Possibilities and limits of using gyroscopic sensors in the diagnosis of progression of osteoarthritis and femoroacetabular impingement syndrome
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2103/2020
Univerzita Hradec Králové
PubMed
35525983
PubMed Central
PMC9077898
DOI
10.1186/s13018-022-03141-1
PII: 10.1186/s13018-022-03141-1
Knihovny.cz E-zdroje
- MeSH
- artroskopie metody MeSH
- artróza kyčelních kloubů * diagnostické zobrazování MeSH
- femoroacetabulární impingement * diagnostické zobrazování MeSH
- kyčelní kloub MeSH
- lidé MeSH
- osteoartróza * diagnostické zobrazování MeSH
- rentgendiagnostika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Osteoarthritis is the most common type of degenerative joint disease and affects millions of people. In this paper, we propose a non-obtrusive and straightforward method to assess the progression of osteoarthritis. In standard medicine praxis, osteoarthritis is observed with X-rays. In this study, we use widely available wearable sensors with gyroscopes to make the observation. Two novel methods are proposed for gyroscope data processing. A small-scale study has shown that these methods can be used to monitor osteoarthritis's progression, and to differentiate between healthy subjects and subjects with femoroacetabular impingement syndrome.
Zobrazit více v PubMed
Asimakopoulos S, Asimakopoulos G, Spillers F. Motivation and user engagement in fitness tracking: heuristics for mobile healthcare wearables. In: Informatics. Multidisciplinary Digital Publishing Institute, 2017. p. 5.
Byrd JW. Femoroacetabular impingement in athletes: current concepts. Am J Sports Med. 2014;42(3):737–751. doi: 10.1177/0363546513499136. PubMed DOI
Cimr D, et al. Application of mechanical trigger for unobtrusive detection of respiratory disorders from body recoil micro-movements. Comput Methods Programs Biomed. 2021;207:106149. doi: 10.1016/j.cmpb.2021.106149. PubMed DOI
Dooley PJ. Femoroacetabular impingement syndrome: nonarthritic hip pain in young adults. Can Fam Phys. 2008;54(1):42–47. PubMed PMC
Ermier C, Hatcher J, Lee M. Wearable device implications in the healthcare industry. J Med Eng Technol. 2016;40(4):141–148. doi: 10.3109/03091902.2016.1153738. PubMed DOI
Fioruzzi A, et al. Interobserver and intraobserver reliability of a new radiological classification for femoroacetabular impingement syndrome. Musculoskeletal Surg. 2020;104(3):279–284. PubMed
Glyn-Jones S, et al. Osteoarthritis. The Lancet. 2015;386(9991):376–387. doi: 10.1016/S0140-6736(14)60802-3. PubMed DOI
Griffin DR, Dickenson EJ, O'Donnel J, et al. The Warwick Agreement on femoroacetabular impingement syndrome (FAI syndrome): an international consensus statement. Br J Sports Med. 2016;50(19):1169–1176. doi: 10.1136/bjsports-2016-096743. PubMed DOI
Hlubik J, Stritecka H, Hlubik P. Bioelectrical impedance analysis or basic anthropometrical parameters for evaluating weight loss success? Open Med. 2013;8(5):565–570. doi: 10.2478/s11536-013-0206-1. DOI
Kaiser DW, Harrington RA, Turakhina MP. Wearable fitness trackers and heart disease. JAMA Cardiol. 2016;1(2):239–239. doi: 10.1001/jamacardio.2016.0354. PubMed DOI PMC
Kiebzak GM, Leamy LJ, Pierson LM, Nord RH, Zhang ZY. Measurement precision of body composition variables using the lunar DPX-L densitometer. J Clin Densitometry. 2000;3(1):35–41. doi: 10.1385/JCD:3:1:035. PubMed DOI
King MG, et al. Lower limb biomechanics in femoroacetabular impingement syndrome: a systematic review and meta-analysis. Br J Sports Med. 2018;52(9):566–580. doi: 10.1136/bjsports-2017-097839. PubMed DOI
Lee TF, et al. Analysis of vibroarthrographic signals for knee osteoarthritis diagnosis. In: 2012 Sixth International Conference on Genetic and Evolutionary Computing. IEEE, 2012. p. 223–228.
Lee WY, et al. Descriptive epidemiology of symptomatic femoroacetabular impingement in young athlete: single center study. Hip Pelvis. 2016;28(1):29–34. doi: 10.5371/hp.2016.28.1.29. PubMed DOI PMC
Medina-Inojosa J, et al. Reliability of a 3D body scanner for anthropometric measurements of central obesity. Obesity, open access, 2016, 2.3. PubMed PMC
Rasche P, et al. Activity tracker and elderly. In: 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing. IEEE, 2015. p. 1411–1416.
Rasche P, et al. Self monitoring-an age-related comparison. In: Proceedings of the Human Factors and Ergonomics Society Europe Chapter 2015 Annual Conference. 2015.
Sudnicka F. Analysis of biomedical signals using differential geometry invariants. Acta Physica Polonica A, 2011, 6.120: A-154–A-157.
Stukenberg E. A quantitative pilot study on the use of a fitness tracker in the preventative management of employees at risk of chronic disease in a health care facility. On-Line J Nurs Inf, 2015, 19.3.
Swagerty JR, Daniel L, Hellinger D. Radiographic assessment of osteoarthritis. Am Fam Phys. 2001;64(2):279. PubMed
Tedesco S, Barton J, O’Flynn B. A review of activity trackers for senior citizens: research perspectives, commercial landscape and the role of the insurance industry. Sensors. 2017;17(6):1277. doi: 10.3390/s17061277. PubMed DOI PMC
Wang X, et al. An empirical study of wearable technology acceptance in healthcare. Industrial Management & Data Systems, 2015.