Monitoring of species' genetic diversity in Europe varies greatly and overlooks potential climate change impacts
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
PID2020-118028GB-I00
Ministerio de Economía, Industria y Competitividad, Gobierno de España (Ministerio de Economía, Industria y Competitividad)
160022/F40 NINA
Norges Forskningsråd (Research Council of Norway)
2020-01290
Svenska Forskningsrådet Formas (Swedish Research Council Formas)
2019-05503
Vetenskapsrådet (Swedish Research Council)
PubMed
38225425
PubMed Central
PMC10857941
DOI
10.1038/s41559-023-02260-0
PII: 10.1038/s41559-023-02260-0
Knihovny.cz E-zdroje
- MeSH
- ekosystém MeSH
- genetická variace MeSH
- klimatické změny * MeSH
- zachování přírodních zdrojů * metody MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
Genetic monitoring of populations currently attracts interest in the context of the Convention on Biological Diversity but needs long-term planning and investments. However, genetic diversity has been largely neglected in biodiversity monitoring, and when addressed, it is treated separately, detached from other conservation issues, such as habitat alteration due to climate change. We report an accounting of efforts to monitor population genetic diversity in Europe (genetic monitoring effort, GME), the evaluation of which can help guide future capacity building and collaboration towards areas most in need of expanded monitoring. Overlaying GME with areas where the ranges of selected species of conservation interest approach current and future climate niche limits helps identify whether GME coincides with anticipated climate change effects on biodiversity. Our analysis suggests that country area, financial resources and conservation policy influence GME, high values of which only partially match species' joint patterns of limits to suitable climatic conditions. Populations at trailing climatic niche margins probably hold genetic diversity that is important for adaptation to changing climate. Our results illuminate the need in Europe for expanded investment in genetic monitoring across climate gradients occupied by focal species, a need arguably greatest in southeastern European countries. This need could be met in part by expanding the European Union's Birds and Habitats Directives to fully address the conservation and monitoring of genetic diversity.
Bavarian Office for Forest Genetics Teisendorf Germany
BC3 Basque Center for Climate Change Leioa Spain
Center for Tree Science Morton Arboretum Lisle IL USA
Centre for Research in Anthropology Lisbon Portugal
Copenhagen Zoo Frederiksberg Denmark
Department of Animal Science University of Zagreb Zagreb Croatia
Department of Biology and Ecology Faculty of Sciences University of Novi Sad Novi Sad Serbia
Department of Biology Colorado State University Fort Collins CO USA
Department of Biology University of Copenhagen Copenhagen Denmark
Department of Biology University of Iceland Reykjavik Iceland
Department of Ecology and Evolution Biophore University of Lausanne Lausanne Switzerland
Department of Environmental Systems Sciences D USYS ETH Zürich Zürich Switzerland
Department of Evolutionary Biology University of Vienna Vienna Austria
Department of Genetics University of the Free State Bloemfontein South Africa
Department of Medical Biochemistry and Microbiology Uppsala University Uppsala Sweden
Department of Veterinary Medicine University of Sassari Sassari Italy
Department of Zoology Division of Population Genetics Stockholm University Stockholm Sweden
Doñana Biological Station Seville Spain
EBM Estação Biológica de Mértola Mértola Portugal
Ecology Evolution and Biodiversity Conservation KU Leuven Leuven Belgium
Faculty of Biological and Environmental Sciences University of Helsinki Helsinki Finland
Faculty of Biosciences and Aquaculture Nord University Bodø Norway
Faculty of Environmental Protection Velenje Slovenia
Faculty of Forestry Technical University in Zvolen Zvolen Slovak Republic
Genetic Resource Centre Latvian State Forest Research Institute 'Silava' Salaspils Latvia
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
IKERBASQUE Basque Foundation for Science Bilbao Spain
Institute for Nature Conservation and Forests Lisbon Portugal
Institute of Earth Surface Dynamics Geopolis University of Lausanne Lausanne Switzerland
Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
Institute of Nature Conservation Polish Academy of Sciences Kraków Poland
Institute of Vertebrate Biology Czech Academy of Sciences Brno Czech Republic
Israel Oceanographic and Limnological Research National Institute of Oceanography Haifa Israel
Natural History Museum Vienna Vienna Austria
Norwegian Institute for Nature Research Trondheim Norway
Plant Ecology and Nature Conservation Group Wageningen University Wageningen the Netherlands
Research Institute for Nature and Forest Geraardsbergen Belgium
School of Biosciences Cardiff University Cardiff UK
Slovenian Forestry Institute Ljubljana Slovenia
Swedish Species Information Centre Swedish University of Agricultural Sciences Uppsala Sweden
Swiss Federal Research Institute WSL Birmensdorf Switzerland
UCD School of Agriculture and Food Science University College Dublin Dublin Ireland
Wildlife Ecology and Management University Freiburg Freiburg Germany
Zobrazit více v PubMed
McOwen CJ, et al. Sufficiency and suitability of global biodiversity indicators for monitoring progress to 2020 targets. Conserv. Lett. 2016;9:489–494. doi: 10.1111/conl.12329. DOI
Laikre L, et al. Post-2020 goals overlook genetic diversity. Science. 2020;367:1083–1085. doi: 10.1126/science.abb2748. PubMed DOI
Hoban S, et al. Genetic diversity goals and targets have improved, but remain insufficient for clear implementation of the post-2020 global biodiversity framework. Conserv. Genet. 2023;24:181–191. doi: 10.1007/s10592-022-01492-0. PubMed DOI PMC
Decision Adopted by the Conference of the Parties to the Convention on Biological Diversity: Kunming-Montreal Global Biodiversity Framework Decision XV/4 (Convention on Biological Diversity, 2022).
Ette J-S, Geburek T. Why European biodiversity reporting is not reliable. Ambio. 2021;50:929–941. doi: 10.1007/s13280-020-01415-8. PubMed DOI PMC
O’Brien D, et al. Bringing together approaches to reporting on within species genetic diversity. J. Appl. Ecol. 2022;59:2227–2233. doi: 10.1111/1365-2664.14225. DOI
Hoban S, et al. Comparative evaluation of potential indicators and temporal sampling protocols for monitoring genetic erosion. Evol. Appl. 2014;7:984–998. doi: 10.1111/eva.12197. PubMed DOI PMC
Hoban S, et al. Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biol. Conserv. 2020;248:108654. doi: 10.1016/j.biocon.2020.108654. DOI
Pereira HM, et al. Essential biodiversity variables. Science. 2013;339:277–278. doi: 10.1126/science.1229931. PubMed DOI
Monitoring Framework for the Kunming-Montreal Global Biodiversity Framework Decision XV/5 (Convention on Biological Diversity, 2022).
Leigh DM, Hendry AP, Vazquez-Dominguez E, Friesen VL. Estimated six per cent loss of genetic variation in wild populations since the industrial revolution. Evol. Appl. 2019;12:1505–1512. doi: 10.1111/eva.12810. PubMed DOI PMC
Miraldo A, et al. An Anthropocene map of genetic diversity. Science. 2016;353:1532–1535. doi: 10.1126/science.aaf4381. PubMed DOI
Exposito-Alonso M, et al. Genetic diversity loss in the Anthropocene. Science. 2022;377:1431–1435. doi: 10.1126/science.abn5642. PubMed DOI
Merilä J, Hendry AP. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol. Appl. 2014;7:1–14. doi: 10.1111/eva.12137. PubMed DOI PMC
Purvis, A. M. et al. in Global Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (eds Brondízio, E. S. et al.) Ch. 2.2 (IPBES Secretariat, 2019).
Hampe A, Petit RJ. Conserving biodiversity under climate change: the rear edge matters. Ecol. Lett. 2005;8:461–467. doi: 10.1111/j.1461-0248.2005.00739.x. PubMed DOI
Carvalho SB, Torres J, Tarroso P, Velo-Anton G. Genes on the edge: a framework to detect genetic diversity imperiled by climate change. Glob. Change Biol. 2019;25:4034–4047. doi: 10.1111/gcb.14740. PubMed DOI
Razgour O, et al. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc. Natl Acad. Sci. USA. 2019;116:10418–10423. doi: 10.1073/pnas.1820663116. PubMed DOI PMC
Bridle JR, Vines TH. Limits to evolution at range margins: when and why does adaptation fail? Trends Ecol. Evol. 2007;22:140–147. doi: 10.1016/j.tree.2006.11.002. PubMed DOI
Kawecki TJ. Adaptation to marginal habitats. Annu. Rev. Ecol. Evol. Syst. 2008;39:321–342. doi: 10.1146/annurev.ecolsys.38.091206.095622. DOI
Rehfeldt GE, Ying CC, Spittlehouse DL, Hamilton DA. Genetic responses to climate in Pinus contorta: niche breadth, climate change, and reforestation. Ecol. Monogr. 1999;69:375–407. doi: 10.1890/0012-9615(1999)069[0375:GRTCIP]2.0.CO;2. DOI
Bontrager M, et al. Adaptation across geographic ranges is consistent with strong selection in marginal climates and legacies of range expansion. Evolution. 2021;75:1316–1333. doi: 10.1111/evo.14231. PubMed DOI
Carnaval AC, Hickerson MJ, Haddad CFB, Rodrigues MT, Moritz C. Stability predicts genetic diversity in the Brazilian Atlantic Forest hotspot. Science. 2009;323:785–789. doi: 10.1126/science.1166955. PubMed DOI
Hewitt GM. Genetic consequences of climatic oscillations in the Quaternary. Phil. Trans. R. Soc. Lond. B. 2004;359:183–195. doi: 10.1098/rstb.2003.1388. PubMed DOI PMC
Nadeau CP, Urban MC. Eco-evolution on the edge during climate change. Ecography. 2019;42:1280–1297. doi: 10.1111/ecog.04404. DOI
Aitken SN, Yeaman S, Holliday JA, Wang TL, Curtis-McLane S. Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol. Appl. 2008;1:95–111. doi: 10.1111/j.1752-4571.2007.00013.x. PubMed DOI PMC
Holliday JA, Suren H, Aitken SN. Divergent selection and heterogeneous migration rates across the range of Sitka spruce (Picea sitchensis) Proc. R. Soc. B. 2012;279:1675–1683. doi: 10.1098/rspb.2011.1805. PubMed DOI PMC
Wessely J, et al. Climate warming may increase the frequency of cold-adapted haplotypes in alpine plants. Nat. Clim. Change. 2022;12:77–82. doi: 10.1038/s41558-021-01255-8. DOI
Flanagan SP, Forester BR, Latch EK, Aitken SN, Hoban S. Guidelines for planning genomic assessment and monitoring of locally adaptive variation to inform species conservation. Evol. Appl. 2018;11:1035–1052. doi: 10.1111/eva.12569. PubMed DOI PMC
COST Members (COST Association, 2023); https://www.cost.eu/about/members/
Cervellini M, et al. Diversity of European habitat types is correlated with geography more than climate and human pressure. Ecol. Evol. 2021;11:18111–18124. doi: 10.1002/ece3.8409. PubMed DOI PMC
Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J. Biodiversity hotspots for conservation priorities. Nature. 2000;403:853–858. doi: 10.1038/35002501. PubMed DOI
Broennimann O, et al. Distance to native climatic niche margins explains establishment success of alien mammals. Nat. Commun. 2021;12:2353. doi: 10.1038/s41467-021-22693-0. PubMed DOI PMC
Schwartz MK, Luikart G, Waples RS. Genetic monitoring as a promising tool for conservation and management. Trends Ecol. Evol. 2007;22:25–33. doi: 10.1016/j.tree.2006.08.009. PubMed DOI
G-BiKE Working Group 2. Monitoring project submissions. Figsharehttps://figshare.com/s/296e3bf1db7b84ec71bd (2023).
Aitken SN, Whitlock MC. Assisted gene flow to facilitate local adaptation to climate change. Annu. Rev. Ecol. Evol. Syst. 2013;44:367–388. doi: 10.1146/annurev-ecolsys-110512-135747. DOI
Hoegh-Guldberg O, et al. Assisted colonization and rapid climate change. Science. 2008;321:345–346. doi: 10.1126/science.1157897. PubMed DOI
Van Daele F, Honnay O, De Kort H. Genomic analyses point to a low evolutionary potential of prospective source populations for assisted migration in a forest herb. Evol. Appl. 2022;15:1859–1874. doi: 10.1111/eva.13485. PubMed DOI PMC
Bonin A, Nicole F, Pompanon F, Miaud C, Taberlet P. Population adaptive index: a new method to help measure intraspecific genetic diversity and prioritize populations for conservation. Conserv. Biol. 2007;21:697–708. doi: 10.1111/j.1523-1739.2007.00685.x. PubMed DOI
Willi Y, Van Buskirk J, Hoffmann AA. Limits to the adaptive potential of small populations. Annu. Rev. Ecol. Evol. Syst. 2006;37:433–458. doi: 10.1146/annurev.ecolsys.37.091305.110145. DOI
Dauphin B, et al. Disentangling the effects of geographic peripherality and habitat suitability on neutral and adaptive genetic variation in Swiss stone pine. Mol. Ecol. 2020;29:1972–1989. doi: 10.1111/mec.15467. PubMed DOI
Kardos M, et al. The crucial role of genome-wide genetic variation in conservation. Proc. Natl Acad. Sci. USA. 2021;118:e2104642118. doi: 10.1073/pnas.2104642118. PubMed DOI PMC
Reed DH, Frankham R. How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evolution. 2001;55:1095–1103. PubMed
Harrisson KA, Pavlova A, Telonis-Scott M, Sunnucks P. Using genomics to characterize evolutionary potential for conservation of wild populations. Evol. Appl. 2014;7:1008–1025. doi: 10.1111/eva.12149. PubMed DOI PMC
Perez-Navarro MA, et al. Comparing climatic suitability and niche distances to explain populations responses to extreme climatic events. Ecography. 2022;2022:e06263. doi: 10.1111/ecog.06263. DOI
Bridle JR, Polechova J, Kawata M, Butlin RK. Why is adaptation prevented at ecological margins? New insights from individual-based simulations. Ecol. Lett. 2010;13:485–494. doi: 10.1111/j.1461-0248.2010.01442.x. PubMed DOI
Clark, R. D. et al. The practice and promise of temporal genomics for measuring evolutionary responses to global change. Mol. Ecol. Resour.00, 1–17 (2023); 10.1111/1755-0998.13789 PubMed
Jensen, E. L. & Leigh, D. M. Using temporal genomics to understand contemporary climate change responses in wildlife. Ecol. Evol.12, e9340 (2022). PubMed PMC
Thurman LL, et al. Persist in place or shift in space? Evaluating the adaptive capacity of species to climate change. Front. Ecol. Environ. 2020;18:520–528. doi: 10.1002/fee.2253. DOI
Hughes EC, Edwards DP, Thomas GH. The homogenization of avian morphological and phylogenetic diversity under the global extinction crisis. Curr. Biol. 2022;32:3830–3837. doi: 10.1016/j.cub.2022.06.018. PubMed DOI PMC
The IUCN Red List of Threatened Species: Spatial Data (International Union for the Conservation of Nature, 2022); https://www.iucnredlist.org/resources/spatial-data-download
GBIF Occurrence Download, Large Carnivorans (Global Biodiversity Information Facility, 2021); 10.15468/dl.8skxjd
GBIF Occurrence Download, Forest Trees (Global Biodiversity Information Facility, 2021); 10.15468/dl.guf53c
GBIF Occurrence Download, Amphibians (Global Biodiversity Information Facility, 2021); 10.15468/dl.z88kj8
GBIF Occurrence Download, Large Birds (Global Biodiversity Information Facility, 2021); 10.15468/dl.zyhtqq
Copernicus Land Monitoring Service 2018 (European Environment Agency, European Union, 2018); https://land.copernicus.eu/pan-european/corine-land-cover/clc2018
Karger DN, et al. Climatologies at high resolution for the Earth land surface areas. Sci. Data. 2017;4:170122. doi: 10.1038/sdata.2017.122. PubMed DOI PMC
Broennimann O, et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 2012;21:481–497. doi: 10.1111/j.1466-8238.2011.00698.x. DOI
Liu Z, Deng Z, Davis S, Ciais P. Monitoring global carbon emissions in 2022. Nat. Rev. Earth Environ. 2023;4:205–206. doi: 10.1038/s43017-023-00406-z. PubMed DOI PMC
Karger DN, et al. Datadescriptor: climatologies at high resolution for the Earth’s land surface areas. Sci. Data. 2017;4:170122. doi: 10.1038/sdata.2017.122. PubMed DOI PMC
Guisan A, Petitpierre B, Broennimann O, Daehler C, Kueffer C. Unifying niche shift studies: insights from biological invasions. Trends Ecol. Evol. 2014;29:260–269. doi: 10.1016/j.tree.2014.02.009. PubMed DOI
Pearman PB, Guisan A, Broennimann O, Randin CF. Niche dynamics in space and time. Trends Ecol. Evol. 2008;23:149–158. doi: 10.1016/j.tree.2007.11.005. PubMed DOI
Svenning JC, Skov F. Limited filling of the potential range in European tree species. Ecol. Lett. 2004;7:565–573. doi: 10.1111/j.1461-0248.2004.00614.x. DOI
Large Scale Data, 1:10m (Natural Earth, 2021); https://www.naturalearthdata.com/
Tennekes M. tmap: thematic maps in R. J. Stat. Softw. 2018;84:1–39. doi: 10.18637/jss.v084.i06. PubMed DOI
Pebesma E. Simple features for R: standardized support for spatial vector data. R J. 2018;10:439–446. doi: 10.32614/RJ-2018-009. DOI
DataBank: World Development Indicators (World Bank Group, 2022); https://data.worldbank.org/indicator/NY.GDP.PCAP.CD
Moriña D, Higueras M, Puig P, Oliveira M. hermite: generalized Hermite distribution. R package version 1.1.2. R J. 2018;7:263–274. doi: 10.32614/RJ-2015-035. DOI
Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn (Springer, 2002).
Veall MR, Zimmermann KF. Evaluating pseudo-R2s for binary probit models. Qual. Quant. 1994;28:151–164. doi: 10.1007/BF01102759. DOI
Bjornstad, O. N. ncf: Spatial covariance functions. R package version 1.3-2 (2022).
Dray, S. et al. adespatial: Multivariate multiscale spatial analysis. R package version 0.3-16 (2022).
Bivand, R. S., Pebesma, E. & Gomez-Rubio, V. Applied Spatial Data Analysis with R 2nd edn (Springer, 2013).
R Core Team. R: A Language and Environment for Statistical Computing v.4.1.2 (R Foundation for Statistical Computing, 2021).
Pearman, P. B. & Broennimann, O. Data, code, and supplementary materials for Pearman P. B., Broennimann, O., et al. Monitoring species genetic diversity in Europe varies greatly and overlooks potential climate change impacts. Zenodo10.5281/zenodo.8417583 (2023).
Dealing With the Complexity of Effective Population Size in Conservation Practice