High habitat richness reduces the risk of tick-borne encephalitis in Europe: A multi-scale study

. 2024 Jun ; 18 () : 100669. [epub] 20231230

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38283833
Odkazy

PubMed 38283833
PubMed Central PMC10820641
DOI 10.1016/j.onehlt.2023.100669
PII: S2352-7714(23)00189-1
Knihovny.cz E-zdroje

BACKGROUND: The natural transmission cycle of tick-borne encephalitis (TBE) virus is enhanced by complex interactions between ticks and key hosts strongly connected to habitat characteristics. The diversity of wildlife host species and their relative abundance is known to affect transmission of tick-borne diseases. Therefore, in the current context of global biodiversity loss, we explored the relationship between habitat richness and the pattern of human TBE cases in Europe to assess biodiversity's role in disease risk mitigation. METHODS: We assessed human TBE case distribution across 879 European regions using official epidemiological data reported to The European Surveillance System (TESSy) between 2017 and 2021 from 15 countries. We explored the relationship between TBE presence and the habitat richness index (HRI1) by means of binomial regression. We validated our findings at local scale using data collected between 2017 and 2021 in 227 municipalities located in Trento and Belluno provinces, two known TBE foci in northern Italy. FINDINGS: Our results showed a significant parabolic effect of HRI on the probability of presence of human TBE cases in the European regions included in our dataset, and a significant, negative effect of HRI on the local presence of TBE in northern Italy. At both spatial scales, TBE risk decreases in areas with higher values of HRI. INTERPRETATION: To our knowledge, no efforts have yet been made to explore the relationship between biodiversity and TBE risk, probably due to the scarcity of high-resolution, large-scale data about the abundance or density of critical host species. Hence, in this study we considered habitat richness as proxy for vertebrate host diversity. The results suggest that in highly diverse habitats TBE risk decreases. Hence, biodiversity loss could enhance TBE risk for both humans and wildlife. This association is relevant to support the hypothesis that the maintenance of highly diverse ecosystems mitigates disease risk.

Zobrazit více v PubMed

ECDC. Annual epidemiological report for 2020. ECDC; Stockholm: 2022. European Centre for Disease Prevention and Control, tick-borne encephalitis.

Van Heuverswyn J., Hallmaier-Wacker L.K., Beauté J., Gomes Dias J., Haussig J.M., Busch K., Kerlik J., Markowicz M., Mäkelä H., Nygren T.M., Orlíková H., Socan M., Zbrzeźniak J., Žygutiene M., Gossner C.M. Spatiotemporal spread of tick-borne encephalitis in the EU/EEA, 2012 to 2020. Eurosurveillance. 2023;28 doi: 10.2807/1560-7917.ES.2023.28.11.2200543. PubMed DOI PMC

Stoefs A., Heyndrickx L., De Winter J., Coeckelbergh E., Willekens B., Alonso-Jiménez A., Tuttino A.-M., Geerts Y., Ariën K.K., Van Esbroeck M. Autochthonous cases of tick-borne encephalitis, Belgium. Emerg. Infect. Dis. 2020;27(2021):2179–2182. doi: 10.3201/eid2708.211175. PubMed DOI PMC

Gritsun T.S., Lashkevich V.A., Gould E.A. Tick-borne encephalitis. Antiviral Res. 2003;57:129–146. doi: 10.1016/s0166-3542(02)00206-1. PubMed DOI

Martello E., Gillingham E.L., Phalkey R., Vardavas C., Nikitara K., Bakonyi T., Gossner C.M., Leonardi-Bee J. Systematic review on the non-vectorial transmission of tick-borne encephalitis virus (TBEv) Ticks Tick-Borne Dis. 2022;13 doi: 10.1016/j.ttbdis.2022.102028. PubMed DOI

Borde J.P., Kaier K., Hehn P., Matzarakis A., Frey S., Bestehorn M., Dobler G., Chitimia-Dobler L. The complex interplay of climate, TBEV vector dynamics and TBEV infection rates in ticks—monitoring a natural TBEV focus in Germany, 2009–2018. PloS One. 2021;16 doi: 10.1371/journal.pone.0244668. PubMed DOI PMC

Randolph S.E., Rogers D.J. Fragile transmission cycles of tick-borne encephalitis virus may be disrupted by predicted climate change. Proc. R. Soc. Lond. B Biol. Sci. 2000;267:1741–1744. doi: 10.1098/rspb.2000.1204. PubMed DOI PMC

Rizzoli A., Hauffe H.C., Tagliapietra V., Neteler M., Rosà R. Forest structure and Roe deer abundance predict tick-borne encephalitis risk in Italy. PloS One. 2009;4 doi: 10.1371/journal.pone.0004336. PubMed DOI PMC

Rosà R., Tagliapietra V., Manica M., Arnoldi D., Hauffe H.C., Rossi C., Rosso F., Henttonen H., Rizzoli A. Changes in host densities and co-feeding pattern efficiently predict tick-borne encephalitis hazard in an endemic focus in northern Italy. Int. J. Parasitol. 2019;49:779–787. doi: 10.1016/j.ijpara.2019.05.006. PubMed DOI

Tkadlec E., Václavík T., Široký P. Rodent host abundance and climate variability as predictors of Tickborne disease risk 1 year in advance. Emerg. Infect. Dis. 2019;25:1738–1741. doi: 10.3201/eid2509.190684. PubMed DOI PMC

Krawczyk A.I., van Duijvendijk G.L.A., Swart A., Heylen D., Jaarsma R.I., Jacobs F.H.H., Fonville M., Sprong H., Takken W. Effect of rodent density on tick and tick-borne pathogen populations: consequences for infectious disease risk. Parasit. Vectors. 2020;13:34. doi: 10.1186/s13071-020-3902-0. PubMed DOI PMC

Labuda M., Kozuch O., Zuffová E., Elecková E., Hails R.S., Nuttall P.A. Tick-borne encephalitis virus transmission between ticks Cofeeding on specific immune natural rodent hosts. Virology. 1997;235:138–143. doi: 10.1006/viro.1997.8622. PubMed DOI

Randolph S.E., Miklisová D., Lysy J., Rogers D.J., Labuda M. Incidence from coincidence: patterns of tick infestations on rodents facilitate transmission of tick-borne encephalitis virus. Parasitology. 1999;118:177–186. doi: 10.1017/S0031182098003643. PubMed DOI

Michelitsch A., Tews B.A., Klaus C., Bestehorn-Willmann M., Dobler G., Beer M., Wernike K. In vivo characterization of tick-borne encephalitis virus in Bank voles (Myodes glareolus) Viruses. 2019;11:1069. doi: 10.3390/v11111069. PubMed DOI PMC

Da Rold G., Obber F., Monne I., Milani A., Ravagnan S., Toniolo F., Sgubin S., Zamperin G., Foiani G., Vascellari M., Drzewniokova P., Castellan M., De Benedictis P., Citterio C.V. Clinical tick-borne encephalitis in a Roe deer (Capreolus capreolus L.) Viruses. 2022;14:300. doi: 10.3390/v14020300. PubMed DOI PMC

Bolzoni L., Rosà R., Cagnacci F., Rizzoli A. Effect of deer density on tick infestation of rodents and the hazard of tick-borne encephalitis. II: population and infection models. Int. J. Parasitol. 2012;42:373–381. doi: 10.1016/j.ijpara.2012.02.006. PubMed DOI

Cagnacci F., Bolzoni L., Rosà R., Carpi G., Hauffe H.C., Valent M., Tagliapietra V., Kazimirova M., Koci J., Stanko M., Lukan M., Henttonen H., Rizzoli A. Effects of deer density on tick infestation of rodents and the hazard of tick-borne encephalitis. I: empirical assessment. Int. J. Parasitol. 2012;42:365–372. doi: 10.1016/j.ijpara.2012.02.012. PubMed DOI

Keesing F., Belden L.K., Daszak P., Dobson A., Harvell C.D., Holt R.D., Hudson P., Jolles A., Jones K.E., Mitchell C.E., Myers S.S., Bogich T., Ostfeld R.S. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature. 2010;468:647–652. doi: 10.1038/nature09575. PubMed DOI PMC

Keesing F., Ostfeld R.S. Dilution effects in disease ecology. Ecol. Lett. 2021;24:2490–2505. doi: 10.1111/ele.13875. PubMed DOI PMC

Schmidt K.A., Ostfeld R.S. Biodiversity and the dilution effect in disease ecology. Ecology. 2001;82:609–619. doi: 10.1890/0012-9658(2001)082[0609:BATDEI]2.0.CO;2. DOI

Anderson J.F. Epizootiology of Lyme borreliosis. Scand. J. Infect. Dis. Suppl. 1991;77:23–34. PubMed

Brandenburg P.J., Obiegala A., Schmuck H.M., Dobler G., Chitimia-Dobler L., Pfeffer M. Seroprevalence of tick-borne encephalitis (TBE) virus antibodies in wild rodents from two natural TBE foci in Bavaria. Germany, Pathogens. 2023;12:185. doi: 10.3390/pathogens12020185. PubMed DOI PMC

Michelitsch A., Wernike K., Klaus C., Dobler G., Beer M. Exploring the reservoir hosts of tick-borne encephalitis virus. Viruses. 2019;11:669. doi: 10.3390/v11070669. PubMed DOI PMC

Ruyts S.C., Landuyt D., Ampoorter E., Heylen D., Ehrmann S., Coipan E.C., Matthysen E., Sprong H., Verheyen K. Low probability of a dilution effect for Lyme borreliosis in Belgian forests. Ticks Tick-Borne Dis. 2018;9:1143–1152. doi: 10.1016/j.ttbdis.2018.04.016. PubMed DOI

Takumi K., Sprong H., Hofmeester T.R. Impact of vertebrate communities on Ixodes ricinus-borne disease risk in forest areas. Parasit. Vectors. 2019;12:434. doi: 10.1186/s13071-019-3700-8. PubMed DOI PMC

Hofmeester T.R., Jansen P.A., Wijnen H.J., Coipan E.C., Fonville M., Prins H.H.T., Sprong H., van Wieren S.E. Cascading effects of predator activity on tick-borne disease risk. Proc. R. Soc. B Biol. Sci. 2017;284:20170453. doi: 10.1098/rspb.2017.0453. PubMed DOI PMC

Cervellini M., Di Musciano M., Zannini P., Fattorini S., Jiménez-Alfaro B., Agrillo E., Attorre F., Angelini P., Beierkuhnlein C., Casella L., Field R., Fischer J., Genovesi P., Hoffmann S., Irl S.D.H., Nascimbene J., Rocchini D., Steinbauer M., Vetaas O.R., Chiarucci A. Diversity of European habitat types is correlated with geography more than climate and human pressure. Ecol. Evol. 2021;11:18111–18124. doi: 10.1002/ece3.8409. PubMed DOI PMC

Fahrig L. Rethinking patch size and isolation effects: the habitat amount hypothesis. J. Biogeogr. 2013;40:1649–1663. doi: 10.1111/jbi.12130. DOI

Heidrich L., Bae S., Levick S., Seibold S., Weisser W., Krzystek P., Magdon P., Nauss T., Schall P., Serebryanyk A., Wöllauer S., Ammer C., Bässler C., Doerfler I., Fischer M., Gossner M.M., Heurich M., Hothorn T., Jung K., Kreft H., Schulze E.-D., Simons N., Thorn S., Müller J. Heterogeneity–diversity relationships differ between and within trophic levels in temperate forests. Nat. Ecol. Evol. 2020;4:1204–1212. doi: 10.1038/s41559-020-1245-z. PubMed DOI

Leclère D., Obersteiner M., Barrett M., Butchart S.H.M., Chaudhary A., De Palma A., DeClerck F.A.J., Di Marco M., Doelman J.C., Dürauer M., Freeman R., Harfoot M., Hasegawa T., Hellweg S., Hilbers J.P., Hill S.L.L., Humpenöder F., Jennings N., Krisztin T., Mace G.M., Ohashi H., Popp A., Purvis A., Schipper A.M., Tabeau A., Valin H., van Meijl H., van Zeist W.-J., Visconti P., Alkemade R., Almond R., Bunting G., Burgess N.D., Cornell S.E., Di Fulvio F., Ferrier S., Fritz S., Fujimori S., Grooten M., Harwood T., Havlík P., Herrero M., Hoskins A.J., Jung M., Kram T., Lotze-Campen H., Matsui T., Meyer C., Nel D., Newbold T., Schmidt-Traub G., Stehfest E., Strassburg B.B.N., van Vuuren D.P., Ware C., Watson J.E.M., Wu W., Young L. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature. 2020;585:551–556. doi: 10.1038/s41586-020-2705-y. PubMed DOI

Anderle M., Brambilla M., Hilpold A., Matabishi J.G., Paniccia C., Rocchini D., Rossin J., Tasser E., Torresani M., Tappeiner U., Seeber J. Habitat heterogeneity promotes bird diversity in agricultural landscapes: insights from remote sensing data. Basic Appl. Ecol. 2023;70:38–49. doi: 10.1016/j.baae.2023.04.006. DOI

Ostfeld R.S., Keesing F. Biodiversity series: the function of biodiversity in the ecology of vector-borne zoonotic diseases. Can. J. Zool. 2000;78:2061–2078. doi: 10.1139/z00-172. DOI

Rezza G., Farchi F., Pezzotti P., Ruscio M., Lo Presti A., Ciccozzi M., Mondardini V., Paternoster C., Bassetti M., Merelli M., Scotton P.G., Luzzati R., Simeoni J., Mian P., Mel R., Carraro V., Zanin A., Ferretto R., Francavilla E. TBE Virology Group, Tick-borne encephalitis in north-east Italy: a 14-year retrospective study, January 2000 to December 2013. Eurosurveillance. 2015;20 doi: 10.2807/1560-7917.ES.2015.20.40.30034. PubMed DOI

EEA, European Environment Agency (EEA) Article 17–2015 dataset – III report of Habitat distribution and of species occurrence data. 2020. https://www.eea.europa.eu/data-and-maps/data/article-17-database-habitats-directive-92-43-eec-2

Wint W., Morley D. 2014. Jolyon Medlock, N. Alexander, A first attempt at modelling red deer (Cervus elaphus) distributions over Europe. DOI

Burnham K.P., Anderson D.R., Burnham K.P. 2nd ed. Springer; New York: 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach.

Anselin L. Spatial Analytical Perspectives on GIS. Taylor Francis Lond; London: 1996. The Moran scatterplot as an ESDA tool to assess local instability in spatial association.

Crase B., Liedloff A.C., Wintle B.A. A new method for dealing with residual spatial autocorrelation in species distribution models. Ecography. 2012;35:879–888. doi: 10.1111/j.1600-0587.2011.07138.x. DOI

Bardos D.C., Guillera-Arroita G., Wintle B.A. Valid auto-models for spatially autocorrelated occupancy and abundance data. Methods Ecol. Evol. 2015;6:1137–1149. doi: 10.1111/2041-210X.12402. DOI

R Core Team . R Foundation for Statistical Computing; Vienna, Austria: 2022. R: A Language and Environment for Statistical Computing.https://www.R-project.org/

Bivand R.S., Wong D.W.S. Comparing implementations of global and local indicators of spatial association. TEST. 2018;27:716–748. doi: 10.1007/s11749-018-0599-x. DOI

Hijmans R.J. raster: Geographic Data Analysis and Modeling. R package version 3.5–15. 2022. https://CRAN.R-project.org/package=raster

Pebesma E. Vol. 10. 2018. Simple Features for R: Standardized Support for Spatial Vector Data, R J; p. 439. DOI

Tagliapietra V., Rosà R., Arnoldi D., Cagnacci F., Capelli G., Montarsi F., Hauffe H.C., Rizzoli A. Saturation deficit and deer density affect questing activity and local abundance of Ixodes ricinus (Acari, Ixodidae) in Italy. Vet. Parasitol. 2011;183:114–124. doi: 10.1016/j.vetpar.2011.07.022. PubMed DOI

Varlacher J.-F., Hägglund S., Juremalm M., Blomqvist G., Renström L., Zohari S., Leijon M., Chirico J. Tick-borne encephalitis: -EN- -FR- Encéphalite transmise par les tiques -ES- Encefalitis transmitida por garrapatas. Rev. Sci. Tech. OIE. 2015;34:453–466. doi: 10.20506/rst.34.2.2371. PubMed DOI

Hille S.M., Mortelliti A. Microhabitat partitioning of <em>Apodemus flavicollis</em> and <em>Myodes glareolus</em> in the sub-montane Alps: a preliminary assessment. Hystrix Ital. J. Mammal. 2011;21 doi: 10.4404/hystrix-21.2-4458. DOI

Mazurkiewicz M., Rajska-Jurgiel E. Spatial behaviour and population dynamics of woodland rodents. Acta Theriol. (Warsz.). 1998;43:137–161. doi: 10.4098/AT.arch.98-11. DOI

Ecke F., Löfgren O., Sörlin D. Population dynamics of small mammals in relation to forest age and structural habitat factors in northern Sweden. J. Appl. Ecol. 2002;39:781–792. doi: 10.1046/j.1365-2664.2002.00759.x. DOI

Allan B.F., Keesing F., Ostfeld R.S. Effect of Forest fragmentation on Lyme disease risk. Conserv. Biol. 2003;17:267–272. doi: 10.1046/j.1523-1739.2003.01260.x. DOI

Wilkinson D.A., Marshall J.C., French N.P., Hayman D.T.S. Habitat fragmentation, biodiversity loss and the risk of novel infectious disease emergence. J. R. Soc. Interface. 2018;15:20180403. doi: 10.1098/rsif.2018.0403. PubMed DOI PMC

Ostfeld R.S., Holt R.D. Are predators good for your health? Evaluating evidence for top-down regulation of zoonotic disease reservoirs. Front. Ecol. Environ. 2004;2:13–20. doi: 10.1890/1540-9295(2004)002[0013,APGFYH]2.0.CO;2. DOI

Khalil H., Ecke F., Evander M., Magnusson M., Hörnfeldt B. Declining ecosystem health and the dilution effect. Sci. Rep. 2016;6:31314. doi: 10.1038/srep31314. PubMed DOI PMC

Estrada-Peña A. Distribution, Abundance, and Habitat Preferences of <I>Ixodes ricinus</I> (Acari: Ixodidae) in Northern Spain. J. Med. Entomol. 2001;38:361–370. doi: 10.1603/0022-2585-38.3.361. PubMed DOI

Stefanoff P., Rosinska M., Samuels S., White D.J., Morse D.L., Randolph S.E. A National Case-Control Study Identifies Human Socio-Economic Status and activities as risk factors for tick-borne encephalitis in Poland. PloS One. 2012;7 doi: 10.1371/journal.pone.0045511. PubMed DOI PMC

VanAcker M.C., Little E.A.H., Molaei G., Bajwa W.I., Diuk-Wasser M.A. Enhancement of risk for Lyme disease by landscape connectivity, New York, New York, USA. Emerg. Infect. Dis. 2019;25:1136–1143. doi: 10.3201/eid2506.181741. PubMed DOI PMC

Mace G.M., Hails R.S., Cryle P., Harlow J., Clarke S.J. REVIEW: towards a risk register for natural capital. J. Appl. Ecol. 2015;52:641–653. doi: 10.1111/1365-2664.12431. PubMed DOI PMC

Roe D. Biodiversity loss—more than an environmental emergency. Lancet Planet Health. 2019;3:e287–e289. doi: 10.1016/S2542-5196(19)30113-5. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...