Synthesis and migrastatic activity of cytochalasin analogues lacking a macrocyclic moiety

. 2024 Jan 25 ; 15 (1) : 322-343. [epub] 20231128

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38283219

Cytochalasans are known as inhibitors of actin polymerization and for their cytotoxic and migrastatic activity. In this study, we synthesized a series of cytochalasin derivatives that lack a macrocyclic moiety, a structural element traditionally considered essential for their biological activity. We focused on substituting the macrocycle with simple aryl-containing sidechains, and we have also synthesized compounds with different substitution patterns on the cytochalasin core. The cytochalasin analogues were screened for their migrastatic and cytotoxic activity. Compound 24 which shares the substitution pattern with natural cytochalasins B and D exhibited not only significant in vitro migrastatic activity towards BLM cells but also demonstrated inhibition of actin polymerization, with no cytotoxic effect observed at 50 μM concentration. Our results demonstrate that even compounds lacking the macrocyclic moiety can exhibit biological activities, albeit less pronounced than those of natural cytochalasins. However, our findings emphasize the pivotal role of substituting the core structure in switching between migrastatic activity and cytotoxicity. These findings hold significant promise for further development of easily accessible cytochalasan analogues as novel migrastatic agents.

Zobrazit více v PubMed

Sporn M. B. Lancet. 1996;347:1377–1381. doi: 10.1016/S0140-6736(96)91015-6. PubMed DOI

Sleeman J. Steeg P. S. Eur. J. Cancer. 2010;46:1177–1180. doi: 10.1016/j.ejca.2010.02.039. PubMed DOI PMC

Solomon J. Raskova M. Rosel D. Brabek J. Gil-Henn H. Cells. 2021;10:1845. doi: 10.3390/cells10081845. PubMed DOI PMC

Rosel D. Fernandes M. Sanz-Moreno V. Brabek J. Trends Cancer. 2019;5:755–756. doi: 10.1016/j.trecan.2019.10.011. PubMed DOI

Gandalovicova A. Rosel D. Fernandes M. Vesely P. Heneberg P. Cermak V. Petruzelka L. Kumar S. Sanz-Moreno V. Brabek J. Trends Cancer. 2017;3:391–406. doi: 10.1016/j.trecan.2017.04.008. PubMed DOI PMC

Schaks M. Giannone G. Rottner K. Essays Biochem. 2019;63:483–495. doi: 10.1042/EBC20190015. PubMed DOI PMC

Scherlach K. Boettger D. Remme N. Hertweck C. Nat. Prod. Rep. 2010;27:869–886. doi: 10.1039/B903913A. PubMed DOI

Lambert C. Schmidt K. Karger M. Stadler M. Stradal T. E. B. Rottner K. Biomolecules. 2023;13:1247. doi: 10.3390/biom13081247. PubMed DOI PMC

Brown S. S. Spudich J. A. J. Cell Biol. 1981;88:487–491. doi: 10.1083/jcb.88.3.487. PubMed DOI PMC

Flanagan M. D. Lin S. J. Biol. Chem. 1980;255:835–838. doi: 10.1016/S0021-9258(19)86105-7. PubMed DOI

Sanger J. W. Holtzer H. Proc. Natl. Acad. Sci. U. S. A. 1972;69:253–257. doi: 10.1073/pnas.69.1.253. PubMed DOI PMC

MacLean-Fletcher S. Pollard T. D. Cell. 1980;20:329–341. doi: 10.1016/0092-8674(80)90619-4. PubMed DOI

Estensen R. D. Plagemann P. G. Proc. Natl. Acad. Sci. U. S. A. 1972;69:1430–1434. doi: 10.1073/pnas.69.6.1430. PubMed DOI PMC

Trendowski M. Zoino J. N. Christen T. D. Acquafondata C. Fondy T. P. Transl. Oncol. 2015;8:308–317. doi: 10.1016/j.tranon.2015.06.003. PubMed DOI PMC

Casella J. F. Flanagan M. D. Lin S. Nature. 1981;293:302–305. doi: 10.1038/293302a0. PubMed DOI

Katagiri K. Matsuura S. J. Antibiot. 1971;24:722–723. doi: 10.7164/antibiotics.24.722. PubMed DOI

Huang F. Y. Mei W. L. Li Y. N. Tan G. H. Dai H. F. Guo J. L. Wang H. Huang Y. H. Zhao H. G. Zhou S. L. Li L. Lin Y. Y. Eur. J. Cancer. 2012;48:2260–2269. doi: 10.1016/j.ejca.2011.12.018. PubMed DOI

Hagmar B. Ryd W. Int. J. Cancer. 1977;19:576–580. doi: 10.1002/ijc.2910190419. PubMed DOI

Hart I. R. Raz A. Fidler I. J. JNCI, J. Natl. Cancer Inst. 1980;64:891–900. PubMed

Murray D. Horgan G. Macmathuna P. Doran P. Br. J. Cancer. 2008;99:1322–1329. doi: 10.1038/sj.bjc.6604688. PubMed DOI PMC

Sun W. Lim C. T. Kurniawan N. A. J. R. Soc., Interface. 2014;11:20140638. doi: 10.1098/rsif.2014.0638. PubMed DOI PMC

Ma Y. Wu X. Xiu Z. Liu X. Huang B. Hu L. Liu J. Zhou Z. Tang X. Oncol. Rep. 2018;39:2899–2905. PubMed

Zhao Y. Long X. Wu H. Deng J. Org. Chem. Front. 2022;9:6979–6998. doi: 10.1039/D2QO01223E. DOI

Zhu H. Chen C. Tong Q. Zhou Y. Ye Y. Gu L. Zhang Y. Prog. Chem. Org. Nat. Prod. 2021;114:1–134. PubMed

Nair U. B. Joel P. B. Wan Q. Lowey S. Rould M. A. Trybus K. M. J. Mol. Biol. 2008;384:848–864. doi: 10.1016/j.jmb.2008.09.082. PubMed DOI PMC

Minato H. Katayama T. Matsumoto M. Katagiri K. Matsuura S. Chem. Pharm. Bull. 1973;21:2268–2277. doi: 10.1248/cpb.21.2268. PubMed DOI

Yahara I. Harada F. Sekita S. Yoshihira K. Natori S. J. Cell Biol. 1982;92:69–78. doi: 10.1083/jcb.92.1.69. PubMed DOI PMC

Sellstedt M. Schwalfenberg M. Ziegler S. Antonchick A. P. Waldmann H. Org. Biomol. Chem. 2016;14:50–54. doi: 10.1039/C5OB02272J. PubMed DOI PMC

Zaghouani M. Gayraud O. Jactel V. Prevost S. Dezaire A. Sabbah M. Escargueil A. Lai T. L. Le Clainche C. Rocques N. Romero S. Gautreau A. Blanchard F. Frison G. Nay B. Chemistry. 2018;24:16686–16691. doi: 10.1002/chem.201804023. PubMed DOI

Sekita S. Yoshihira K. Natori S. Harada F. Iida K. Yahara I. J. Pharmacobio-Dyn. 1985;8:906–916. doi: 10.1248/bpb1978.8.906. PubMed DOI

Kretz R. Wendt L. Wongkanoun S. Luangsa-Ard J. J. Surup F. Helaly S. E. Noumeur S. R. Stadler M. Stradal T. E. B. Biomolecules. 2019;9:73. doi: 10.3390/biom9020073. PubMed DOI PMC

Van Goietsenoven G. Mathieu V. Andolfi A. Cimmino A. Lefranc F. Kiss R. Evidente A. Planta Med. 2011;77:711–717. doi: 10.1055/s-0030-1250523. PubMed DOI

Shankar S. Wani N. A. Singh U. P. Rai R. ChemistrySelect. 2016;1:3675–3678. doi: 10.1002/slct.201600793. DOI

Hao B. Gunaratna M. J. Zhang M. Weerasekara S. Seiwald S. N. Nguyen V. T. Meier A. Hua D. H. J. Am. Chem. Soc. 2016;138:16839–16848. doi: 10.1021/jacs.6b12113. PubMed DOI PMC

Martin S. Pavel M. Eva M. Tatiana A. G. Michael A. E. Tetrahedron. 1997;53:12867–12874. doi: 10.1016/S0040-4020(97)90405-1. DOI

Tapolczay D. J. Thomas E. J. Whitehead J. W. F. J. Chem. Soc., Chem. Commun. 1985:143–145. doi: 10.1039/C39850000143. DOI

Vedejs E. Campbell Jr. J. B. Gadwood R. C. Rodgers J. D. Spear K. L. Watanabe Y. J. Org. Chem. 1982;47:1534–1546. doi: 10.1021/jo00347a034. DOI

Rieckhoff S. Meisner J. Kästner J. Frey W. Peters R. Angew. Chem., Int. Ed. 2018;57:1404–1408. doi: 10.1002/anie.201710940. PubMed DOI

Burk R. M. Gac T. S. Roof M. B. Tetrahedron Lett. 1994;35:8111–8112. doi: 10.1016/0040-4039(94)88256-8. DOI

Thomas E. J. Whitehead J. W. F. J. Chem. Soc., Perkin Trans. 1. 1989:499–505. doi: 10.1039/P19890000499. DOI

Stork G. Nakamura E. J. Am. Chem. Soc. 1983;105:5510–5512. doi: 10.1021/ja00354a072. DOI

Haidle A. M. Myers A. G. Proc. Natl. Acad. Sci. U. S. A. 2004;101:12048–12053. doi: 10.1073/pnas.0402111101. PubMed DOI PMC

Thomas E. J. Whitehead J. W. F. J. Chem. Soc., Perkin Trans. 1. 1989:507–518. doi: 10.1039/P19890000507. DOI

Merifield E. Thomas E. J. J. Chem. Soc., Perkin Trans. 1. 1999:3269–3283. doi: 10.1039/A906412E. DOI

Herzig J. Nudelman A. Gottlieb H. E. Fischer B. J. Org. Chem. 1986;51:727–730. doi: 10.1021/jo00355a026. DOI

Friedrich J. Ebner R. Kunz-Schughart L. A. Int. J. Radiat. Biol. 2007;83:849–871. doi: 10.1080/09553000701727531. PubMed DOI

Hirose T. Izawa Y. Koyama K. Natori S. Iida K. Yahara I. Shimaoka S. Maruyama K. Chem. Pharm. Bull. 1990;38:971–974. doi: 10.1248/cpb.38.971. PubMed DOI

Xie Y. Cheng G.-J. Lee S. Kaib P. S. J. Thiel W. List B. J. Am. Chem. Soc. 2016;138:14538–14541. doi: 10.1021/jacs.6b09129. PubMed DOI

Joyce R. P. Gainor J. A. Weinreb S. M. J. Org. Chem. 1987;52:1177–1185. doi: 10.1021/jo00383a001. DOI

Boutellier M. Wallach D. Tamm C. Helv. Chim. Acta. 1993;76:2515–2527. doi: 10.1002/hlca.19930760710. DOI

Wu J. Jiang X. Xu J. Dai W.-M. Tetrahedron. 2011;67:179–192. doi: 10.1016/j.tet.2010.10.088. DOI

Bérubé M. Kamal F. Roy J. Poirier D. Synthesis. 2006;2006:3085–3091. doi: 10.1055/s-2006-950204. DOI

Breen D. Kennedy A. R. Suckling C. J. Org. Biomol. Chem. 2009;7:178–186. doi: 10.1039/B814452D. PubMed DOI

Ellwood A. R. Porter M. J. J. Org. Chem. 2009;74:7982–7985. doi: 10.1021/jo901415n. PubMed DOI

Liu X. Liu B. Liu Q. Angew. Chem., Int. Ed. 2020;59:6750–6755. doi: 10.1002/anie.201916014. PubMed DOI

Avery M. A. Alvim-Gaston M. Vroman J. A. Wu B. Ager A. Peters W. Robinson B. L. Charman W. J. Med. Chem. 2002;45:4321–4335. doi: 10.1021/jm020142z. PubMed DOI

Bailey W. F. Longstaff S. C. Tetrahedron Lett. 1999;40:6899–6901. doi: 10.1016/S0040-4039(99)01434-3. DOI

Moriya T. Yoneda S. Kawana K. Ikeda R. Konakahara T. Sakai N. J. Org. Chem. 2013;78:10642–10650. doi: 10.1021/jo401529j. PubMed DOI

Yang T. Liu Q. Cheng Y. Cai W. Ma Y. Yang L. Wu Q. Orband-Miller L. A. Zhou L. Xiang Z. Huxdorf M. Zhang W. Zhang J. Xiang J.-N. Leung S. Qiu Y. Zhong Z. Elliott J. D. Lin X. Wang Y. ACS Med. Chem. Lett. 2014;5:65–68. doi: 10.1021/ml4003875. PubMed DOI PMC

Zoltewicz J. A. Bloom L. B. Kem W. R. J. Org. Chem. 1992;57:2392–2395. doi: 10.1021/jo00034a036. DOI

Weidmann N. Harenberg J. H. Knochel P. Org. Lett. 2020;22:5895–5899. doi: 10.1021/acs.orglett.0c01991. PubMed DOI

Binder M. Tamm C. Turner W. B. Minato H. J. Chem. Soc., Perkin Trans. 1. 1973:1146–1147. doi: 10.1039/P19730001146. PubMed DOI

Koudelková L. Pelantová M. Brůhová Z. Sztacho M. Pavlík V. Pánek D. Gemperle J. Talacko P. Brábek J. Rösel D. eLife. 2023;12:e82428. doi: 10.7554/eLife.82428. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...