Diversity of European habitat types is correlated with geography more than climate and human pressure

. 2021 Dec ; 11 (24) : 18111-18124. [epub] 20211207

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35003661

Habitat richness, that is, the diversity of ecosystem types, is a complex, spatially explicit aspect of biodiversity, which is affected by bioclimatic, geographic, and anthropogenic variables. The distribution of habitat types is a key component for understanding broad-scale biodiversity and for developing conservation strategies. We used data on the distribution of European Union (EU) habitats to answer the following questions: (i) how do bioclimatic, geographic, and anthropogenic variables affect habitat richness? (ii) Which of those factors is the most important? (iii) How do interactions among these variables influence habitat richness and which combinations produce the strongest interactions? The distribution maps of 222 terrestrial habitat types as defined by the Natura 2000 network were used to calculate habitat richness for the 10 km × 10 km EU grid map. We then investigated how environmental variables affect habitat richness, using generalized linear models, generalized additive models, and boosted regression trees. The main factors associated with habitat richness were geographic variables, with negative relationships observed for both latitude and longitude, and a positive relationship for terrain ruggedness. Bioclimatic variables played a secondary role, with habitat richness increasing slightly with annual mean temperature and overall annual precipitation. We also found an interaction between anthropogenic variables, with the combination of increased landscape fragmentation and increased population density strongly decreasing habitat richness. This is the first attempt to disentangle spatial patterns of habitat richness at the continental scale, as a key tool for protecting biodiversity. The number of European habitats is related to geography more than climate and human pressure, reflecting a major component of biogeographical patterns similar to the drivers observed at the species level. The interaction between anthropogenic variables highlights the need for coordinated, continental-scale management plans for biodiversity conservation.

Zobrazit více v PubMed

Adhikari, A. , Mainali, K. P. , Rangwala, I. , & Hansen, A. J. (2019). Various measures of potential evapotranspiration have species‐specific impact on species distribution models. Ecological Modelling, 414, 108836. 10.1016/j.ecolmodel.2019.108836 DOI

Adler, P. B. , & Levine, J. M. (2007). Contrasting relationships between precipitation and species richness in space and time. Oikos, 116, 221–232. 10.1111/j.0030-1299.2007.15327.x DOI

Alsterberg, C. , Roger, F. , Sundbäck, K. , Juhanson, J. , Hulth, S. , Hallin, S. , & Gamfeldt, L. (2017). Habitat diversity and ecosystem multifunctionality‐The importance of direct and indirect effects. Science Advances, 3, e1601475. 10.1126/sciadv.1601475 PubMed DOI PMC

Amatulli, G. , Domisch, S. , Tuanmu, M. N. , Parmentier, B. , Ranipeta, A. , Malczyk, J. , & Jetz, W. (2018). A suite of global, cross‐scale topographic variables for environmental and biodiversity modeling. Scientific Data, 5(1). 10.1038/sdata.2018.40 PubMed DOI PMC

Archibald, S. B. , Bossert, W. H. , Greenwood, D. R. , & Farrell, B. D. (2010). Seasonality, the latitudinal gradient of diversity, and Eocene insects. Paleobiology, 36(3), 374–398. 10.1666/09021.1 DOI

Arlidge, W. N. S. , Bull, J. W. , Addison, P. F. E. , Burgass, M. J. , Gianuca, D. , Gorham, T. M. , Jacob, C. , Shumway, N. , Sinclair, S. P. , Watson, J. E. M. , Wilcox, C. , & Milner‐Gulland, E. J. (2018). A global mitigation hierarchy for nature conservation. BioScience, 68, 336–347. 10.1093/biosci/biy029 PubMed DOI PMC

Arrhenius, O. (1921). Species and Area. The Journal of Ecology, 9(1), 95. 10.2307/2255763 DOI

Austin, M. P. , & Van Niel, K. P. (2011). Improving species distribution models for climate change studies: variable selection and scale. Journal of Biogeography, 38(1), 1–8. 10.1111/j.1365-2699.2010.02416.x DOI

Banks‐Leite, C. , Ewers, R. M. , Folkard‐Tapp, H. , & Fraser, A. (2020). Countering the effects of habitat loss, fragmentation, and degradation through habitat restoration. One Earth, 3(6), 672–676. 10.1016/j.oneear.2020.11.016 DOI

Bardos, D. C. , Guillera‐Arroita, G. , & Wintle, B. A. (2015). Valid auto‐models for spatially autocorrelated occupancy and abundance data. Methods in Ecology and Evolution, 6, 1137–1149. 10.1111/2041-210X.12402 DOI

Bivand, R. S. , & Wong, D. W. (2018). Comparing implementations of global and local indicators of spatial association. Test, 27, 716–748. 10.1007/s11749-018-0599-x DOI

Brandt, L. A. , Benscoter, A. M. , Harvey, R. , Speroterra, C. , Bucklin, D. , Romañach, S. S. , Watling, J. I. , & Mazzotti, F. J. (2017). Comparison of climate envelope models developed using expert‐selected variables versus statistical selection. Ecological Modelling, 345, 10–20. 10.1016/j.ecolmodel.2016.11.016 DOI

Brown, J. , & Lomolino, M. (2005). Biogeography. Sinauer.

Bunce, R. , Bogers, M. , Evans, D. , Halada, L. , Jongman, R. , Mucher, C. A. , Bauch, B. , de Blust, G. , Parr, T. W. , & Olsvig‐Whittaker, L. (2013). The significance of habitats as indicators of biodiversity and their links to species. Ecological Indicators, 33, 19–25. 10.1016/j.ecolind.2012.07.014 DOI

Calcagno, V. , & de Mazancourt, C. (2010). glmulti: An R package for easy automated model selection with (generalized) linear models. Journal of Statistical Software, 34(12). 10.18637/jss.v034.i12 DOI

Campagnaro, T. , Brundu, G. , & Sitzia, T. (2018). Five major invasive alien tree species in European Union forest habitat types of the Alpine and Continental biogeographical regions. Journal for Nature Conservation, 43, 227–238. 10.1016/j.jnc.2017.07.007 DOI

Cardillo, M. , Purvis, A. , Sechrest, W. , Gittleman, J. L. , Bielby, J. , & Mace, G. M. (2004). Human population density and extinction risk in the world’s carnivores. PLoS Biology, 2, e197. 10.1371/journal.pbio.0020197 PubMed DOI PMC

Carnell, R. (2020). lhs: Latin hypercube samples. Retrieved from https://CRAN.R‐project.org/package=lhs

Chase, J. M. , Blowes, S. A. , Knight, T. M. , Gerstner, K. , & May, F. (2020). Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature, 584, 238–243. 10.1038/s41586-020-2531-2 PubMed DOI

Cramer, M. D. , & Verboom, G. A. (2017). Measures of biologically relevant environmental heterogeneity improve prediction of regional plant species richness. Journal of Biogeography, 44, 579–591. 10.1111/jbi.12911 DOI

Crase, B. , Liedloff, A. C. , & Wintle, B. A. (2012). A new method for dealing with residual spatial autocorrelation in species distribution models. Ecography, 35, 879–888. 10.1111/j.1600-0587.2011.07138.x DOI

Curtis, P. G. , Slay, C. M. , Harris, N. L. , Tyukavina, A. , & Hansen, M. C. (2018). Classifying drivers of global forest loss. Science, 361, 1108–1111. 10.1126/science.aau3445 PubMed DOI

Davies, C. E. , Dorian, M. , & Mark, O. H. (2004). EUNIS habitat classification revised 2004. Report to: European Environment Agency‐European Topic Centre on Nature Protection and Biodiversity (pp. 127–143).

Davies, R. G. , Orme, C. D. L. , Storch, D. , Olson, V. A. , Thomas, G. H. , Ross, S. G. , Ding, T. S. , Rasmussen, P. C. , Bennett, P. M. , Owens, I. P. F. , Blackburn, T. M. , & Gaston, K. J. (2007). Topography, energy and the global distribution of bird species richness. Proceedings of the Royal Society B: Biological Sciences, 274(1614), 1189–1197. 10.1098/rspb.2006.0061 PubMed DOI PMC

Davies, R. G. , Orme, C. D. L. , Olson, V. , Thomas, G. H. , Ross, S. G. , Ding, T.‐S. , Rasmussen, P. C. , Stattersfield, A. J. , Bennett, P. M. , Blackburn, T. M. , Owens, I. P. F. , & Gaston, K. J. (2006). Human impacts and the global distribution of extinction risk. Proceedings of the Royal Society B: Biological Sciences, 273, 2127–2133. 10.1098/rspb.2006.3551 PubMed DOI PMC

Daws, M. I. , Mullins, C. E. , Burslem, D. F. R. P. , Paton, S. R. , & Dalling, J. W. (2002). Plant and Soil, 238(1), 79–89. 10.1023/a:1014289930621 DOI

Dianzinga, N. T. , Moutoussamy, M. L. , Sadeyen, J. , Ravaomanarivo, L. H. R. , & Frago, E. (2020). The interacting effect of habitat amount, habitat diversity and fragmentation on insect diversity along elevational gradients. Journal of Biogeography, 47(11), 2377–2391. 10.1111/jbi.13959 DOI

Diogo, I. J. S. , Santos, K. , Costa, I. R. , & Santos, F. A. M. (2020). Effects of topography and climate on Neotropical mountain forests structure in the semiarid region. Applied Vegetation Science, 24, 1–12. 10.1111/avsc.12527 DOI

Dormann, C. F. , Elith, J. , Bacher, S. , Buchmann, C. , Carl, G. , Carré, G. , Marquéz, J. R. G. , Gruber, B. , Lafourcade, B. , Leitão, P. J. , Münkemüller, T. , McClean, C. , Osborne, P. E. , Reineking, B. , Schröder, B. , Skidmore, A. K. , Zurell, D. , & Lautenbach, S. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36, 27–46. 10.1111/j.1600-0587.2012.07348.x DOI

Drakou, E. G. , Kallimanis, A. S. , Mazaris, A. D. , Apostolopoulou, E. , & Pantis, J. D. (2011). Habitat type richness associations with environmental variables: A case study in the Greek Natura 2000 aquatic ecosystems. Biodiversity and Conservation, 20, 929–943. 10.1007/s10531-011-0005-4 DOI

Dufour, A. , Gadallah, F. , Wagner, H. H. , Guisan, A. , & Buttler, A. (2006). Plant species richness and environmental heterogeneity in a mountain landscape: Effects of variability and spatial configuration. Ecography, 29, 573–584. 10.1111/j.0906-7590.2006.04605.x DOI

Elith, J. , H. Graham, C. , P. Anderson, R. , Dudík, M. , Ferrier, S. , Guisan, A. , J. Hijmans, R. , Huettmann, F. , R. Leathwick, J. , Lehmann, A. , Li, J. , G. Lohmann, L. , A. Loiselle, B. , Manion, G. , Moritz, C. , Nakamura, M. , Nakazawa, Y. , McC. M. Overton, J. , Townsend Peterson, A. , … E. Zimmermann, N. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29, 129–151. 10.1111/j.2006.0906-7590.04596.x DOI

EU‐DEM . (2021). Copernicus land monitoring service. Retrieved from https://land.copernicus.eu/imagery‐in‐situ/eu‐dem

European Commission . (2021). Natura 2000 in the Marine Environment – Appendix 2 of the “Lists of existing marine Habitat types and Species for different Member States”. Retrieved from https://ec.europa.eu/environment/nature/natura2000/marine/index_en.htm

European Environment Agency (EEA) . (2009). Raster data on population density using Corine Land Cover 2000 inventory. Retrieved from https://www.eea.europa.eu/data‐and‐maps/data/population‐density‐disaggregated‐with‐corine‐land‐cover‐2000‐2

European Environment Agency (EEA) . (2011). Landscape fragmentation in Europe. Retrieved from https://www.eea.europa.eu/data‐and‐maps/data/landscape‐fragmentation‐indicator‐effective‐mesh

European Environment Agency (EEA) . (2013). EEA reference grid. Retrieved from https://www.eea.europa.eu/data‐and‐maps/data/eea‐reference‐grids‐2

European Environment Agency (EEA) . (2020). Article 17–2015 dataset – III report of Habitat distribution and of species occurrence data. Retrieved from https://www.eea.europa.eu/data‐and‐maps/data/article‐17‐database‐habitats‐directive‐92‐43‐eec‐2

European Environment Agency (EEA) . (2020). Article 12–2015 spatial data – III report of Bird Directive species occurrence data. Retrieved from https://www.eea.europa.eu/data‐and‐maps/data/article‐12‐database‐birds‐directive‐2009‐147‐ec‐1

Ewers, R. M. , & Didham, R. K. (2006). Confounding factors in the detection of species responses to habitat fragmentation. Biological Reviews, 81, 117–142. 10.1017/S1464793105006949 PubMed DOI

Fahrig, L. (2013). Rethinking patch size and isolation effects: The habitat amount hypothesis. Journal of Biogeography, 40, 1649–1663. 10.1111/jbi.12130 DOI

Fahrig, L. (2021). What the habitat amount hypothesis does and does not predict: A reply to Saura. Journal of Biogeography, 48, 1530–1535. 10.1111/jbi.14061 DOI

Farwell, L. S. , Gudex‐Cross, D. , Anise, I. E. , Bosch, M. J. , Olah, A. M. , Radeloff, V. C. , Razenkova, E. , Rogova, N. , Silveira, E. M. O. , Smith, M. M. , & Pidgeon, A. M. (2021). Satellite image texture captures vegetation heterogeneity and explains patterns of bird richness. Remote Sensing of Environment, 253, 112175. 10.1016/j.rse.2020.112175 DOI

Fick, S. E. , & Hijmans, R. J. (2017). WorldClim 2: New 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302–4315. 10.1002/joc.5086 DOI

Field, R. , Hawkins, B. A. , Cornell, H. V. , Currie, D. J. , Diniz‐Filho, J. A. F. , Guégan, J.‐F. , Kaufman, D. M. , Kerr, J. T. , Mittelbach, G. G. , Oberdorff, T. , O’Brien, E. M. , & Turner, J. R. G. (2009). Spatial species‐richness gradients across scales: A meta‐analysis. Journal of Biogeography, 36, 132–147. 10.1111/j.1365-2699.2008.01963.x DOI

Fine, P. V. A. (2015). Ecological and evolutionary drivers of geographic variation in species diversity. Annual Review of Ecology, Evolution, and Systematics, 46, 369–392.

Fletcher, R. , & Fortin, M. J. (2018). Accounting for spatial dependence in ecological data. Spatial ecology and conservation modeling (1st ed., pp. 169–210). Springer, Cham.

Gallego, F. J. (2010). A population density grid of the European Union. Population and Environment, 31(6), 460–473.

Gameiro, J. , Silva, J. P. , Franco, A. M. A. , & Palmeirim, J. M. (2020). Effectiveness of the European Natura 2000 network at protecting Western Europe’s agro‐steppes. Biological Conservation, 248, 108681. 10.1016/j.biocon.2020.108681 DOI

Gao, J. , & Liu, Y. (2018). Climate stability is more important than water‐energy variables in shaping the elevational variation in species richness. Ecology and Evolution, 8, 6849–7245. 10.1002/ece3.4202 PubMed DOI PMC

Gaston, K. J. (2000). Global patterns in biodiversity. Nature, 405, 220–227. 10.1038/35012228 PubMed DOI

Gaston, K. J. (2007). Latitudinal gradient in species richness. Current Biology, 17, R574. 10.1016/j.cub.2007.05.013 PubMed DOI

Gibb, R. , Redding, D. W. , Chin, K. Q. , Donnelly, C. A. , Blackburn, T. M. , Newbold, T. , & Jones, K. E. (2020). Zoonotic host diversity increases in human‐dominated ecosystems. Nature, 584, 398–402. 10.1038/s41586-020-2562-8 PubMed DOI

Gottfried, M. , Pauli, H. , Futschik, A. , Akhalkatsi, M. , Barančok, P. , Benito Alonso, J. L. , Coldea, G. , Dick, J. , Erschbamer, B. , Fernández Calzado, M. R. , Kazakis, G. , Krajči, J. , Larsson, P. , Mallaun, M. , Michelsen, O. , Moiseev, D. , Moiseev, P. , Molau, U. , Merzouki, A. , … Grabherr, G. (2012). Continent‐wide response of mountain vegetation to climate change. Nature Climate Change, 2, 111–115. 10.1038/nclimate1329 DOI

Grytnes, J. A. , & McCain, C. M. (2007). Elevational trends in biodiversity. Encyclopedia of Biodiversity, 2, 1–8.

Hall, L. S. , Krausman, P. R. , & Morrison, M. L. (1997). The habitat concept and a plea for standard terminology. Wildlife Society Bulletin, 25, 173–182.

Harisena, N. V. , Groen, T. A. , Toxopeus, A. G. , & Naimi, B. (2021). When is variable importance estimation in species distribution modelling affected by spatial correlation? Ecography, 44(5), 778–788. 10.1111/ecog.05534 DOI

Heidrich, L. , Bae, S. , Levick, S. , Seibold, S. , Weisser, W. , Krzystek, P. , Magdon, P. , Nauss, T. , Schall, P. , Serebryanyk, A. , Wöllauer, S. , Ammer, C. , Bässler, C. , Doerfler, I. , Fischer, M. , Gossner, M. M. , Heurich, M. , Hothorn, T. , Jung, K. , … Müller, J. (2020). Heterogeneity–diversity relationships differ between and within trophic levels in temperate forests. Nature Ecology & Evolution, 4, 1204–1212. 10.1038/s41559-020-1245-z PubMed DOI

Hickey, J. (2016). gbm3: Generalized boosted regression models. Retrieved from https://github.com/gbm‐developers/gbm3

Hillebrand, H. (2004). On the generality of the latitudinal diversity gradient. The American Naturalist, 163, 192–211. 10.1086/381004 PubMed DOI

Hjort, J. , Gordon, J. E. , Gray, M. , & Hunter, M. L. (2015). Why geodiversity matters in valuing nature’s stage: Why Geodiversity Matters. Conservation Biology, 29, 630–639. 10.1111/cobi.12510 PubMed DOI

Hoffmann, S. , Beierkuhnlein, C. , Field, R. , Provenzale, A. , & Chiarucci, A. (2018). Uniqueness of protected areas for conservation strategies in the European Union. Scientific Reports, 8, 6445. 10.1038/s41598-018-24390-3 PubMed DOI PMC

Holman, I. P. , Brown, C. , Janes, V. , & Sandars, D. (2017). Can we be certain about future land use change in Europe? A multi‐scenario, integrated‐assessment analysis. Agricultural Systems, 151, 126–135. 10.1016/j.agsy.2016.12.001 PubMed DOI PMC

Hortal, J. , Triantis, K. A. , Meiri, S. , Thébault, E. , & Sfenthourakis, S. (2009). Island species richness increases with habitat diversity. The American Naturalist, 174, E205–E217. 10.1086/645085 PubMed DOI

Howard, C. , Flather, C. H. , & Stephens, P. A. (2020). A global assessment of the drivers of threatened terrestrial species richness. Nature Communications, 11, 993. 10.1038/s41467-020-14771-6 PubMed DOI PMC

Huston, M. A. (1994). Biological diversity: The coexistence of species. Cambridge University Press.

Irl, S. D. H. , Harter, D. E. V. , Steinbauer, M. J. , Gallego Puyol, D. , Fernández‐Palacios, J. M. , Jentsch, A. , & Beierkuhnlein, C. (2015). Climate vs. topography–spatial patterns of plant species diversity and endemism on a high‐elevation island. Journal of Ecology, 103, 1621–1633. 10.1111/1365-2745.12463 DOI

Jaeger, J. A. G. (2000). Landscape division, splitting index, and effective mesh size: New measures of landscape fragmentation. Landscape Ecology, 15, 115–130.

Jiménez‐Alfaro, B. , Chytrý, M. , Mucina, L. , Grace, J. B. , & Rejmánek, M. (2016). Disentangling vegetation diversity from climate‐energy and habitat heterogeneity for explaining animal geographic patterns. Ecology and Evolution, 6, 1515–1526. 10.1002/ece3.1972 PubMed DOI PMC

Jiménez‐Alfaro, B. , Chytrý, M. , Rejmánek, M. , & Mucina, L. (2014). The number of vegetation types in European countries: Major determinants and extrapolation to other regions. Journal of Vegetation Science, 25, 863–872. 10.1111/jvs.12145 DOI

Jung, M. , Dahal, P. R. , Butchart, S. H. M. , Donald, P. F. , De Lamo, X. , Lesiv, M. , Kapos, V. , Rondinini, C. , & Visconti, P. (2020). A global map of terrestrial habitat types. Scientific Data, 7, 256. 10.1038/s41597-020-00599-8 PubMed DOI PMC

Kallimanis, A. S. , Mazaris, A. D. , Tzanopoulos, J. , Halley, J. M. , Pantis, J. D. , & Sgardelis, S. P. (2008). How does habitat diversity affect the species–area relationship? Global Ecology and Biogeography, 17, 532–538. 10.1111/j.1466-8238.2008.00393.x DOI

Kearney, M. (2006). Habitat, environment and niche: What are we modelling? Oikos, 115, 186–191.

Keeley, A. T. H. , Ackerly, D. D. , Cameron, D. R. , Heller, N. E. , Huber, P. R. , Schloss, C. A. , Thorne, J. H. , & Merenlender, A. M. (2018). New concepts, models, and assessments of climate‐wise connectivity. Environmental Research Letters, 13(7), 073002. 10.1088/1748-9326/aacb85 DOI

Keith, D. A. , Rodríguez, J. P. , Rodríguez‐Clark, K. M. , Nicholson, E. , Aapala, K. , Alonso, A. , Asmussen, M. , Bachman, S. , Basset, A. , Barrow, E. G. , Benson, J. S. , Bishop, M. J. , Bonifacio, R. , Brooks, T. M. , Burgman, M. A. , Comer, P. , Comín, F. A. , Essl, F. , Faber‐Langendoen, D. , … Zambrano‐Martínez, S. (2013). Scientific foundations for an IUCN red list of ecosystems. PLoS One, 8, e62111. 10.1371/journal.pone.0062111 PubMed DOI PMC

Keppel, G. , Gillespie, T. W. , Ormerod, P. , & Fricker, G. A. (2016). Habitat diversity predicts orchid diversity in the tropical south‐west Pacific. Journal of Biogeography, 43, 2332–2342. 10.1111/jbi.12805 DOI

Kerr, J. T. , & Packer, L. (1997). Habitat heterogeneity as a determinant of mammal species richness in high‐energy regions. Nature, 385, 252–254. 10.1038/385252a0 DOI

Leclère, D. , Obersteiner, M. , Barrett, M. , Butchart, S. H. M. , Chaudhary, A. , De Palma, A. , DeClerck, F. A. J. , Di Marco, M. , Doelman, J. C. , Dürauer, M. , Freeman, R. , Harfoot, M. , Hasegawa, T. , Hellweg, S. , Hilbers, J. P. , Hill, S. L. L. , Humpenöder, F. , Jennings, N. , Krisztin, T. , Mace, G. M. , Ohashi, H. , Popp, A. , Purvis, A. , Schipper, A. M. , Tabeau, A. , Valin, H. , van Meijl, H. , van Zeist, W. J. , Visconti, P. , Alkemade, R. , Almond, R. , Bunting, G. , Burgess, N. D. , Cornell, S. E. , Di Fulvio, F. , Ferrier, S. , Fritz, S. , Fujimori, S. , Grooten, M. , Harwood, T. , Havlík, P. , Herrero, M. , Hoskins, A. J. , Jung, M. , Kram, T. , Lotze‐Campen, H. , Matsui, T. , Meyer, C. , Nel, D. , Newbold, T. , Schmidt‐Traub, G. , Stehfest, E. , Strassburg, B. B. N. , van Vuuren, D. P. , Ware, C. , Watson, J. E. M. , Wu, W. , & Young, L. (2020). Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature, 585(7826), 551–556. 10.1038/s41586-020-2705-y PubMed DOI

Lehsten, V. , Sykes, M. T. , Scott, A. V. , Tzanopoulos, J. , Kallimanis, A. , Mazaris, A. , Verburg, P. H. , Schulp, C. J. E. , Potts, S. G. , & Vogiatzakis, I. (2015). Disentangling the effects of land‐use change, climate and CO2 on projected future European habitat types. Global Ecology and Biogeography, 24(6), 653–663. 10.1111/geb.12291 DOI

Liu, Q. , Buyantuev, A. , Wu, J. , Niu, J. , Yu, D. , & Zhang, Q. (2018). Intensive land‐use drives regional‐scale homogenization of plant communities. Science of the Total Environment, 644, 806–814. 10.1016/j.scitotenv.2018.07.019 PubMed DOI

Lomolino, M. V. (2000). Ecology’s most general, yet protean 1 pattern: The species‐area relationship. Journal of Biogeography, 27, 17–26.

López‐González, C. , Presley, S. J. , Lozano, A. , Stevens, R. D. , & Higgins, C. L. (2015). Ecological biogeography of Mexican bats: The relative contributions of habitat heterogeneity, beta diversity, and environmental gradients to species richness and composition patterns. Ecography, 38(3), 261–272. 10.1111/ecog.00813 DOI

Lüdecke, D. (2018). ggeffects: Tidy data frames of marginal effects from regression models. Journal of Open Source Software, 3(26), 772. 10.21105/joss.00772 DOI

MacArthur, R. H. (1984). Geographical ecology: Patterns in the distribution of species. Princeton University Press.

Malavasi, M. , Santoro, R. , Cutini, M. , Acosta, A. , & Carranza, M. L. (2016). The impact of human pressure on landscape patterns and plant species richness in Mediterranean coastal dunes. Plant Biosystems, 150, 73–82. 10.1080/11263504.2014.913730 DOI

Mantyka‐pringle, C. S. , Martin, T. G. , & Rhodes, J. R. (2012). Interactions between climate and habitat loss effects on biodiversity: A systematic review and meta‐analysis. Global Change Biology, 18, 1239–1252. 10.1111/j.1365-2486.2011.02593.x DOI

Mantyka‐Pringle, C. S. , Martin, T. G. , & Rhodes, J. R. (2013). Interactions between climate and habitat loss effects on biodiversity: A systematic review and meta‐analysis. Global Change Biology, 19, 1642–1644. 10.1111/gcb.12148 DOI

Márcia Barbosa, A. , Real, R. , Muñoz, A.‐R. , & Brown, J. A. (2013). New measures for assessing model equilibrium and prediction mismatch in species distribution models. Diversity and Distributions, 19, 1333–1338. 10.1111/ddi.12100 DOI

Marini, L. , Bona, E. , Kunin, W. E. , & Gaston, K. J. (2011). Exploring anthropogenic and natural processes shaping fern species richness along elevational gradients. Journal of Biogeography, 38, 78–88. 10.1111/j.1365-2699.2010.02376.x DOI

Meijer, J. R. , Huijbregts, M. A. J. , Schotten, K. C. G. J. , & Schipper, A. M. (2018). Global patterns of current and future road infrastructure. Environmental Research Letters, 13, 064006. 10.1088/1748-9326/aabd42 DOI

Mitchell, S. C. (2005). How useful is the concept of habitat? A critique. Oikos, 110, 634–638. 10.1111/j.0030-1299.2005.13810.x DOI

Moser, D. , Dullinger, S. , Englisch, T. , Niklfeld, H. , Plutzar, C. , Sauberer, N. , Zechmeister, H. G. , & Grabherr, G. (2005). Environmental determinants of vascular plant species richness in the Austrian Alps: Plant species richness in the Alps. Journal of Biogeography, 32, 1117–1127. 10.1111/j.1365-2699.2005.01265.x DOI

Mücher, C. A. , Hennekens, S. M. , Bunce, R. G. H. , Schaminée, J. H. J. , & Schaepman, M. E. (2009). Modelling the spatial distribution of Natura 2000 habitats across Europe. Landscape and Urban Planning, 92, 148–159. 10.1016/j.landurbplan.2009.04.003 DOI

Newbold, T. , Hudson, L. N. , Hill, S. L. L. , Contu, S. , Lysenko, I. , Senior, R. A. , Börger, L. , Bennett, D. J. , Choimes, A. , Collen, B. , Day, J. , De Palma, A. , Díaz, S. , Echeverria‐Londoño, S. , Edgar, M. J. , Feldman, A. , Garon, M. , Harrison, M. L. K. , Alhusseini, T. , Ingram, D. J. , Itescu, Y. , Kattge, J. , Kemp, V. , Kirkpatrick, L. , Kleyer, M. , Correia, D. L. P. , Martin, C. D. , Meiri, S. , Novosolov, M. , Pan, Y. , Phillips, H. R. P. , Purves, D. W. , Robinson, A. , Simpson, J. , Tuck, S. L. , Weiher, E. , White, H. J. , Ewers, R. M. , Mace, G. M. , Scharlemann, J. P. W. , & Purvis, A. (2015). Global effects of land use on local terrestrial biodiversity. Nature, 520(7545), 45–50. 10.1038/nature14324 PubMed DOI

Niemiec, R. M. , Asner, G. P. , Brodrick, P. G. , Gaertner, J. A. , & Ardoin, N. M. (2018). Scale‐dependence of environmental and socioeconomic drivers of albizia invasion in Hawaii. Landscape and Urban Planning, 169, 70–80. 10.1016/j.landurbplan.2017.08.008 DOI

Pacifici, M. , Visconti, P. , Butchart, S. H. M. , Watson, J. E. M. , Cassola, F. M. , & Rondinini, C. (2017). Species’ traits influenced their response to recent climate change. Nature Climate Change, 7, 205–208. 10.1038/nclimate3223 DOI

Pausas, J. G. , & Austin, M. P. (2001). Patterns of plant species richness in relation to different environments: An appraisal. Journal of Vegetation Science, 12, 153–166. 10.2307/3236601 DOI

Pearson, D. L. , & Carroll, S. S. (1998). Global patterns of species richness: Spatial models for conservation planning using bioindicator and precipitation data. Conservation Biology, 12, 809–821. 10.1046/j.1523-1739.1998.96460.x DOI

Pearson, E. S. (1931). The test of significance for the correlation coefficient. Journal of the American Statistical Association, 26, 128–134. 10.1080/01621459.1931.10503208 DOI

Pedersen, T. L. (2020). patchwork: The composer of plots. Retrieved from https://CRAN.R‐project.org/package=patchwork

Pyšek, P. , Kučera, T. , & Jarošík, V. (2002). Plant species richness of nature reserves: the interplay of area, climate and habitat in a central European landscape. Global Ecology and Biogeography, 11(4), 279–289. 10.1046/j.1466-822x.2002.00288.x PubMed DOI PMC

Qian, H. , & Ricklefs, R. E. (2011). Latitude, tree species diversity and the metabolic theory of ecology. Global Ecology and Biogeography, 20, 362–365.

Quintero, I. , & Jetz, W. (2018). Global elevational diversity and diversification of birds. Nature, 555, 246–250. 10.1038/nature25794 PubMed DOI

R Core Team . (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Retrieved from https://www.R‐project.org/

Radeloff, V. C. , Dubinin, M. , Coops, N. C. , Allen, A. M. , Brooks, T. M. , Clayton, M. K. , Costa, G. C. , Graham, C. H. , Helmers, D. P. , Ives, A. R. , Kolesov, D. , Pidgeon, A. M. , Rapacciuolo, G. , Razenkova, E. , Suttidate, N. , Young, B. E. , Zhu, L. , & Hobi, M. L. (2019). The dynamic habitat indices (dhis) from modis and global biodiversity. Remote Sensing of Environment, 222, 204–214. 10.1016/j.rse.2018.12.009 DOI

Rajah, K. , O'Leary, T. , Turner, A. , Petrakis, G. , Leonard, M. , & Westra, S. (2014). Changes to the temporal distribution of daily precipitation: Changing precipitation temporal patterns. Geophysical Research Letters, 41, 8887–8894. 10.1002/2014GL062156 DOI

Riley, S. J. , DeGloria, S. D. , & Elliot, R. (1999). A terrain ruggedness index that quantifies topographic heterogeneity. Intermountain Journal of Sciences, 5(1–4), 23–27.

Rosenzweig, M. L. (1995). Species diversity in space and time. Cambridge University Press.

Sanderson, E. W. , Jaiteh, M. , Levy, M. A. , Redford, K. H. , Wannebo, A. V. , & Woolmer, G. (2002). The human footprint and the last of the wild. BioScience, 52, 891.

Saura, S. (2021a). The Habitat Amount Hypothesis implies negative effects of habitat fragmentation on species richness. Journal of Biogeography, 48, 11–22. 10.1111/jbi.13958 DOI

Saura, S. (2021b). The habitat amount hypothesis predicts that fragmentation poses a threat to biodiversity: A reply to Fahrig. Journal of Biogeography, 48, 1536–1540. 10.1111/jbi.14122 DOI

Schloerke, B. , Cook, D. , Larmarange, J. , Briatte, F. , Marbach, M. , Thoen, E. , Elberg, A. , Toomet, O. , Crowley, J. , Hofmann, H. , & Wickham, H. (2021). GGally: Extension to “ggplot2”. Retrieved from https://CRAN.R‐project.org/package=GGally

Schmiedel, I. , & Culmsee, H. (2016). The influence of landscape fragmentation, expressed by the ‘Effective Mesh Size Index’, on regional patterns of vascular plant species richness in Lower Saxony, Germany. Landscape and Urban Planning, 153, 209–220. 10.1016/j.landurbplan.2016.01.012 DOI

Soetaert, K. (2019). Plot3D: Plotting multi‐dimensional data. Retrieved from https://CRAN.R‐project.org/package=plot3D

Stein, A. , Gerstner, K. , & Kreft, H. (2014). Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters, 17(7), 866–880. 10.1111/ele.12277 PubMed DOI

Stevens, G. C. (1989). The latitudinal gradient in geographical range: How so many species coexist in the tropics. The American Naturalist, 133, 240–256. 10.1086/284913 DOI

Tews, J. , Brose, U. , Grimm, V. , Tielbörger, K. , Wichmann, M. C. , Schwager, M. , & Jeltsch, F. (2004). Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures. Journal of Biogeography, 31, 79–92. 10.1046/j.0305-0270.2003.00994.x DOI

Thuiller, W. , Araújo, M. B. , & Lavorel, S. (2004). Do we need land‐cover data to model species distributions in Europe?: Do land‐cover data improve bioclimatic models? Journal of Biogeography, 31, 353–361. 10.1046/j.0305-0270.2003.00991.x DOI

Thuiller, W. , F. Midgley, G. , Rougeti, M. , & M. Cowling, R. (2006). Predicting patterns of plant species richness in megadiverse South Africa. Ecography, 29, 733–744. 10.1111/j.0906-7590.2006.04674.x DOI

Thuiller, W. , Lavorel, S. , Araujo, M. B. , Sykes, M. T. , & Prentice, I. C. (2005). Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences of the United States of America, 102, 8245–8250. 10.1073/pnas.0409902102 PubMed DOI PMC

Triantis, K. A. , Guilhaumon, F. , & Whittaker, R. J. (2012). The island species–area relationship: Biology and statistics. Journal of Biogeography, 39, 215–231. 10.1111/j.1365-2699.2011.02652.x DOI

Triantis, K. A. , Vardinoyannis, K. , Tsolaki, E. P. , Botsaris, I. , Lika, K. , & Mylonas, M. (2006). Re‐approaching the small island effect. Journal of Biogeography, 33, 914–923. 10.1111/j.1365-2699.2006.01464.x DOI

Tuanmu, M. , & Jetz, W. (2015). A global, remote sensing‐based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Global Ecology and Biogeography, 24, 1329–1339.

Venter, O. , Sanderson, E. W. , Magrach, A. , Allan, J. R. , Beher, J. , Jones, K. R. , Possingham, H. P. , Laurance, W. F. , Wood, P. , Fekete, B. M. , Levy, M. A. , & Watson, J. E. M. (2016). Global terrestrial Human Footprint maps for 1993 and 2009. Scientific Data, 3, 160067. 10.1038/sdata.2016.67 PubMed DOI PMC

Vetaas, O. R. , Paudel, K. P. , & Christensen, M. (2019). Principal factors controlling biodiversity along an elevation gradient: Water, energy and their interaction. Journal of Biogeography, 46(8), 1652–1663. 10.1111/jbi.13564 DOI

Vetaas, O. R. , & Ferrer‐Castán, D. (2008). Patterns of woody plant species richness in the Iberian Peninsula: Environmental range and spatial scale. Journal of Biogeography, 35, 1863–1878. 10.1111/j.1365-2699.2008.01931.x DOI

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer.

Wickham, H. , François, R. , Henry, L. , & Müller, K. (2020). dplyr: A grammar of data manipulation. Retrieved from https://CRAN.R‐project.org/package=dplyr

Wickham, H. , Averick, M. , Bryan, J. , Chang, W. , McGowan, L. , François, R. , Grolemund, G. , Hayes, A. , Henry, L. , Hester, J. , Kuhn, M. , Pedersen, T. , Miller, E. , Bache, S. , Müller, K. , Ooms, J. , Robinson, D. , Seidel, D. , Spinu, V. , … Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686. 10.21105/joss.01686 DOI

Wood, S. (2020). mgcv: Mixed GAM computation vehicle with automatic smoothness estimation. Retrieved from https://CRAN.R‐project.org/package=mgcv

Woodbridge, J. , Fyfe, R. , Smith, D. , Pelling, R. , Vareilles, A. , Batchelor, R. , Bevan, A. , & Davies, A. L. (2020). What drives biodiversity patterns? Using long‐term multidisciplinary data to discern centennial‐scale change. Journal of Ecology, 109, 1396–1410. 10.1111/1365-2745.13565 DOI

Xu, C. , Huang, Z. Y. X. , Chi, T. , Chen, B. J. W. , Zhang, M. , & Liu, M. (2014). Can local landscape attributes explain species richness patterns at macroecological scales?: Can landscape attributes explain richness patterns? Global Ecology and Biogeography, 23, 436–445. 10.1111/geb.12108 DOI

Yapp, R. (1922). The concept of habitat. Journal of Ecology, 10, 1–17. 10.2307/2255427 DOI

Zhang, Y. , Qian, L. , Spalink, D. , Sun, L. , Chen, J. , & Sun, H. (2021). Spatial phylogenetics of two topographic extremes of the Hengduan Mountains in southwestern China and its implications for biodiversity conservation. Plant Diversity, 43(3), 181–191. 10.1016/j.pld.2020.09.001 PubMed DOI PMC

Zolina, O. (2012). Change in intense precipitation in Europe. In Kundzewicz Z. W. (Ed.), Changes in flood risk in Europe. Special Publication 10, (pp. 97–119). IAHS Press.

Zurell, D. , Elith, J. , & Schröder, B. (2012). Predicting to new environments: Tools for visualizing model behaviour and impacts on mapped distributions. Diversity and Distributions, 18, 628–634. 10.1111/j.1472-4642.2012.00887.x DOI

Zobrazit více v PubMed

Dryad
10.5061/dryad.m0cfxpp52

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...