Spatial Localization of Defects in Halide Perovskites Using Photothermal Deflection Spectroscopy

. 2024 Feb 08 ; 15 (5) : 1273-1278. [epub] 20240126

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38278141

Photothermal deflection spectroscopy (PDS) emerges as a highly sensitive noncontact technique for measuring absorption spectra and serves for studying defect states within semiconductor thin films. In our study, we applied PDS to methylammonium lead bromide single crystals. By analyzing the frequency dependence of the PDS spectra and the phase difference of the signal, we can differentiate between surface and bulk deep defect absorption states. This methodology allowed us to investigate the effects of bismuth doping and light-induced degradation. The identified absorption states are attributed to MA+ vibrational states and structural defects, and their influence on the nonradiative recombination probability is discussed. This distinction significantly enhances our capability to characterize and analyze perovskite materials at a deeper level.

Zobrazit více v PubMed

Ugur E.; Ledinský M.; Allen T. G.; Holovský J.; Vlk A.; De Wolf S. Life on the Urbach Edge. J. Phys. Chem. Lett. 2022, 13 (33), 7702–7711. 10.1021/acs.jpclett.2c01812. PubMed DOI

Ledinský M.; Vlk A.; Schönfeldová T.; Holovský J.; Aydin E.; Dang H. X.; Hájková Z.; Landová L.; Valenta J.; Fejfar A.; De Wolf S. Impact of Cation Multiplicity on Halide Perovskite Defect Densities and Solar Cell Voltages. J. Phys. Chem. C 2020, 124 (50), 27333–27339. 10.1021/acs.jpcc.0c08193. DOI

Holovský J.; De Wolf S.; Werner J.; Remeš Z.; Müller M.; Neykova N.; Ledinský M.; Černá L.; Hrzina P.; Löper P.; Niesen B.; Ballif C. Photocurrent Spectroscopy of Perovskite Layers and Solar Cells: A Sensitive Probe of Material Degradation. J. Phys. Chem. Lett. 2017, 8 (4), 838–843. 10.1021/acs.jpclett.6b02854. PubMed DOI

Sell J.Photothermal Investigations of Solids and Fluids; Elsevier Science: St. Louis, MO, 2014.

Jackson W. B.; Amer N. M.; Boccara A. C.; Fournier D. Photothermal Deflection Spectroscopy and Detection. Appl. Opt. 1981, 20 (8), 1333. 10.1364/AO.20.001333. PubMed DOI

Boccara A. C.; Jackson W.; Amer N. M.; Fournier D. Sensitive Photothermal Deflection Technique for Measuring Absorption in Optically Thin Media. Opt. Lett. 1980, 5 (9), 377. 10.1364/OL.5.000377. PubMed DOI

Boccara A. C.; Fournier D.; Badoz J. Thermo-optical Spectroscopy: Detection by the ’’mirage Effect’’. Appl. Phys. Lett. 1980, 36 (2), 130–132. 10.1063/1.91395. DOI

De Wolf S.; Holovsky J.; Moon S.-J.; Löper P.; Niesen B.; Ledinsky M.; Haug F.-J.; Yum J.-H.; Ballif C. Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. J. Phys. Chem. Lett. 2014, 5 (6), 1035–1039. 10.1021/jz500279b. PubMed DOI

Kiyek V. M.; Birkhölzer Y. A.; Smirnov Y.; Ledinsky M.; Remes Z.; Momand J.; Kooi B. J.; Koster G.; Rijnders G.; Morales-Masis M. Single-Source, Solvent-Free, Room Temperature Deposition of Black γ-CsSnI DOI

Ugur E.; Alarousu E.; Khan J. I.; Vlk A.; Aydin E.; De Bastiani M.; Balawi A. H.; Gonzalez Lopez S. P.; Ledinský M.; De Wolf S.; Laquai F. How Humidity and Light Exposure Change the Photophysics of Metal Halide Perovskite Solar Cells. Sol. RRL 2020, 4 (11), 2000382 10.1002/solr.202000382. DOI

Nesládek M.; Vaněček M.; Rosa J.; Quaeyhaegens C.; Stals L. M. Subgap Optical Absorption in CVD Diamond Films Determined from Photothermal Deflection Spectroscopy. Diam. Relat. Mater. 1995, 4 (5–6), 697–701. 10.1016/0925-9635(94)05248-4. DOI

Remes Z.; Vanecek M.; Yates H. M.; Evans P.; Sheel D. W. Optical Properties of SnO DOI

Frye R. C.; Kumler J. J.; Wong C. C. Investigation of Surface Passivation of Amorphous Silicon Using Photothermal Deflection Spectroscopy. Appl. Phys. Lett. 1987, 50 (2), 101–103. 10.1063/1.97866. DOI

Rosencwaig A.; Gersho A. Theory of the Photoacoustic Effect with Solids. J. Appl. Phys. 1976, 47 (1), 64–69. 10.1063/1.322296. DOI

Ge C.; Hu M.; Wu P.; Tan Q.; Chen Z.; Wang Y.; Shi J.; Feng J. Ultralow Thermal Conductivity and Ultrahigh Thermal Expansion of Single-Crystal Organic–Inorganic Hybrid Perovskite CH DOI

Haeger T.; Heiderhoff R.; Riedl T. Thermal Properties of Metal-Halide Perovskites. J. Mater. Chem. C 2020, 8 (41), 14289–14311. 10.1039/D0TC03754K. DOI

Elbaz G. A.; Ong W.-L.; Doud E. A.; Kim P.; Paley D. W.; Roy X.; Malen J. A. Phonon Speed, Not Scattering, Differentiates Thermal Transport in Lead Halide Perovskites. Nano Lett. 2017, 17 (9), 5734–5739. 10.1021/acs.nanolett.7b02696. PubMed DOI

Fox M.Optical Properties of Solids; Oxford Master Series in Condensed Matter Physics; Oxford University Press: Oxford, 2001.

Kucharski R.; Janicki Ł.; Zajac M.; Welna M.; Motyka M.; Skierbiszewski C.; Kudrawiec R. Transparency of Semi-Insulating, n-Type, and p-Type Ammonothermal GaN Substrates in the Near-Infrared, Mid-Infrared, and THz Spectral Range. Crystals 2017, 7 (7), 187. 10.3390/cryst7070187. DOI

Glaser T.; Müller C.; Sendner M.; Krekeler C.; Semonin O. E.; Hull T. D.; Yaffe O.; Owen J. S.; Kowalsky W.; Pucci A.; Lovrinčić R. Infrared Spectroscopic Study of Vibrational Modes in Methylammonium Lead Halide Perovskites. J. Phys. Chem. Lett. 2015, 6 (15), 2913–2918. 10.1021/acs.jpclett.5b01309. PubMed DOI

Schuck G.; Többens D. M.; Koch-Müller M.; Efthimiopoulos I.; Schorr S. Infrared Spectroscopic Study of Vibrational Modes across the Orthorhombic–Tetragonal Phase Transition in Methylammonium Lead Halide Single Crystals. J. Phys. Chem. C 2018, 122 (10), 5227–5237. 10.1021/acs.jpcc.7b11499. DOI

Kirchartz T.; Markvart T.; Rau U.; Egger D. A. Impact of Small Phonon Energies on the Charge-Carrier Lifetimes in Metal-Halide Perovskites. J. Phys. Chem. Lett. 2018, 9 (5), 939–946. 10.1021/acs.jpclett.7b03414. PubMed DOI

Ulatowski A. M.; Wright A. D.; Wenger B.; Buizza L. R. V.; Motti S. G.; Eggimann H. J.; Savill K. J.; Borchert J.; Snaith H. J.; Johnston M. B.; Herz L. M. Charge-Carrier Trapping Dynamics in Bismuth-Doped Thin Films of MAPbBr PubMed DOI

Yavari M.; Ebadi F.; Meloni S.; Wang Z. S.; Yang T. C.-J.; Sun S.; Schwartz H.; Wang Z.; Niesen B.; Durantini J.; Rieder P.; Tvingstedt K.; Buonassisi T.; Choy W. C. H.; Filippetti A.; Dittrich T.; Olthof S.; Correa-Baena J.-P.; Tress W. How Far Does the Defect Tolerance of Lead-Halide Perovskites Range? The Example of Bi Impurities Introducing Efficient Recombination Centers. J. Mater. Chem. A 2019, 7 (41), 23838–23853. 10.1039/C9TA01744E. DOI

Abdelhady A. L.; Saidaminov M. I.; Murali B.; Adinolfi V.; Voznyy O.; Katsiev K.; Alarousu E.; Comin R.; Dursun I.; Sinatra L.; Sargent E. H.; Mohammed O. F.; Bakr O. M. Heterovalent Dopant Incorporation for Bandgap and Type Engineering of Perovskite Crystals. J. Phys. Chem. Lett. 2016, 7 (2), 295–301. 10.1021/acs.jpclett.5b02681. PubMed DOI

Holovský J.; Peter Amalathas A.; Landová L.; Dzurňák B.; Conrad B.; Ledinský M.; Hájková Z.; Pop-Georgievski O.; Svoboda J.; Yang T. C.-J.; Jeangros Q. Lead Halide Residue as a Source of Light-Induced Reversible Defects in Hybrid Perovskite Layers and Solar Cells. ACS Energy Lett. 2019, 4 (12), 3011–3017. 10.1021/acsenergylett.9b02080. DOI

Maculan G.; Sheikh A. D.; Abdelhady A. L.; Saidaminov M. I.; Haque M. A.; Murali B.; Alarousu E.; Mohammed O. F.; Wu T.; Bakr O. M. CH PubMed DOI

Saidaminov M. I.; Haque M. A.; Almutlaq J.; Sarmah S.; Miao X.-H.; Begum R.; Zhumekenov A. A.; Dursun I.; Cho N.; Murali B.; Mohammed O. F.; Wu T.; Bakr O. M. Inorganic Lead Halide Perovskite Single Crystals: Phase-Selective Low-Temperature Growth, Carrier Transport Properties, and Self-Powered Photodetection. Adv. Opt. Mater. 2017, 5 (2), 1600704 10.1002/adom.201600704. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...