Synthesis and migrastatic activity of cytochalasin analogues lacking a macrocyclic moiety
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38283219
PubMed Central
PMC10809383
DOI
10.1039/d3md00535f
PII: d3md00535f
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Cytochalasans are known as inhibitors of actin polymerization and for their cytotoxic and migrastatic activity. In this study, we synthesized a series of cytochalasin derivatives that lack a macrocyclic moiety, a structural element traditionally considered essential for their biological activity. We focused on substituting the macrocycle with simple aryl-containing sidechains, and we have also synthesized compounds with different substitution patterns on the cytochalasin core. The cytochalasin analogues were screened for their migrastatic and cytotoxic activity. Compound 24 which shares the substitution pattern with natural cytochalasins B and D exhibited not only significant in vitro migrastatic activity towards BLM cells but also demonstrated inhibition of actin polymerization, with no cytotoxic effect observed at 50 μM concentration. Our results demonstrate that even compounds lacking the macrocyclic moiety can exhibit biological activities, albeit less pronounced than those of natural cytochalasins. However, our findings emphasize the pivotal role of substituting the core structure in switching between migrastatic activity and cytotoxicity. These findings hold significant promise for further development of easily accessible cytochalasan analogues as novel migrastatic agents.
Zobrazit více v PubMed
Sporn M. B. Lancet. 1996;347:1377–1381. doi: 10.1016/S0140-6736(96)91015-6. PubMed DOI
Sleeman J. Steeg P. S. Eur. J. Cancer. 2010;46:1177–1180. doi: 10.1016/j.ejca.2010.02.039. PubMed DOI PMC
Solomon J. Raskova M. Rosel D. Brabek J. Gil-Henn H. Cells. 2021;10:1845. doi: 10.3390/cells10081845. PubMed DOI PMC
Rosel D. Fernandes M. Sanz-Moreno V. Brabek J. Trends Cancer. 2019;5:755–756. doi: 10.1016/j.trecan.2019.10.011. PubMed DOI
Gandalovicova A. Rosel D. Fernandes M. Vesely P. Heneberg P. Cermak V. Petruzelka L. Kumar S. Sanz-Moreno V. Brabek J. Trends Cancer. 2017;3:391–406. doi: 10.1016/j.trecan.2017.04.008. PubMed DOI PMC
Schaks M. Giannone G. Rottner K. Essays Biochem. 2019;63:483–495. doi: 10.1042/EBC20190015. PubMed DOI PMC
Scherlach K. Boettger D. Remme N. Hertweck C. Nat. Prod. Rep. 2010;27:869–886. doi: 10.1039/B903913A. PubMed DOI
Lambert C. Schmidt K. Karger M. Stadler M. Stradal T. E. B. Rottner K. Biomolecules. 2023;13:1247. doi: 10.3390/biom13081247. PubMed DOI PMC
Brown S. S. Spudich J. A. J. Cell Biol. 1981;88:487–491. doi: 10.1083/jcb.88.3.487. PubMed DOI PMC
Flanagan M. D. Lin S. J. Biol. Chem. 1980;255:835–838. doi: 10.1016/S0021-9258(19)86105-7. PubMed DOI
Sanger J. W. Holtzer H. Proc. Natl. Acad. Sci. U. S. A. 1972;69:253–257. doi: 10.1073/pnas.69.1.253. PubMed DOI PMC
MacLean-Fletcher S. Pollard T. D. Cell. 1980;20:329–341. doi: 10.1016/0092-8674(80)90619-4. PubMed DOI
Estensen R. D. Plagemann P. G. Proc. Natl. Acad. Sci. U. S. A. 1972;69:1430–1434. doi: 10.1073/pnas.69.6.1430. PubMed DOI PMC
Trendowski M. Zoino J. N. Christen T. D. Acquafondata C. Fondy T. P. Transl. Oncol. 2015;8:308–317. doi: 10.1016/j.tranon.2015.06.003. PubMed DOI PMC
Casella J. F. Flanagan M. D. Lin S. Nature. 1981;293:302–305. doi: 10.1038/293302a0. PubMed DOI
Katagiri K. Matsuura S. J. Antibiot. 1971;24:722–723. doi: 10.7164/antibiotics.24.722. PubMed DOI
Huang F. Y. Mei W. L. Li Y. N. Tan G. H. Dai H. F. Guo J. L. Wang H. Huang Y. H. Zhao H. G. Zhou S. L. Li L. Lin Y. Y. Eur. J. Cancer. 2012;48:2260–2269. doi: 10.1016/j.ejca.2011.12.018. PubMed DOI
Hagmar B. Ryd W. Int. J. Cancer. 1977;19:576–580. doi: 10.1002/ijc.2910190419. PubMed DOI
Hart I. R. Raz A. Fidler I. J. JNCI, J. Natl. Cancer Inst. 1980;64:891–900. PubMed
Murray D. Horgan G. Macmathuna P. Doran P. Br. J. Cancer. 2008;99:1322–1329. doi: 10.1038/sj.bjc.6604688. PubMed DOI PMC
Sun W. Lim C. T. Kurniawan N. A. J. R. Soc., Interface. 2014;11:20140638. doi: 10.1098/rsif.2014.0638. PubMed DOI PMC
Ma Y. Wu X. Xiu Z. Liu X. Huang B. Hu L. Liu J. Zhou Z. Tang X. Oncol. Rep. 2018;39:2899–2905. PubMed
Zhao Y. Long X. Wu H. Deng J. Org. Chem. Front. 2022;9:6979–6998. doi: 10.1039/D2QO01223E. DOI
Zhu H. Chen C. Tong Q. Zhou Y. Ye Y. Gu L. Zhang Y. Prog. Chem. Org. Nat. Prod. 2021;114:1–134. PubMed
Nair U. B. Joel P. B. Wan Q. Lowey S. Rould M. A. Trybus K. M. J. Mol. Biol. 2008;384:848–864. doi: 10.1016/j.jmb.2008.09.082. PubMed DOI PMC
Minato H. Katayama T. Matsumoto M. Katagiri K. Matsuura S. Chem. Pharm. Bull. 1973;21:2268–2277. doi: 10.1248/cpb.21.2268. PubMed DOI
Yahara I. Harada F. Sekita S. Yoshihira K. Natori S. J. Cell Biol. 1982;92:69–78. doi: 10.1083/jcb.92.1.69. PubMed DOI PMC
Sellstedt M. Schwalfenberg M. Ziegler S. Antonchick A. P. Waldmann H. Org. Biomol. Chem. 2016;14:50–54. doi: 10.1039/C5OB02272J. PubMed DOI PMC
Zaghouani M. Gayraud O. Jactel V. Prevost S. Dezaire A. Sabbah M. Escargueil A. Lai T. L. Le Clainche C. Rocques N. Romero S. Gautreau A. Blanchard F. Frison G. Nay B. Chemistry. 2018;24:16686–16691. doi: 10.1002/chem.201804023. PubMed DOI
Sekita S. Yoshihira K. Natori S. Harada F. Iida K. Yahara I. J. Pharmacobio-Dyn. 1985;8:906–916. doi: 10.1248/bpb1978.8.906. PubMed DOI
Kretz R. Wendt L. Wongkanoun S. Luangsa-Ard J. J. Surup F. Helaly S. E. Noumeur S. R. Stadler M. Stradal T. E. B. Biomolecules. 2019;9:73. doi: 10.3390/biom9020073. PubMed DOI PMC
Van Goietsenoven G. Mathieu V. Andolfi A. Cimmino A. Lefranc F. Kiss R. Evidente A. Planta Med. 2011;77:711–717. doi: 10.1055/s-0030-1250523. PubMed DOI
Shankar S. Wani N. A. Singh U. P. Rai R. ChemistrySelect. 2016;1:3675–3678. doi: 10.1002/slct.201600793. DOI
Hao B. Gunaratna M. J. Zhang M. Weerasekara S. Seiwald S. N. Nguyen V. T. Meier A. Hua D. H. J. Am. Chem. Soc. 2016;138:16839–16848. doi: 10.1021/jacs.6b12113. PubMed DOI PMC
Martin S. Pavel M. Eva M. Tatiana A. G. Michael A. E. Tetrahedron. 1997;53:12867–12874. doi: 10.1016/S0040-4020(97)90405-1. DOI
Tapolczay D. J. Thomas E. J. Whitehead J. W. F. J. Chem. Soc., Chem. Commun. 1985:143–145. doi: 10.1039/C39850000143. DOI
Vedejs E. Campbell Jr. J. B. Gadwood R. C. Rodgers J. D. Spear K. L. Watanabe Y. J. Org. Chem. 1982;47:1534–1546. doi: 10.1021/jo00347a034. DOI
Rieckhoff S. Meisner J. Kästner J. Frey W. Peters R. Angew. Chem., Int. Ed. 2018;57:1404–1408. doi: 10.1002/anie.201710940. PubMed DOI
Burk R. M. Gac T. S. Roof M. B. Tetrahedron Lett. 1994;35:8111–8112. doi: 10.1016/0040-4039(94)88256-8. DOI
Thomas E. J. Whitehead J. W. F. J. Chem. Soc., Perkin Trans. 1. 1989:499–505. doi: 10.1039/P19890000499. DOI
Stork G. Nakamura E. J. Am. Chem. Soc. 1983;105:5510–5512. doi: 10.1021/ja00354a072. DOI
Haidle A. M. Myers A. G. Proc. Natl. Acad. Sci. U. S. A. 2004;101:12048–12053. doi: 10.1073/pnas.0402111101. PubMed DOI PMC
Thomas E. J. Whitehead J. W. F. J. Chem. Soc., Perkin Trans. 1. 1989:507–518. doi: 10.1039/P19890000507. DOI
Merifield E. Thomas E. J. J. Chem. Soc., Perkin Trans. 1. 1999:3269–3283. doi: 10.1039/A906412E. DOI
Herzig J. Nudelman A. Gottlieb H. E. Fischer B. J. Org. Chem. 1986;51:727–730. doi: 10.1021/jo00355a026. DOI
Friedrich J. Ebner R. Kunz-Schughart L. A. Int. J. Radiat. Biol. 2007;83:849–871. doi: 10.1080/09553000701727531. PubMed DOI
Hirose T. Izawa Y. Koyama K. Natori S. Iida K. Yahara I. Shimaoka S. Maruyama K. Chem. Pharm. Bull. 1990;38:971–974. doi: 10.1248/cpb.38.971. PubMed DOI
Xie Y. Cheng G.-J. Lee S. Kaib P. S. J. Thiel W. List B. J. Am. Chem. Soc. 2016;138:14538–14541. doi: 10.1021/jacs.6b09129. PubMed DOI
Joyce R. P. Gainor J. A. Weinreb S. M. J. Org. Chem. 1987;52:1177–1185. doi: 10.1021/jo00383a001. DOI
Boutellier M. Wallach D. Tamm C. Helv. Chim. Acta. 1993;76:2515–2527. doi: 10.1002/hlca.19930760710. DOI
Wu J. Jiang X. Xu J. Dai W.-M. Tetrahedron. 2011;67:179–192. doi: 10.1016/j.tet.2010.10.088. DOI
Bérubé M. Kamal F. Roy J. Poirier D. Synthesis. 2006;2006:3085–3091. doi: 10.1055/s-2006-950204. DOI
Breen D. Kennedy A. R. Suckling C. J. Org. Biomol. Chem. 2009;7:178–186. doi: 10.1039/B814452D. PubMed DOI
Ellwood A. R. Porter M. J. J. Org. Chem. 2009;74:7982–7985. doi: 10.1021/jo901415n. PubMed DOI
Liu X. Liu B. Liu Q. Angew. Chem., Int. Ed. 2020;59:6750–6755. doi: 10.1002/anie.201916014. PubMed DOI
Avery M. A. Alvim-Gaston M. Vroman J. A. Wu B. Ager A. Peters W. Robinson B. L. Charman W. J. Med. Chem. 2002;45:4321–4335. doi: 10.1021/jm020142z. PubMed DOI
Bailey W. F. Longstaff S. C. Tetrahedron Lett. 1999;40:6899–6901. doi: 10.1016/S0040-4039(99)01434-3. DOI
Moriya T. Yoneda S. Kawana K. Ikeda R. Konakahara T. Sakai N. J. Org. Chem. 2013;78:10642–10650. doi: 10.1021/jo401529j. PubMed DOI
Yang T. Liu Q. Cheng Y. Cai W. Ma Y. Yang L. Wu Q. Orband-Miller L. A. Zhou L. Xiang Z. Huxdorf M. Zhang W. Zhang J. Xiang J.-N. Leung S. Qiu Y. Zhong Z. Elliott J. D. Lin X. Wang Y. ACS Med. Chem. Lett. 2014;5:65–68. doi: 10.1021/ml4003875. PubMed DOI PMC
Zoltewicz J. A. Bloom L. B. Kem W. R. J. Org. Chem. 1992;57:2392–2395. doi: 10.1021/jo00034a036. DOI
Weidmann N. Harenberg J. H. Knochel P. Org. Lett. 2020;22:5895–5899. doi: 10.1021/acs.orglett.0c01991. PubMed DOI
Binder M. Tamm C. Turner W. B. Minato H. J. Chem. Soc., Perkin Trans. 1. 1973:1146–1147. doi: 10.1039/P19730001146. PubMed DOI
Koudelková L. Pelantová M. Brůhová Z. Sztacho M. Pavlík V. Pánek D. Gemperle J. Talacko P. Brábek J. Rösel D. eLife. 2023;12:e82428. doi: 10.7554/eLife.82428. PubMed DOI PMC