Possibilities and limits of using gyroscopic sensors in the diagnosis of progression of osteoarthritis and femoroacetabular impingement syndrome

. 2022 May 07 ; 17 (1) : 254. [epub] 20220507

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35525983

Grantová podpora
2103/2020 Univerzita Hradec Králové

Odkazy

PubMed 35525983
PubMed Central PMC9077898
DOI 10.1186/s13018-022-03141-1
PII: 10.1186/s13018-022-03141-1
Knihovny.cz E-zdroje

Osteoarthritis is the most common type of degenerative joint disease and affects millions of people. In this paper, we propose a non-obtrusive and straightforward method to assess the progression of osteoarthritis. In standard medicine praxis, osteoarthritis is observed with X-rays. In this study, we use widely available wearable sensors with gyroscopes to make the observation. Two novel methods are proposed for gyroscope data processing. A small-scale study has shown that these methods can be used to monitor osteoarthritis's progression, and to differentiate between healthy subjects and subjects with femoroacetabular impingement syndrome.

Zobrazit více v PubMed

Asimakopoulos S, Asimakopoulos G, Spillers F. Motivation and user engagement in fitness tracking: heuristics for mobile healthcare wearables. In: Informatics. Multidisciplinary Digital Publishing Institute, 2017. p. 5.

Byrd JW. Femoroacetabular impingement in athletes: current concepts. Am J Sports Med. 2014;42(3):737–751. doi: 10.1177/0363546513499136. PubMed DOI

Cimr D, et al. Application of mechanical trigger for unobtrusive detection of respiratory disorders from body recoil micro-movements. Comput Methods Programs Biomed. 2021;207:106149. doi: 10.1016/j.cmpb.2021.106149. PubMed DOI

Dooley PJ. Femoroacetabular impingement syndrome: nonarthritic hip pain in young adults. Can Fam Phys. 2008;54(1):42–47. PubMed PMC

Ermier C, Hatcher J, Lee M. Wearable device implications in the healthcare industry. J Med Eng Technol. 2016;40(4):141–148. doi: 10.3109/03091902.2016.1153738. PubMed DOI

Fioruzzi A, et al. Interobserver and intraobserver reliability of a new radiological classification for femoroacetabular impingement syndrome. Musculoskeletal Surg. 2020;104(3):279–284. PubMed

Glyn-Jones S, et al. Osteoarthritis. The Lancet. 2015;386(9991):376–387. doi: 10.1016/S0140-6736(14)60802-3. PubMed DOI

Griffin DR, Dickenson EJ, O'Donnel J, et al. The Warwick Agreement on femoroacetabular impingement syndrome (FAI syndrome): an international consensus statement. Br J Sports Med. 2016;50(19):1169–1176. doi: 10.1136/bjsports-2016-096743. PubMed DOI

Hlubik J, Stritecka H, Hlubik P. Bioelectrical impedance analysis or basic anthropometrical parameters for evaluating weight loss success? Open Med. 2013;8(5):565–570. doi: 10.2478/s11536-013-0206-1. DOI

Kaiser DW, Harrington RA, Turakhina MP. Wearable fitness trackers and heart disease. JAMA Cardiol. 2016;1(2):239–239. doi: 10.1001/jamacardio.2016.0354. PubMed DOI PMC

Kiebzak GM, Leamy LJ, Pierson LM, Nord RH, Zhang ZY. Measurement precision of body composition variables using the lunar DPX-L densitometer. J Clin Densitometry. 2000;3(1):35–41. doi: 10.1385/JCD:3:1:035. PubMed DOI

King MG, et al. Lower limb biomechanics in femoroacetabular impingement syndrome: a systematic review and meta-analysis. Br J Sports Med. 2018;52(9):566–580. doi: 10.1136/bjsports-2017-097839. PubMed DOI

Lee TF, et al. Analysis of vibroarthrographic signals for knee osteoarthritis diagnosis. In: 2012 Sixth International Conference on Genetic and Evolutionary Computing. IEEE, 2012. p. 223–228.

Lee WY, et al. Descriptive epidemiology of symptomatic femoroacetabular impingement in young athlete: single center study. Hip Pelvis. 2016;28(1):29–34. doi: 10.5371/hp.2016.28.1.29. PubMed DOI PMC

Medina-Inojosa J, et al. Reliability of a 3D body scanner for anthropometric measurements of central obesity. Obesity, open access, 2016, 2.3. PubMed PMC

Rasche P, et al. Activity tracker and elderly. In: 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing. IEEE, 2015. p. 1411–1416.

Rasche P, et al. Self monitoring-an age-related comparison. In: Proceedings of the Human Factors and Ergonomics Society Europe Chapter 2015 Annual Conference. 2015.

Sudnicka F. Analysis of biomedical signals using differential geometry invariants. Acta Physica Polonica A, 2011, 6.120: A-154–A-157.

Stukenberg E. A quantitative pilot study on the use of a fitness tracker in the preventative management of employees at risk of chronic disease in a health care facility. On-Line J Nurs Inf, 2015, 19.3.

Swagerty JR, Daniel L, Hellinger D. Radiographic assessment of osteoarthritis. Am Fam Phys. 2001;64(2):279. PubMed

Tedesco S, Barton J, O’Flynn B. A review of activity trackers for senior citizens: research perspectives, commercial landscape and the role of the insurance industry. Sensors. 2017;17(6):1277. doi: 10.3390/s17061277. PubMed DOI PMC

Wang X, et al. An empirical study of wearable technology acceptance in healthcare. Industrial Management & Data Systems, 2015.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...