functional Alterations, Molecular Mechanisms, and Rejuvenation Strategies. Front. Cell Dev. Biol. 2020;8:258. doi: 10.3389/fcell.2020.00258. PubMed DOI PMC
Mendrick D.L., Diehl A.M., Topor L.S., Dietert R.R., Will Y., La Merrill M.A., Bouret S., Varma V., Hastings K.L., Schug T.T., et al. Metabolic Syndrome and Associated Diseases: From the Bench to the Clinic. Toxicol. Sci. 2018;162:36–42. doi: 10.1093/toxsci/kfx233. PubMed DOI PMC
Medina G., Vera-Lastra O., Peralta-Amaro A.L., Jiménez-Arellano M.P., Saavedra M.A., Cruz-Domínguez M.P., Jara L.J. Metabolic Syndrome, Autoimmunity and Rheumatic Diseases. Pharmacol. Res. 2018;133:277–288. doi: 10.1016/j.phrs.2018.01.009. PubMed DOI
Dominguez L.J., Barbagallo M. The Biology of the Metabolic Syndrome and Aging. Curr. Opin. Clin. Nutr. Metab. Care. 2016;19:5–11. doi: 10.1097/MCO.0000000000000243. PubMed DOI
Janssen J.A.M.J.L., Street E. Hyperinsulinemia and Its Pivotal Role in Aging, Obesity, Type 2 Diabetes, Cardiovascular Disease and Cancer. Int. J. Mol. Sci. 2021;22:7797. doi: 10.3390/ijms22157797. PubMed DOI PMC
Shekhidem H.A., Sharvit L., Leman E., Manov I., Roichman A., Holtze S., Huffman D.M., Cohen H.Y., Hildebrandt T.B., Shams I., et al. Telomeres and Longevity: A Cause or an Effect? Int. J. Mol. Sci. 2019;20:3233. doi: 10.3390/ijms20133233. PubMed DOI PMC
Romaniuk A., Paszel-Jaworska A., Totoń E., Lisiak N., Hołysz H., Królak A., Grodecka-Gazdecka S., Rubiś B. The Non-Canonical Functions of Telomerase: To Turn off or Not to Turn Off. Mol. Biol. Rep. 2019;46:1401–1411. doi: 10.1007/s11033-018-4496-x. PubMed DOI
Shay J.W. Role of Telomeres and Telomerase in Aging and Cancer. Cancer Discov. 2016;6:584–593. doi: 10.1158/2159-8290.CD-16-0062. PubMed DOI PMC
Alves-Fernandes D.K., Jasiulionis M.G. The Role of SIRT1 on DNA Damage Response and Epigenetic Alterations in Cancer. Int. J. Mol. Sci. 2019;20:3153. doi: 10.3390/ijms20133153. PubMed DOI PMC
Mourits V.P., Helder L.S., Matzaraki V., Koeken V.A.C.M., Groh L., de Bree L.C.J., Moorlag S.J.C.F.M., van der Heijden C.D.C.C., Keating S.T., van Puffelen J.H., et al. The Role of Sirtuin 1 on the Induction of Trained Immunity. Cell. Immunol. 2021;366:104393. doi: 10.1016/j.cellimm.2021.104393. PubMed DOI
Lee S.H., Lee J.H., Lee H.Y., Min K.J. Sirtuin Signaling in Cellular Senescence and Aging. BMB Rep. 2019;52:24. doi: 10.5483/BMBRep.2019.52.1.290. PubMed DOI PMC
Kane A.E., Sinclair D.A. Sirtuins and NAD+ in the Development and Treatment of Metabolic and Cardiovascular Diseases. Circ. Res. 2018;123:868–885. doi: 10.1161/CIRCRESAHA.118.312498. PubMed DOI PMC
Covarrubias A.J., Perrone R., Grozio A., Verdin E. NAD+ Metabolism and Its Roles in Cellular Processes during Ageing. Nat. Rev. Mol. Cell Biol. 2020;22:119–141. doi: 10.1038/s41580-020-00313-x. PubMed DOI PMC
Sharma C., Kaur A., Thind S.S., Singh B., Raina S. Advanced Glycation End-Products (AGEs): An Emerging Concern for Processed Food Industries. J. Food Sci. Technol. 2015;52:7561–7576. doi: 10.1007/s13197-015-1851-y. PubMed DOI PMC
Akhter F., Chen D., Akhter A., Yan S.F., Yan S.S. Du Age-Dependent Accumulation of Dicarbonyls and Advanced Glycation Endproducts (AGEs) Associates with Mitochondrial Stress. Free Radic. Biol. Med. 2021;164:429–438. doi: 10.1016/j.freeradbiomed.2020.12.021. PubMed DOI PMC
Gonzalez-Hunt C.P., Wadhwa M., Sanders L.H. DNA Damage by Oxidative Stress: Measurement Strategies for Two Genomes. Curr. Opin. Toxicol. 2018;7:87–94. doi: 10.1016/j.cotox.2017.11.001. DOI
Luo J., Mills K., le Cessie S., Noordam R., van Heemst D. Ageing, Age-Related Diseases and Oxidative Stress: What to Do Next? Ageing Res. Rev. 2020;57:100982. doi: 10.1016/j.arr.2019.100982. PubMed DOI
Blevins H.M., Xu Y., Biby S., Zhang S. The NLRP3 Inflammasome Pathway: A Review of Mechanisms and Inhibitors for the Treatment of Inflammatory Diseases. Front. Aging Neurosci. 2022;14:879021. doi: 10.3389/fnagi.2022.879021. PubMed DOI PMC
Zhao W., Zhou L., Novák P., Shi X., Lin C.B., Zhu X., Yin K. Metabolic Dysfunction in the Regulation of the NLRP3 Inflammasome Activation: A Potential Target for Diabetic Nephropathy. J. Diabetes Res. 2022;2022:2193768. doi: 10.1155/2022/2193768. PubMed DOI PMC
Liu Y., Xu X., Lei W., Hou Y., Zhang Y., Tang R., Yang Z., Tian Y., Zhu Y., Wang C., et al. The NLRP3 Inflammasome in Fibrosis and Aging: The Known Unknowns. Ageing Res. Rev. 2022;79:101638. doi: 10.1016/j.arr.2022.101638. PubMed DOI
Assadi A., Zahabi A., Hart R.A. GDF15, an Update of the Physiological and Pathological Roles It Plays: A Review. Pflugers Arch. 2020;472:1535–1546. doi: 10.1007/s00424-020-02459-1. PubMed DOI
Frohlich J., Vinciguerra M. Candidate Rejuvenating Factor GDF11 and Tissue Fibrosis: Friend or Foe? Geroscience. 2020;42:1475–1498. doi: 10.1007/s11357-020-00279-w. PubMed DOI PMC
Song L., Wu F., Li C., Zhang S. Dietary Intake of GDF11 Delays the Onset of Several Biomarkers of Aging in Male Mice through Anti-Oxidant System via Smad2/3 Pathway. Biogerontology. 2022;23:341–362. doi: 10.1007/s10522-022-09967-w. PubMed DOI PMC
Wang D., Day E.A., Townsend L.K., Djordjevic D., Jørgensen S.B., Steinberg G.R. GDF15: Emerging Biology and Therapeutic Applications for Obesity and Cardiometabolic Disease. Nat. Rev. Endocrinol. 2021;17:592–607. doi: 10.1038/s41574-021-00529-7. PubMed DOI
Typiak M., Piwkowska A. Antiinflammatory Actions of Klotho: Implications for Therapy of Diabetic Nephropathy. Int. J. Mol. Sci. 2021;22:956. doi: 10.3390/ijms22020956. PubMed DOI PMC
Kim B., Yoon H., Kim T., Lee S. Role of Klotho as a Modulator of Oxidative Stress Associated with Ovarian Tissue Cryopreservation. Int. J. Mol. Sci. 2021;22:3547. doi: 10.3390/ijms222413547. PubMed DOI PMC
Kim J.-H., Hwang K.-H., Park K.-S., Kong I.D., Cha S.-K. Biological Role of Anti-Aging Protein Klotho. J. Lifestyle Med. 2015;5:1–6. doi: 10.15280/jlm.2015.5.1.1. PubMed DOI PMC
Wu C., Borné Y., Gao R., López Rodriguez M., Roell W.C., Wilson J.M., Regmi A., Luan C., Aly D.M., Peter A., et al. Elevated Circulating Follistatin Associates with an Increased Risk of Type 2 Diabetes. Nat. Commun. 2021;12:6486. doi: 10.1038/s41467-021-26536-w. PubMed DOI PMC
Sylow L., Vind B.F., Kruse R., Møller P.M., Wojtaszewski J.F.P., Richter E.A., Højlund K. Circulating Follistatin and Activin A and Their Regulation by Insulin in Obesity and Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2020;105:1343–1354. doi: 10.1210/clinem/dgaa090. PubMed DOI
Pervin S., Reddy S.T., Singh R. Novel Roles of Follistatin/Myostatin in Transforming Growth Factor-β Signaling and Adipose Browning: Potential for Therapeutic Intervention in Obesity Related Metabolic Disorders. Front. Endocrinol. 2021;12:1. doi: 10.3389/fendo.2021.653179. PubMed DOI PMC
Liu W., Zhang L., Xu H.J., Li Y., Hu C.M., Yang J.Y., Sun M.Y. The Anti-Inflammatory Effects of Vitamin D in Tumorigenesis. Int. J. Mol. Sci. 2018;19:2736. doi: 10.3390/ijms19092736. PubMed DOI PMC
Vranić L., Mikolašević I., Milić S. Vitamin D Deficiency: Consequence or Cause of Obesity? Medicina. 2019;55:541. doi: 10.3390/medicina55090541. PubMed DOI PMC
Park J.E., Pichiah P.B.T., Cha Y.S. Vitamin D and Metabolic Diseases: Growing Roles of Vitamin D. J. Obes. Metab. Syndr. 2018;27:223–232. doi: 10.7570/jomes.2018.27.4.223. PubMed DOI PMC
Borsky P., Holmannova D., Andrys C., Kremlacek J., Fiala Z., Parova H., Rehacek V., Svadlakova T., Byma S., Kucera O., et al. Evaluation of Potential Aging Biomarkers in Healthy Individuals: Telomerase, AGEs, GDF11/15, Sirtuin 1, NAD+, NLRP3, DNA/RNA Damage, and Klotho. Biogerontology. 2023;24:937–955. doi: 10.1007/s10522-023-10054-x. PubMed DOI PMC
Razgonova M.P., Zakharenko A.M., Golokhvast K.S., Thanasoula M., Sarandi E., Nikolouzakis K., Fragkiadaki P., Tsoukalas D., Spandidos D.A., Tsatsakis A. Telomerase and Telomeres in Aging Theory and Chronographic Aging Theory (Review) Mol. Med. Rep. 2020;22:1679–1694. doi: 10.3892/mmr.2020.11274. PubMed DOI PMC
Wu L., Fidan K., Um J.Y., Ahn K.S. Telomerase: Key Regulator of Inflammation and Cancer. Pharmacol. Res. 2020;155:104726. doi: 10.1016/j.phrs.2020.104726. PubMed DOI
Baker R.G., Hayden M.S., Ghosh S. NF-ΚB, Inflammation, and Metabolic Disease. Cell Metab. 2011;13:11–22. doi: 10.1016/j.cmet.2010.12.008. PubMed DOI PMC
Zhang B., Chen J., Cheng A.S.L., Ko B.C.B. Depletion of Sirtuin 1 (SIRT1) Leads to Epigenetic Modifications of Telomerase (TERT) Gene in Hepatocellular Carcinoma Cells. PLoS ONE. 2014;9:e84931. doi: 10.1371/journal.pone.0084931. PubMed DOI PMC
Kuhlow D., Florian S., von Figura G., Weimer S., Schulz N., Petzke K.J., Zarse K., Pfeiffer A.F.H., Rudolph K.L., Ristow M. Telomerase Deficiency Impairs Glucose Metabolism and Insulin Secretion. Aging. 2010;2:650–658. doi: 10.18632/aging.100200. PubMed DOI PMC
Wang D.X., Zhu X.D., Ma X.R., Wang L.B., Dong Z.J., Lin R.R., Cao Y.N., Zhao J.W. Loss of Growth Differentiation Factor 11 Shortens Telomere Length by Downregulating Telomerase Activity. Front. Physiol. 2021;12:726345. doi: 10.3389/fphys.2021.726345. PubMed DOI PMC
Chen L., Luo G., Liu Y., Lin H., Zheng C., Xie D., Zhu Y., Chen L., Huang X., Hu D., et al. Growth Differentiation Factor 11 Attenuates Cardiac Ischemia Reperfusion Injury via Enhancing Mitochondrial Biogenesis and Telomerase Activity. Cell Death Dis. 2021;12:665. doi: 10.1038/s41419-021-03954-8. PubMed DOI PMC
Jaijyan D.K., Selariu A., Cruz-Cosme R., Tong M., Yang S., Stefa A., Kekich D., Sadoshima J., Herbig U., Tang Q., et al. New Intranasal and Injectable Gene Therapy for Healthy Life Extension. Proc. Natl. Acad. Sci. USA. 2022;119:e2121499119. doi: 10.1073/pnas.2121499119. PubMed DOI PMC
Hansen J., Rinnov A., Krogh-Madsen R., Fischer C.P., Andreasen A.S., Berg R.M.G., Møller K., Pedersen B.K., Plomgaard P. Plasma Follistatin Is Elevated in Patients with Type 2 Diabetes: Relationship to Hyperglycemia, Hyperinsulinemia, and Systemic Low-Grade Inflammation. Diabetes Metab. Res. Rev. 2013;29:463–472. doi: 10.1002/dmrr.2415. PubMed DOI
Mafi F., Biglari S., Afousi A.G., Gaeini A.A. Improvement in Skeletal Muscle Strength and Plasma Levels of Follistatin and Myostatin Induced by an 8-Week Resistance Training and Epicatechin Supplementation in Sarcopenic Older Adults. J. Aging Phys. Act. 2019;27:384–391. doi: 10.1123/japa.2017-0389. PubMed DOI
Wang C.M., Chang C.S., Chang Y.F., Wu S.J., Chiu C.J., Hou M.T., Chen C.Y., Liu P.Y., Wu C.H. Inverse Relationship between Metabolic Syndrome and 25-Hydroxyvitamin D Concentration in Elderly People without Vitamin D Deficiency. Sci. Rep. 2018;8:17052. doi: 10.1038/s41598-018-35229-2. PubMed DOI PMC
Liu L., Cao Z., Lu F., Liu Y., Lv Y., Qu Y., Gu H., Li C., Cai J., Ji S., et al. Vitamin D Deficiency and Metabolic Syndrome in Elderly Chinese Individuals: Evidence from CLHLS. Nutr. Metab. 2020;17:58. doi: 10.1186/s12986-020-00479-3. PubMed DOI PMC
Meehan M., Penckofer S. The Role of Vitamin D in the Aging Adult. J. Aging Gerontol. 2014;2:60–71. doi: 10.12974/2309-6128.2014.02.02.1. PubMed DOI PMC
Rao Z., Chen X., Wu J., Xiao M., Zhang J., Wang B., Fang L., Zhang H., Wang X., Yang S., et al. Vitamin D Receptor Inhibits NLRP3 Activation by Impeding Its BRCC3-Mediated Deubiquitination. Front. Immunol. 2019;10:2783. doi: 10.3389/fimmu.2019.02783. PubMed DOI PMC
Tunbridge M., Gois P.H.F. Vitamin D and the NLRP3 Inflammasome. Appl. Sci. 2020;10:8462. doi: 10.3390/app10238462. DOI
de la Guía-Galipienso F., Martínez-Ferran M., Vallecillo N., Lavie C.J., Sanchis-Gomar F., Pareja-Galeano H. Vitamin D and Cardiovascular Health. Clin. Nutr. 2021;40:2946. doi: 10.1016/j.clnu.2020.12.025. PubMed DOI PMC
Kheirouri S., Alizadeh M. Vitamin D and Advanced Glycation End Products and Their Receptors. Pharmacol. Res. 2020;158:104879. doi: 10.1016/j.phrs.2020.104879. PubMed DOI
Omidian M., Djalali M., Javanbakht M.H., Eshraghian M.R., Abshirini M., Omidian P., Alvandi E., Mahmoudi M. Effects of Vitamin D Supplementation on Advanced Glycation End Products Signaling Pathway in T2DM Patients: A Randomized, Placebo-Controlled, Double Blind Clinical Trial. Diabetol. Metab. Syndr. 2019;11:86. doi: 10.1186/s13098-019-0479-x. PubMed DOI PMC
Kim Y., Noren Hooten N., Evans M.K. CRP Stimulates GDF15 Expression in Endothelial Cells through P53. Mediat. Inflamm. 2018;2018:8278039. doi: 10.1155/2018/8278039. PubMed DOI PMC
Carballo-Casla A., García-Esquinas E., Buño-Soto A., Struijk E.A., López-García E., Rodríguez-Artalejo F., Ortolá R. Metabolic Syndrome and Growth Differentiation Factor 15 in Older Adults. Geroscience. 2022;44:867–880. doi: 10.1007/s11357-021-00370-w. PubMed DOI PMC
Conte M., Martucci M., Mosconi G., Chiariello A., Cappuccilli M., Totti V., Santoro A., Franceschi C., Salvioli S. GDF15 Plasma Level Is Inversely Associated with Level of Physical Activity and Correlates with Markers of Inflammation and Muscle Weakness. Front. Immunol. 2020;11:915. doi: 10.3389/fimmu.2020.00915. PubMed DOI PMC
Monserrat-Mesquida M., Quetglas-Llabrés M., Capó X., Bouzas C., Mateos D., Pons A., Tur J.A., Sureda A. Metabolic Syndrome Is Associated with Oxidative Stress and Proinflammatory State. Antioxidants. 2020;9:236. doi: 10.3390/antiox9030236. PubMed DOI PMC
Borska L., Kremlacek J., Andrys C., Krejsek J., Hamakova K., Borsky P., Palicka V., Rehacek V., Malkova A., Fiala Z. Systemic Inflammation, Oxidative Damage to Nucleic Acids, and Metabolic Syndrome in the Pathogenesis of Psoriasis. Int. J. Mol. Sci. 2017;18:2238. doi: 10.3390/ijms18112238. PubMed DOI PMC
Demirbag R., Yilmaz R., Gur M., Celik H., Guzel S., Selek S., Kocyigit A. DNA Damage in Metabolic Syndrome and Its Association with Antioxidative and Oxidative Measurements. Int. J. Clin. Pract. 2006;60:1187–1193. doi: 10.1111/j.1742-1241.2006.01042.x. PubMed DOI
Karaman A., Aydin H., Geçkinli B., Çetinkaya A., Karaman S. DNA Damage Is Increased in Lymphocytes of Patients with Metabolic Syndrome. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2015;782:30–35. doi: 10.1016/j.mrgentox.2015.03.009. PubMed DOI
Yousefzadeh M., Henpita C., Vyas R., Soto-Palma C., Robbins P., Niedernhofer L. Dna Damage—How and Why We Age? eLife. 2021;10:e62852. doi: 10.7554/eLife.62852. PubMed DOI PMC
Licandro G., Ling Khor H., Beretta O., Lai J., Derks H., Laudisi F., Conforti-Andreoni C., Liang Qian H., Gee Teng G., Ricciardi-Castagnoli P., et al. The NLRP3 Inflammasome Affects DNA Damage Responses after Oxidative and Genotoxic Stress in Dendritic Cells. Eur. J. Immunol. 2013;43:2126–2137. doi: 10.1002/eji.201242918. PubMed DOI
Abderrazak A., Syrovets T., Couchie D., El Hadri K., Friguet B., Simmet T., Rouis M. NLRP3 Inflammasome: From a Danger Signal Sensor to a Regulatory Node of Oxidative Stress and Inflammatory Diseases. Redox Biol. 2015;4:296–307. doi: 10.1016/j.redox.2015.01.008. PubMed DOI PMC