High habitat richness reduces the risk of tick-borne encephalitis in Europe: A multi-scale study
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38283833
PubMed Central
PMC10820641
DOI
10.1016/j.onehlt.2023.100669
PII: S2352-7714(23)00189-1
Knihovny.cz E-zdroje
- Klíčová slova
- Biodiversity, Europe, Habitat richness, One health, Tick-borne encephalitis, Vector-borne disease,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The natural transmission cycle of tick-borne encephalitis (TBE) virus is enhanced by complex interactions between ticks and key hosts strongly connected to habitat characteristics. The diversity of wildlife host species and their relative abundance is known to affect transmission of tick-borne diseases. Therefore, in the current context of global biodiversity loss, we explored the relationship between habitat richness and the pattern of human TBE cases in Europe to assess biodiversity's role in disease risk mitigation. METHODS: We assessed human TBE case distribution across 879 European regions using official epidemiological data reported to The European Surveillance System (TESSy) between 2017 and 2021 from 15 countries. We explored the relationship between TBE presence and the habitat richness index (HRI1) by means of binomial regression. We validated our findings at local scale using data collected between 2017 and 2021 in 227 municipalities located in Trento and Belluno provinces, two known TBE foci in northern Italy. FINDINGS: Our results showed a significant parabolic effect of HRI on the probability of presence of human TBE cases in the European regions included in our dataset, and a significant, negative effect of HRI on the local presence of TBE in northern Italy. At both spatial scales, TBE risk decreases in areas with higher values of HRI. INTERPRETATION: To our knowledge, no efforts have yet been made to explore the relationship between biodiversity and TBE risk, probably due to the scarcity of high-resolution, large-scale data about the abundance or density of critical host species. Hence, in this study we considered habitat richness as proxy for vertebrate host diversity. The results suggest that in highly diverse habitats TBE risk decreases. Hence, biodiversity loss could enhance TBE risk for both humans and wildlife. This association is relevant to support the hypothesis that the maintenance of highly diverse ecosystems mitigates disease risk.
Azienda Provinciale Servizi Sanitari Trento Italy
Department of Health Security Finnish Institute for Health and Welfare Helsinki Finland
Environmental Research Group Oxford Ltd c o Dept Biology Oxford United Kingdom
NBFC National Biodiversity Future Center Palermo Italy
Research and Innovation Centre Fondazione Edmund Mach San Michele all'Adige TN Italy
Zobrazit více v PubMed
ECDC. Annual epidemiological report for 2020. ECDC; Stockholm: 2022. European Centre for Disease Prevention and Control, tick-borne encephalitis.
Van Heuverswyn J., Hallmaier-Wacker L.K., Beauté J., Gomes Dias J., Haussig J.M., Busch K., Kerlik J., Markowicz M., Mäkelä H., Nygren T.M., Orlíková H., Socan M., Zbrzeźniak J., Žygutiene M., Gossner C.M. Spatiotemporal spread of tick-borne encephalitis in the EU/EEA, 2012 to 2020. Eurosurveillance. 2023;28 doi: 10.2807/1560-7917.ES.2023.28.11.2200543. PubMed DOI PMC
Stoefs A., Heyndrickx L., De Winter J., Coeckelbergh E., Willekens B., Alonso-Jiménez A., Tuttino A.-M., Geerts Y., Ariën K.K., Van Esbroeck M. Autochthonous cases of tick-borne encephalitis, Belgium. Emerg. Infect. Dis. 2020;27(2021):2179–2182. doi: 10.3201/eid2708.211175. PubMed DOI PMC
Gritsun T.S., Lashkevich V.A., Gould E.A. Tick-borne encephalitis. Antiviral Res. 2003;57:129–146. doi: 10.1016/s0166-3542(02)00206-1. PubMed DOI
Martello E., Gillingham E.L., Phalkey R., Vardavas C., Nikitara K., Bakonyi T., Gossner C.M., Leonardi-Bee J. Systematic review on the non-vectorial transmission of tick-borne encephalitis virus (TBEv) Ticks Tick-Borne Dis. 2022;13 doi: 10.1016/j.ttbdis.2022.102028. PubMed DOI
Borde J.P., Kaier K., Hehn P., Matzarakis A., Frey S., Bestehorn M., Dobler G., Chitimia-Dobler L. The complex interplay of climate, TBEV vector dynamics and TBEV infection rates in ticks—monitoring a natural TBEV focus in Germany, 2009–2018. PloS One. 2021;16 doi: 10.1371/journal.pone.0244668. PubMed DOI PMC
Randolph S.E., Rogers D.J. Fragile transmission cycles of tick-borne encephalitis virus may be disrupted by predicted climate change. Proc. R. Soc. Lond. B Biol. Sci. 2000;267:1741–1744. doi: 10.1098/rspb.2000.1204. PubMed DOI PMC
Rizzoli A., Hauffe H.C., Tagliapietra V., Neteler M., Rosà R. Forest structure and Roe deer abundance predict tick-borne encephalitis risk in Italy. PloS One. 2009;4 doi: 10.1371/journal.pone.0004336. PubMed DOI PMC
Rosà R., Tagliapietra V., Manica M., Arnoldi D., Hauffe H.C., Rossi C., Rosso F., Henttonen H., Rizzoli A. Changes in host densities and co-feeding pattern efficiently predict tick-borne encephalitis hazard in an endemic focus in northern Italy. Int. J. Parasitol. 2019;49:779–787. doi: 10.1016/j.ijpara.2019.05.006. PubMed DOI
Tkadlec E., Václavík T., Široký P. Rodent host abundance and climate variability as predictors of Tickborne disease risk 1 year in advance. Emerg. Infect. Dis. 2019;25:1738–1741. doi: 10.3201/eid2509.190684. PubMed DOI PMC
Krawczyk A.I., van Duijvendijk G.L.A., Swart A., Heylen D., Jaarsma R.I., Jacobs F.H.H., Fonville M., Sprong H., Takken W. Effect of rodent density on tick and tick-borne pathogen populations: consequences for infectious disease risk. Parasit. Vectors. 2020;13:34. doi: 10.1186/s13071-020-3902-0. PubMed DOI PMC
Labuda M., Kozuch O., Zuffová E., Elecková E., Hails R.S., Nuttall P.A. Tick-borne encephalitis virus transmission between ticks Cofeeding on specific immune natural rodent hosts. Virology. 1997;235:138–143. doi: 10.1006/viro.1997.8622. PubMed DOI
Randolph S.E., Miklisová D., Lysy J., Rogers D.J., Labuda M. Incidence from coincidence: patterns of tick infestations on rodents facilitate transmission of tick-borne encephalitis virus. Parasitology. 1999;118:177–186. doi: 10.1017/S0031182098003643. PubMed DOI
Michelitsch A., Tews B.A., Klaus C., Bestehorn-Willmann M., Dobler G., Beer M., Wernike K. In vivo characterization of tick-borne encephalitis virus in Bank voles (Myodes glareolus) Viruses. 2019;11:1069. doi: 10.3390/v11111069. PubMed DOI PMC
Da Rold G., Obber F., Monne I., Milani A., Ravagnan S., Toniolo F., Sgubin S., Zamperin G., Foiani G., Vascellari M., Drzewniokova P., Castellan M., De Benedictis P., Citterio C.V. Clinical tick-borne encephalitis in a Roe deer (Capreolus capreolus L.) Viruses. 2022;14:300. doi: 10.3390/v14020300. PubMed DOI PMC
Bolzoni L., Rosà R., Cagnacci F., Rizzoli A. Effect of deer density on tick infestation of rodents and the hazard of tick-borne encephalitis. II: population and infection models. Int. J. Parasitol. 2012;42:373–381. doi: 10.1016/j.ijpara.2012.02.006. PubMed DOI
Cagnacci F., Bolzoni L., Rosà R., Carpi G., Hauffe H.C., Valent M., Tagliapietra V., Kazimirova M., Koci J., Stanko M., Lukan M., Henttonen H., Rizzoli A. Effects of deer density on tick infestation of rodents and the hazard of tick-borne encephalitis. I: empirical assessment. Int. J. Parasitol. 2012;42:365–372. doi: 10.1016/j.ijpara.2012.02.012. PubMed DOI
Keesing F., Belden L.K., Daszak P., Dobson A., Harvell C.D., Holt R.D., Hudson P., Jolles A., Jones K.E., Mitchell C.E., Myers S.S., Bogich T., Ostfeld R.S. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature. 2010;468:647–652. doi: 10.1038/nature09575. PubMed DOI PMC
Keesing F., Ostfeld R.S. Dilution effects in disease ecology. Ecol. Lett. 2021;24:2490–2505. doi: 10.1111/ele.13875. PubMed DOI PMC
Schmidt K.A., Ostfeld R.S. Biodiversity and the dilution effect in disease ecology. Ecology. 2001;82:609–619. doi: 10.1890/0012-9658(2001)082[0609:BATDEI]2.0.CO;2. DOI
Anderson J.F. Epizootiology of Lyme borreliosis. Scand. J. Infect. Dis. Suppl. 1991;77:23–34. PubMed
Brandenburg P.J., Obiegala A., Schmuck H.M., Dobler G., Chitimia-Dobler L., Pfeffer M. Seroprevalence of tick-borne encephalitis (TBE) virus antibodies in wild rodents from two natural TBE foci in Bavaria. Germany, Pathogens. 2023;12:185. doi: 10.3390/pathogens12020185. PubMed DOI PMC
Michelitsch A., Wernike K., Klaus C., Dobler G., Beer M. Exploring the reservoir hosts of tick-borne encephalitis virus. Viruses. 2019;11:669. doi: 10.3390/v11070669. PubMed DOI PMC
Ruyts S.C., Landuyt D., Ampoorter E., Heylen D., Ehrmann S., Coipan E.C., Matthysen E., Sprong H., Verheyen K. Low probability of a dilution effect for Lyme borreliosis in Belgian forests. Ticks Tick-Borne Dis. 2018;9:1143–1152. doi: 10.1016/j.ttbdis.2018.04.016. PubMed DOI
Takumi K., Sprong H., Hofmeester T.R. Impact of vertebrate communities on Ixodes ricinus-borne disease risk in forest areas. Parasit. Vectors. 2019;12:434. doi: 10.1186/s13071-019-3700-8. PubMed DOI PMC
Hofmeester T.R., Jansen P.A., Wijnen H.J., Coipan E.C., Fonville M., Prins H.H.T., Sprong H., van Wieren S.E. Cascading effects of predator activity on tick-borne disease risk. Proc. R. Soc. B Biol. Sci. 2017;284:20170453. doi: 10.1098/rspb.2017.0453. PubMed DOI PMC
Cervellini M., Di Musciano M., Zannini P., Fattorini S., Jiménez-Alfaro B., Agrillo E., Attorre F., Angelini P., Beierkuhnlein C., Casella L., Field R., Fischer J., Genovesi P., Hoffmann S., Irl S.D.H., Nascimbene J., Rocchini D., Steinbauer M., Vetaas O.R., Chiarucci A. Diversity of European habitat types is correlated with geography more than climate and human pressure. Ecol. Evol. 2021;11:18111–18124. doi: 10.1002/ece3.8409. PubMed DOI PMC
Fahrig L. Rethinking patch size and isolation effects: the habitat amount hypothesis. J. Biogeogr. 2013;40:1649–1663. doi: 10.1111/jbi.12130. DOI
Heidrich L., Bae S., Levick S., Seibold S., Weisser W., Krzystek P., Magdon P., Nauss T., Schall P., Serebryanyk A., Wöllauer S., Ammer C., Bässler C., Doerfler I., Fischer M., Gossner M.M., Heurich M., Hothorn T., Jung K., Kreft H., Schulze E.-D., Simons N., Thorn S., Müller J. Heterogeneity–diversity relationships differ between and within trophic levels in temperate forests. Nat. Ecol. Evol. 2020;4:1204–1212. doi: 10.1038/s41559-020-1245-z. PubMed DOI
Leclère D., Obersteiner M., Barrett M., Butchart S.H.M., Chaudhary A., De Palma A., DeClerck F.A.J., Di Marco M., Doelman J.C., Dürauer M., Freeman R., Harfoot M., Hasegawa T., Hellweg S., Hilbers J.P., Hill S.L.L., Humpenöder F., Jennings N., Krisztin T., Mace G.M., Ohashi H., Popp A., Purvis A., Schipper A.M., Tabeau A., Valin H., van Meijl H., van Zeist W.-J., Visconti P., Alkemade R., Almond R., Bunting G., Burgess N.D., Cornell S.E., Di Fulvio F., Ferrier S., Fritz S., Fujimori S., Grooten M., Harwood T., Havlík P., Herrero M., Hoskins A.J., Jung M., Kram T., Lotze-Campen H., Matsui T., Meyer C., Nel D., Newbold T., Schmidt-Traub G., Stehfest E., Strassburg B.B.N., van Vuuren D.P., Ware C., Watson J.E.M., Wu W., Young L. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature. 2020;585:551–556. doi: 10.1038/s41586-020-2705-y. PubMed DOI
Anderle M., Brambilla M., Hilpold A., Matabishi J.G., Paniccia C., Rocchini D., Rossin J., Tasser E., Torresani M., Tappeiner U., Seeber J. Habitat heterogeneity promotes bird diversity in agricultural landscapes: insights from remote sensing data. Basic Appl. Ecol. 2023;70:38–49. doi: 10.1016/j.baae.2023.04.006. DOI
Ostfeld R.S., Keesing F. Biodiversity series: the function of biodiversity in the ecology of vector-borne zoonotic diseases. Can. J. Zool. 2000;78:2061–2078. doi: 10.1139/z00-172. DOI
Rezza G., Farchi F., Pezzotti P., Ruscio M., Lo Presti A., Ciccozzi M., Mondardini V., Paternoster C., Bassetti M., Merelli M., Scotton P.G., Luzzati R., Simeoni J., Mian P., Mel R., Carraro V., Zanin A., Ferretto R., Francavilla E. TBE Virology Group, Tick-borne encephalitis in north-east Italy: a 14-year retrospective study, January 2000 to December 2013. Eurosurveillance. 2015;20 doi: 10.2807/1560-7917.ES.2015.20.40.30034. PubMed DOI
EEA, European Environment Agency (EEA) Article 17–2015 dataset – III report of Habitat distribution and of species occurrence data. 2020. https://www.eea.europa.eu/data-and-maps/data/article-17-database-habitats-directive-92-43-eec-2
Wint W., Morley D. 2014. Jolyon Medlock, N. Alexander, A first attempt at modelling red deer (Cervus elaphus) distributions over Europe. DOI
Burnham K.P., Anderson D.R., Burnham K.P. 2nd ed. Springer; New York: 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach.
Anselin L. Spatial Analytical Perspectives on GIS. Taylor Francis Lond; London: 1996. The Moran scatterplot as an ESDA tool to assess local instability in spatial association.
Crase B., Liedloff A.C., Wintle B.A. A new method for dealing with residual spatial autocorrelation in species distribution models. Ecography. 2012;35:879–888. doi: 10.1111/j.1600-0587.2011.07138.x. DOI
Bardos D.C., Guillera-Arroita G., Wintle B.A. Valid auto-models for spatially autocorrelated occupancy and abundance data. Methods Ecol. Evol. 2015;6:1137–1149. doi: 10.1111/2041-210X.12402. DOI
R Core Team . R Foundation for Statistical Computing; Vienna, Austria: 2022. R: A Language and Environment for Statistical Computing.https://www.R-project.org/
Bivand R.S., Wong D.W.S. Comparing implementations of global and local indicators of spatial association. TEST. 2018;27:716–748. doi: 10.1007/s11749-018-0599-x. DOI
Hijmans R.J. raster: Geographic Data Analysis and Modeling. R package version 3.5–15. 2022. https://CRAN.R-project.org/package=raster
Pebesma E. Vol. 10. 2018. Simple Features for R: Standardized Support for Spatial Vector Data, R J; p. 439. DOI
Tagliapietra V., Rosà R., Arnoldi D., Cagnacci F., Capelli G., Montarsi F., Hauffe H.C., Rizzoli A. Saturation deficit and deer density affect questing activity and local abundance of Ixodes ricinus (Acari, Ixodidae) in Italy. Vet. Parasitol. 2011;183:114–124. doi: 10.1016/j.vetpar.2011.07.022. PubMed DOI
Varlacher J.-F., Hägglund S., Juremalm M., Blomqvist G., Renström L., Zohari S., Leijon M., Chirico J. Tick-borne encephalitis: -EN- -FR- Encéphalite transmise par les tiques -ES- Encefalitis transmitida por garrapatas. Rev. Sci. Tech. OIE. 2015;34:453–466. doi: 10.20506/rst.34.2.2371. PubMed DOI
Hille S.M., Mortelliti A. Microhabitat partitioning of <em>Apodemus flavicollis</em> and <em>Myodes glareolus</em> in the sub-montane Alps: a preliminary assessment. Hystrix Ital. J. Mammal. 2011;21 doi: 10.4404/hystrix-21.2-4458. DOI
Mazurkiewicz M., Rajska-Jurgiel E. Spatial behaviour and population dynamics of woodland rodents. Acta Theriol. (Warsz.). 1998;43:137–161. doi: 10.4098/AT.arch.98-11. DOI
Ecke F., Löfgren O., Sörlin D. Population dynamics of small mammals in relation to forest age and structural habitat factors in northern Sweden. J. Appl. Ecol. 2002;39:781–792. doi: 10.1046/j.1365-2664.2002.00759.x. DOI
Allan B.F., Keesing F., Ostfeld R.S. Effect of Forest fragmentation on Lyme disease risk. Conserv. Biol. 2003;17:267–272. doi: 10.1046/j.1523-1739.2003.01260.x. DOI
Wilkinson D.A., Marshall J.C., French N.P., Hayman D.T.S. Habitat fragmentation, biodiversity loss and the risk of novel infectious disease emergence. J. R. Soc. Interface. 2018;15:20180403. doi: 10.1098/rsif.2018.0403. PubMed DOI PMC
Ostfeld R.S., Holt R.D. Are predators good for your health? Evaluating evidence for top-down regulation of zoonotic disease reservoirs. Front. Ecol. Environ. 2004;2:13–20. doi: 10.1890/1540-9295(2004)002[0013,APGFYH]2.0.CO;2. DOI
Khalil H., Ecke F., Evander M., Magnusson M., Hörnfeldt B. Declining ecosystem health and the dilution effect. Sci. Rep. 2016;6:31314. doi: 10.1038/srep31314. PubMed DOI PMC
Estrada-Peña A. Distribution, Abundance, and Habitat Preferences of <I>Ixodes ricinus</I> (Acari: Ixodidae) in Northern Spain. J. Med. Entomol. 2001;38:361–370. doi: 10.1603/0022-2585-38.3.361. PubMed DOI
Stefanoff P., Rosinska M., Samuels S., White D.J., Morse D.L., Randolph S.E. A National Case-Control Study Identifies Human Socio-Economic Status and activities as risk factors for tick-borne encephalitis in Poland. PloS One. 2012;7 doi: 10.1371/journal.pone.0045511. PubMed DOI PMC
VanAcker M.C., Little E.A.H., Molaei G., Bajwa W.I., Diuk-Wasser M.A. Enhancement of risk for Lyme disease by landscape connectivity, New York, New York, USA. Emerg. Infect. Dis. 2019;25:1136–1143. doi: 10.3201/eid2506.181741. PubMed DOI PMC
Mace G.M., Hails R.S., Cryle P., Harlow J., Clarke S.J. REVIEW: towards a risk register for natural capital. J. Appl. Ecol. 2015;52:641–653. doi: 10.1111/1365-2664.12431. PubMed DOI PMC
Roe D. Biodiversity loss—more than an environmental emergency. Lancet Planet Health. 2019;3:e287–e289. doi: 10.1016/S2542-5196(19)30113-5. PubMed DOI