Dealing With the Complexity of Effective Population Size in Conservation Practice
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article
PubMed
39679127
PubMed Central
PMC11645448
DOI
10.1111/eva.70031
PII: EVA70031
Knihovny.cz E-resources
- Keywords
- Kunming‐Montreal global biodiversity framework, Ne, biodiversity monitoring, bridging science‐to‐application gap, effective number of breeders, genetic diversity, genetic indicators, species conservation and management,
- Publication type
- Journal Article MeSH
Effective population size (Ne) is one of the most important parameters in evolutionary biology, as it is linked to the long-term survival capability of species. Therefore, Ne greatly interests conservation geneticists, but it is also very relevant to policymakers, managers, and conservation practitioners. Molecular methods to estimate Ne rely on various assumptions, including no immigration, panmixia, random sampling, absence of spatial genetic structure, and/or mutation-drift equilibrium. Species are, however, often characterized by fragmented populations under changing environmental conditions and anthropogenic pressure. Therefore, the estimation methods' assumptions are seldom addressed and rarely met, possibly leading to biased and inaccurate Ne estimates. To address the challenges associated with estimating Ne for conservation purposes, the COST Action 18134, Genomic Biodiversity Knowledge for Resilient Ecosystems (G-BiKE), organized an international workshop that met in August 2022 in Brașov, Romania. The overarching goal was to operationalize the current knowledge of Ne estimation methods for conservation practitioners and decision-makers. We set out to identify datasets to evaluate the sensitivity of Ne estimation methods to violations of underlying assumptions and to develop data analysis strategies that addressed pressing issues in biodiversity monitoring and conservation. Referring to a comprehensive body of scientific work on Ne, this meeting report is not intended to be exhaustive but rather to present approaches, workshop findings, and a collection of papers that serve as fruits of those efforts. We aimed to provide insights and opportunities to help bridge the gap between scientific research and conservation practice.
Applied Population Genetics and Conservation Genomics Department of Biology KU Leuven Leuven Belgium
BC3 Basque Center for Climate Change Leioa Spain
Behavioral Ecology Research Group Leipzig University Leipzig Germany
Department of Animal Science University of Zagreb Faculty of Agriculture Zagreb Croatia
Department of Ecology and Evolution Estación Biológica de Doñana Seville Spain
Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
Department of Forest Production and Products University of Ibadan Ibadan Nigeria
Department of Zoology Stockholm University Stockholm Sweden
Faculty of Environmental Protection Velenje Slovenia
Gran Paradiso National Park Alpine Wildlife Research Center Noasca Italy
IKERBASQUE Basque Foundation for Science Bilbao Spain
INRAE Univ Bordeaux BIOGECO Cestas France
Institute of Animal Sciences Hungarian University of Agriculture and Life Sciences Kaposvár Hungary
Institute of Biodiversity and Ecosystem Research at Bulgarian Academy of Sciences Sofia Bulgaria
Israel Oceanographic and Limnological Research National Institute of Oceanography Haifa Israel
Norwegian Institute for Nature Research Trondheim Norway
Research Institute for Nature and Forest Geraardsbergen Belgium
Research Institute of Wildlife Ecology University of Veterinary Medicine Vienna Vienna Austria
Royal Botanic Gardens Richmond UK
Royal Zoological Society of Scotland Edinburgh UK
School of Biosciences Cardiff University Cardiff UK
Senckenberg Biodiversity and Climate Research Centre Frankfurt Am Main Frankfurt Germany
Slovenian Forestry Institute Ljubljana Slovenia
Technical University in Zvolen Zvolen Slovakia
The Center for Tree Science The Morton Arboretum Lisle Illinois USA
The Committee on Evolutionary Biology The University of Chicago Chicago Illinois USA
Universite Claude Bernard Lyon 1 Villeurbanne France
WSL Swiss Federal Research Institute Birmensdorf Switzerland
See more in PubMed
Adavoudi, R. , and Pilot M.. 2021. “Consequences of Hybridization in Mammals: A Systematic Review.” Genes 13, no. 50: 1–26. 10.3390/genes13010050. PubMed DOI PMC
Allendorf, F. W. 2017. “Genetics and the Conservation of Natural Populations: Allozymes to Genomes.” Molecular Ecology 26: 420–430. 10.1111/mec.13948. PubMed DOI
Balloux, F. 2004. “Heterozygote Excess in Small Populations and the Heterozygote‐Excess Effective Population Size.” Evolution; International Journal of Organic Evolution 58: 1891–1900. 10.1111/j.0014-3820.2004.tb00477.x. PubMed DOI
Barbato, M. , Orozco‐terWengel P., Tapio M., and Bruford M. W.. 2015. “SNeP: A Tool to Estimate Trends in Recent Effective Population Size Trajectories Using Genome‐Wide SNP Data.” Frontiers in Genetics 6, no. 109: 1–6. 10.3389/fgene.2015.00109. PubMed DOI PMC
Bertola, L. D. , Quinn L., Hanghøj K., et al. 2024. “Giraffe Lineages Are Shaped by Major Ancient Admixture Events.” Current Biology: CB 34, no. 7: 1576–1586.e5. 10.1016/j.cub.2024.02.051. PubMed DOI
Bruni, G. , Chiocchio A., Nascetti G., and Cimmaruta R.. 2023. “Different Patterns of Introgression in a Three Species Hybrid Zone Among European Cave Salamanders.” Ecology and Evolution 13, no. 8: e10437. 10.1002/ece3.10437. PubMed DOI PMC
CBD . 2022. “Kunming‐Montreal Global Biodiversity Framework.” https://www.cbd.int/doc/decisions/cop‐15/cop‐15‐dec‐04‐en.pdf.
Chikhi, L. , Sousa V. C., Luisi P., Goossens B., and Beaumont M. A.. 2010. “The Confounding Effects of Population Structure, Genetic Diversity and the Sampling Scheme on the Detection and Quantification of Population Size Changes.” Genetics 186, no. 3: 983–995. 10.1534/genetics.110.118661. PubMed DOI PMC
Clarke, S. H. , Lawrence E. R., Matte J.‐M., et al. 2024. “Global Assessment of Effective Population Sizes: Consistent Taxonomic Differences in Meeting the 50/500 Rule.” Molecular Ecology 33: e17353. 10.1111/mec.17353. PubMed DOI
Cox, K. , Neyrinck S., and Mergeay J.. 2024. “Dealing With Assumptions and Sampling Bias in the Estimation of Effective Population Size: A Case Study in an Amphibian Population.” Evolutionary Applications 17, no. 9: e70015. 10.1111/eva.70015. PubMed DOI PMC
Do, C. , Waples R. S., Peel D., Macbeth G. M., Tillett B. J., and Ovenden J. R.. 2014. “NeEstimator v2: Re‐Implementation of Software for the Estimation of Contemporary Effective Population Size (Ne) From Genetic Data.” Molecular Ecology Resources 14, no. 1: 209–214. 10.1111/1755-0998.12157. PubMed DOI
Drummond, A. J. , Rambaut A., Shapiro B., and Pybus O. G.. 2005. “Bayesian Coalescent Inference of Past Population Dynamics From Molecular Sequences.” Molecular Biology and Evolution 22, no. 5: 1185–1192. 10.1093/molbev/msi103. PubMed DOI
Excoffier, L. , Dupanloup I., Huerta‐Sánchez E., Sousa V. C., and Foll M.. 2013. “Robust Demographic Inference From Genomic and SNP Data.” PLoS Genetics 9: e1003905. 10.1371/journal.pgen.1003905. PubMed DOI PMC
Excoffier, L. , Marchi N., Marques D. A., Matthey‐Doret R., Gouy A., and Sousa V. C.. 2021. “fastsimcoal2: Demographic Inference Under Complex Evolutionary Scenarios.” Bioinformatics 37: 4882–4885. 10.1093/bioinformatics/btab468. PubMed DOI PMC
Fady, B. , and Bozzano M.. 2021. “Effective Population Size Does Not Make a Practical Indicator of Genetic Diversity in Forest Trees.” Biological Conservation 253: 108904. 10.1016/j.biocon.2020.108904. DOI
Frankham, R. , Bradshaw C. J. A., and Brook B. W.. 2014. “Genetics in Conservation Management: Revised Recommendations for the 50/500 Rules, Red List Criteria and Population Viability Analyses.” Biological Conservation 170: 56–63. 10.1016/j.biocon.2013.12.036. DOI
Gargiulo, R. , Budde K., and Heuertz M.. 2024. “Mind the Lag: Understanding Delayed Genetic Erosion.” EcoEvoRxiv: 1–15. 10.32942/x26s4x. PubMed DOI
Gargiulo, R. , Decroocq V., González‐Martínez S. C., et al. 2024. “Estimation of Contemporary Effective Population Size in Plant Populations: Limitations of Genomic Datasets.” Evolutionary Applications 17, no. 5: 1–16. 10.1111/eva.13691. PubMed DOI PMC
Gargiulo, R. , Waples R. S., Grow A. K., et al. 2023. “Effective Population Size in a Partially Clonal Plant Is Not Predicted by the Number of Genetic Individuals.” Evolutionary Applications 16: 750–766. 10.1111/eva.13535. PubMed DOI PMC
Gilbert, K. J. , and Whitlock M. C.. 2015. “Evaluating Methods for Estimating Local Effective Population Size With and Without Migration.” Evolution; International Journal of Organic Evolution 69: 2154–2166. 10.1111/evo.12713. PubMed DOI
Goossens, B. , and Orozco‐Ter Wengel P.. 2023. “Michael (Mike) William Bruford (6th June 1963–13th April 2023).” Conservation Genetics 24: 933–934. 10.1007/s10592-023-01583-6. DOI
Gutenkunst, R. N. , Hernandez R. D., Williamson S. H., and Bustamante C. D.. 2009. “Inferring the Joint Demographic History of Multiple Populations From Multidimensional SNP Frequency Data.” PLoS Genetics 5: e1000695. 10.1371/journal.pgen.1000695. PubMed DOI PMC
Haller, B. C. , and Messer P. W.. 2019. “SLiM 3: Forward Genetic Simulations Beyond the Wright‐Fisher Model.” Molecular Biology and Evolution 36: 632–637. 10.1093/molbev/msy228. PubMed DOI PMC
Heuertz, M. , Carvalho S. B., Galindo J., et al. 2023. “The Application Gap: Genomics for Biodiversity and Ecosystem Service Management.” Biological Conservation 278: 109883. 10.1016/j.biocon.2022.109883. DOI
Ho, S. Y. W. , and Shapiro B.. 2011. “Skyline‐Plot Methods for Estimating Demographic History From Nucleotide Sequences.” Molecular Ecology Resources 11: 423–434. 10.1111/j.1755-0998.2011.02988.x. PubMed DOI
Hoban, S. 2014. “An Overview of the Utility of Population Simulation Software in Molecular Ecology.” Molecular Ecology 23: 2383–2401. 10.1111/mec.12741. PubMed DOI
Hoban, S. , Archer F. I., Bertola L. D., et al. 2022. “Global Genetic Diversity Status and Trends: Towards a Suite of Essential Biodiversity Variables (EBVs) for Genetic Composition.” Biological Reviews of the Cambridge Philosophical Society 97: 1511–1538. 10.1111/brv.12852. PubMed DOI PMC
Hoban, S. , Bertorelle G., and Gaggiotti O. E.. 2012. “Computer Simulations: Tools for Population and Evolutionary Genetics.” Nature Reviews. Genetics 13: 110–122. 10.1038/nrg3130. PubMed DOI
Hoban, S. , Bruford M., D'Urban Jackson J., et al. 2020. “Genetic Diversity Targets and Indicators in the CBD Post‐2020 Global Biodiversity Framework Must Be Improved.” Biological Conservation 248: 108654. 10.1016/j.biocon.2020.108654. DOI
Hoban, S. , Bruford M. W., Funk W. C., et al. 2021. “Global Commitments to Conserving and Monitoring Genetic Diversity Are Now Necessary and Feasible.” Bioscience 71: 964–976. 10.1093/biosci/biab054. PubMed DOI PMC
Hoban, S. , da Silva J. M., Hughes A., et al. 2024. “Too Simple, Too Complex, or Just Right? Advantages, Challenges, and Guidance for Indicators of Genetic Diversity.” Bioscience 74: 269–280. 10.1093/biosci/biae006. DOI
Hoban, S. , da Silva J. M., Mastretta‐Yanes A., et al. 2023. “Monitoring Status and Trends in Genetic Diversity for the Convention on Biological Diversity: An Ongoing Assessment of Genetic Indicators in Nine Countries.” Conservation Letters 16, no. 3: 1–12. 10.1111/conl.12953. DOI
Hoban, S. , Hvilsom C., Abdeldjalil A., et al. 2024. “How can Biodiversity Strategy and Action Plans Incorporate Genetic Diversity Concerns, Plans, Policies, Capacity, and Commitments?”.
Hoban, S. , Paz‐Vinas I., Aitken S., et al. 2021. “Effective Population Size Remains a Suitable, Pragmatic Indicator of Genetic Diversity for all Species, Including Forest Trees.” Biological Conservation 253: 108906. 10.1016/j.biocon.2020.108906. DOI
Hoban, S. , Paz‐Vinas I., Shaw R. E., et al. 2024. “DNA‐Based Studies and Genetic Diversity Indicator Assessments Are Complementary Approaches to Conserving Evolutionary Potential.” Conservation Genetics 25: 1147–1153. 10.1007/s10592-024-01632-8. DOI
Hoban, S. , Segelbacher G., Vernesi C., and Russo I. R.. 2023. “Michael W. Bruford (1963–2023).” Nature Ecology & Evolution 7: 1349–1350. 10.1038/s41559-023-02110-z. PubMed DOI
Holderegger, R. , Balkenhol N., Bolliger J., et al. 2019. “Conservation Genetics: Linking Science With Practice.” Molecular Ecology 28: 3848–3856. 10.1111/mec.15202. PubMed DOI
Hollenbeck, C. M. , Portnoy D. S., and Gold J. R.. 2016. “A Method for Detecting Recent Changes in Contemporary Effective Population Size From Linkage Disequilibrium at Linked and Unlinked Loci.” Heredity 117: 207–216. 10.1038/hdy.2016.30. PubMed DOI PMC
Hong, A. , Cheek R. G., De Silva S. N., et al. 2024. “ONeSAMP 3.0: Estimation of Effective Population Size via SNP Data from One Population.” G3 (Bethesda, Md.) 14: jkae153. 10.1093/g3journal/jkae153. PubMed DOI PMC
Hu, W. , Hao Z., Du P., et al. 2023. “Genomic Inference of a Severe Human Bottleneck During the Early to Middle Pleistocene Transition.” Science 381: 979–984. 10.1126/science.abq7487. PubMed DOI
Hui, T.‐Y. J. , Brenas J. H., and Burt A.. 2021. “Contemporary Ne Estimation Using Temporally Spaced Data With Linked Loci.” Molecular Ecology Resources 21: 2221–2230. 10.1111/1755-0998.13412. PubMed DOI PMC
Hui, T.‐Y. J. , and Burt A.. 2015. “Estimating Effective Population Size From Temporally Spaced Samples With a Novel, Efficient Maximum‐Likelihood Algorithm.” Genetics 200: 285–293. 10.1534/genetics.115.174904. PubMed DOI PMC
Iacolina, L. , Buzan E., Safner T., et al. 2021. “A Mother's Story, Mitogenome Relationships in the Genus Rupicapra.” Animals 11: 1065. 10.3390/ani11041065. PubMed DOI PMC
Jones, O. R. , and Wang J.. 2010. “COLONY: A Program for Parentage and Sibship Inference From Multilocus Genotype Data.” Molecular Ecology Resources 10, no. 3: 551–555. 10.1111/j.1755-0998.2009.02787.x. PubMed DOI
Kershaw, F. , Bruford M. W., Funk W. C., et al. 2022. “The Coalition for Conservation Genetics: Working Across Organizations to Build Capacity and Achieve Change in Policy and Practice.” Conservation Science and Practice 4: 1–14. 10.1111/csp2.12635. DOI
Laikre, L. , Hoban S., Bruford M. W., et al. 2020. “Post‐2020 Goals Overlook Genetic Diversity.” Science 367: 1083–1085. 10.1126/science.abb2748. PubMed DOI
Leigh, D. M. , van Rees C. B., Millette K. L., et al. 2021. “Opportunities and Challenges of Macrogenetic Studies.” Nature Reviews. Genetics 22, no. 12: 791–807. 10.1038/s41576-021-00394-0. PubMed DOI
Li, H. , and Durbin R.. 2011. “Inference of Human Population History From Individual Whole‐Genome Sequences.” Nature 475: 493–496. 10.1038/nature10231. PubMed DOI PMC
Liedtke, H. C. , Gower D. J., Wilkinson M., and Gomez‐Mestre I.. 2018. “Macroevolutionary Shift in the Size of Amphibian Genomes and the Role of Life History and Climate.” Nature Ecology & Evolution 2: 1792–1799. 10.1038/s41559-018-0674-4. PubMed DOI
Liu, X. , and Fu Y.‐X.. 2015. “Exploring Population Size Changes Using SNP Frequency Spectra.” Nature Genetics 47: 555–559. 10.1038/ng.3254. PubMed DOI PMC
Liu, X. , and Fu Y.‐X.. 2020. “Stairway Plot 2: Demographic History Inference With Folded SNP Frequency Spectra.” Genome Biology 21, no. 1: 280. 10.1186/s13059-020-02196-9. PubMed DOI PMC
Lundmark, C. , Andersson K., Sandström A., and Laikre L.. 2017. “Effectiveness of Short‐Term Knowledge Communication on Baltic Sea Marine Genetic Biodiversity to Public Managers.” Regional Environmental Change 17, no. 3: 841–849. 10.1007/s10113-016-1077-1. DOI
Marandel, F. , Charrier G., Lamy J.‐B., Le Cam S., Lorance P., and Trenkel V. M.. 2020. “Estimating Effective Population Size Using RADseq: Effects of SNP Selection and Sample Size.” Ecology and Evolution 10, no. 7: 1929–1937. 10.1002/ece3.6016. PubMed DOI PMC
Marandel, F. , Lorance P., Berthelé O., Trenkel V. M., Waples R. S., and Lamy J.‐B.. 2019. “Estimating Effective Population Size of Large Marine Populations, Is It Feasible?” Fish and Fisheries 20, no. 1: 189–198. 10.1111/faf.12338. DOI
Maruyama, T. , and Kimura M.. 1980. “Genetic Variability and Effective Population Size When Local Extinction and Recolonization of Subpopulations Are Frequent.” Proceedings of the National Academy of Sciences 77: 6710–6714. PubMed PMC
Mastretta‐Yanes, A. , da Silva J. M., Grueber C. E., et al. 2024. “Multinational Evaluation of Genetic Diversity Indicators for the Kunming‐Montreal Global Biodiversity Framework.” Ecology Letters 27, no. 7: e14461. 10.1111/ele.14461. PubMed DOI
May, S. A. , Hard J. J., Ford M. J., Naish K. A., and Ward E. J.. 2023. “Assortative Mating for Reproductive Timing Affects Population Recruitment and Resilience in a Quantitative Genetic Model.” Evolutionary Applications 16, no. 3: 657–672. 10.1111/eva.13524. PubMed DOI PMC
Mergeay, J. , Smet S., Collet S., et al. 2024. “Estimating the Effective Size of European Wolf Populations.” Evolutionary Applications 17, no. 12: e70021. 10.1111/eva.70021. PubMed DOI PMC
Montes, I. , Iriondo M., Manzano C., et al. 2016. “No Loss of Genetic Diversity in the Exploited and Recently Collapsed Population of Bay of Biscay Anchovy ( Engraulis encrasicolus , L.).” Marine Biology 163, no. 5: 1–10. 10.1007/s00227-016-2866-2. DOI
Nadachowska‐Brzyska, K. , Konczal M., and Babik W.. 2022. “Navigating the Temporal Continuum of Effective Population Size.” Methods in Ecology and Evolution / British Ecological Society 13, no. 1: 22–41. 10.1111/2041-210x.13740. DOI
Neel, M. C. , McKelvey K., Ryman N., et al. 2013. “Estimation of Effective Population Size in Continuously Distributed Populations: There Goes the Neighborhood.” Heredity 111, no. 3: 189–199. 10.1038/hdy.2013.37. PubMed DOI PMC
Novo, I. , Pérez‐Pereira N., Santiago E., Quesada H., and Caballero A.. 2023. “An Empirical Test of the Estimation of Historical Effective Population Size Using Drosophila melanogaster .” Molecular Ecology Resources 23, no. 7: 1632–1640. 10.1111/1755-0998.13837. PubMed DOI
Nunney, L. 1999. “The Effective Size of a Hierarchically Structured Population.” Evolution; International Journal of Organic Evolution 53, no. 1: 1. 10.2307/2640915. PubMed DOI
Nunney, L. 2002. “The Effective Size of Annual Plant Populations: the Interaction of a Seed Bank With Fluctuating Population Size in Maintaining Genetic Variation.” American Naturalist 160, no. 2: 195–204. 10.1086/341017. PubMed DOI
Nunney, L. 2016. “The Effect of Neighborhood Size on Effective Population Size in Theory and in Practice.” Heredity 117, no. 4: 224–232. 10.1038/hdy.2016.76. PubMed DOI PMC
Orozco‐terWengel, P. , Coissac E., Hanotte O., Pompanon F., Sunnucks P., and Taberlet P.. 2023. “Mike Bruford (1963–2023).” Molecular Ecology 3: 5448–5449. 10.1111/mec.17133. PubMed DOI
Palstra, F. P. , and Ruzzante D. E.. 2011. “Demographic and Genetic Factors Shaping Contemporary Metapopulation Effective Size and Its Empirical Estimation in Salmonid Fish.” Heredity 107, no. 5: 444–455. 10.1038/hdy.2011.31. PubMed DOI PMC
Patton, A. H. , Margres M. J., Epstein B., Eastman J., Harmon L. J., and Storfer A.. 2020. “Hybridizing Salamanders Experience Accelerated Diversification.” Scientific Reports 10, no. 1: 6566. 10.1038/s41598-020-63378-w. PubMed DOI PMC
Paz‐Vinas, I. , Loot G., Boulêtreau S., et al. 2024. “Genetic‐Based Inference of Densities, Effective and Census Sizes of Expanding Riverine Meta‐Populations of an Invasive Large‐Bodied Freshwater Fish ( Silurus glanis L.).” bioRxiv (p. 2024.04.05.588309). 10.1101/2024.04.05.588309. DOI
Pearman, P. B. , Broennimann O., Aavik T., et al. 2024. “Monitoring of species' Genetic Diversity in Europe Varies Greatly and Overlooks Potential Climate Change Impacts.” Nature Ecology & Evolution 8, no. 2: 267–281. 10.1038/s41559-023-02260-0. PubMed DOI PMC
Pérez‐Pereira, N. , Wang J., Quesada H., and Caballero A.. 2022. “Prediction of the Minimum Effective Size of a Population Viable in the Long Term.” Biodiversity and Conservion 31: 2763–2780. 10.1007/s10531-022-02456-z. DOI
Pérez‐Sorribes, L. , Villar‐Yanez P., Smeds L., and Mergeay J.. 2024. “Comparing genetic Ne reconstructions over time with long‐time wolf monitoring data in two populations.” Evolutionary Applications 12: e70022. 10.1111/eva.70022. PubMed DOI PMC
Pierson, J. C. , Graves T. A., Banks S. C., Kendall K. C., and Lindenmayer D. B.. 2018. “Relationship Between Effective and Demographic Population Size in Continuously Distributed Populations.” Evolutionary Applications 11, no. 7: 1162–1175. 10.1111/eva.12636. PubMed DOI PMC
Pinho, C. , Kaliontzopoulou A., Ferreira C. A., and Gama J.. 2022. “Identification of Morphologically Cryptic Species With Computer Vision Models: Wall Lizards (Squamata: Lacertidae: Podarcis) as a Case Study.” Zoological Journal of the Linnean Society 198, no. 1: 184–201. 10.1093/zoolinnean/zlac087. DOI
Randi, E. 2007. “Phylogeography of South European Mammals.” In Phylogeography of Southern European Refugia: Evolutionary Perspectives on the Origins and Conservation of European Biodiversity, edited by Weiss S. and Ferrand N., 101–126. Dordrecht, Netherlands: Springer. 10.1007/1-4020-4904-8_3. DOI
Ryman, N. , Laikre L., and Hössjer O.. 2019. “Do Estimates of Contemporary Effective Population Size Tell Us What We Want to Know?” Molecular Ecology 28, no. 8: 1904–1918. 10.1111/mec.15027. PubMed DOI PMC
Ryman, N. , Laikre L., and Hössjer O.. 2023. “Variance Effective Population Size Is Affected by Census Size in Sub‐Structured Populations.” Molecular Ecology Resources 23, no. 6: 1334–1347. 10.1111/1755-0998.13804. PubMed DOI
Santiago, E. , Caballero A., Köpke C., and Novo I.. 2024. “Estimation of the Contemporary Effective Population Size From SNP Data While Accounting for Mating Structure.” Molecular Ecology Resources 24, no. 1: e13890. 10.1111/1755-0998.13890. PubMed DOI
Santiago, E. , Novo I., Pardiñas A. F., Saura M., Wang J., and Caballero A.. 2020. “Recent Demographic History Inferred by High‐Resolution Analysis of Linkage Disequilibrium.” Molecular Biology and Evolution 37, no. 12: 3642–3653. 10.1093/molbev/msaa169. PubMed DOI
Schiffels, S. , and Durbin R.. 2014. “Inferring Human Population Size and Separation History From Multiple Genome Sequences.” Nature Genetics 46, no. 8: 919–925. 10.1038/ng.3015. PubMed DOI PMC
Schiffels, S. , and Wang K.. 2020. “MSMC and MSMC2: The Multiple Sequentially Markovian Coalescent.” Methods in Molecular Biology 2090: 147–166. 10.1007/978-1-0716-0199-0_7. PubMed DOI
Taft, H. R. , McCoskey D. N., Miller J. M., et al. 2020. “Research–Management Partnerships: An Opportunity to Integrate Genetics in Conservation Actions.” Conservation Science and Practice 2, no. 9: 1–8. 10.1111/csp2.218. DOI
Tallmon, D. A. , Koyuk A., Luikart G., and Beaumont M. A.. 2008. “COMPUTER PROGRAMS: Onesamp: A Program to Estimate Effective Population Size Using Approximate Bayesian Computation.” Molecular Ecology Resources 8, no. 2: 299–301. 10.1111/j.1471-8286.2007.01997.x. PubMed DOI
Tallmon, D. A. , Luikart G., and Beaumont M. A.. 2004. “Comparative Evaluation of a New Effective Population Size Estimator Based on Approximate Bayesian Computation.” Genetics 167, no. 2: 977–988. 10.1534/genetics.103.026146. PubMed DOI PMC
Tenesa, A. , Navarro P., Hayes B. J., et al. 2007. “Recent Human Effective Population Size Estimated From Linkage Disequilibrium.” Genome Research 17, no. 4: 520–526. 10.1101/gr.6023607. PubMed DOI PMC
Theissinger, K. , Fernandes C., Formenti G., et al. 2023. “How Genomics Can Help Biodiversity Conservation.” Trends in Genetics: TIG 39, no. 7: 545–559. 10.1016/j.tig.2023.01.005. PubMed DOI
Thomas, N. E. , Hailer F., Bruford M. W., and Chadwick E. A.. 2022. “Country‐Wide Genetic Monitoring Over 21 Years Reveals Lag in Genetic Recovery Despite Spatial Connectivity in an Expanding Carnivore (Eurasian Otter, Lutra lutra ) Population.” Evolutionary Applications 15, no. 12: 2125–2141. 10.1111/eva.13505. PubMed DOI PMC
Wang, J. 2009. “A New Method for Estimating Effective Population Sizes From a Single Sample of Multilocus Genotypes.” Molecular Ecology 18, no. 10: 2148–2164. 10.1111/j.1365-294X.2009.04175.x. PubMed DOI
Wang, J. 2016. “A Comparison of Single‐Sample Estimators of Effective Population Sizes From Genetic Marker Data.” Molecular Ecology 25, no. 19: 4692–4711. 10.1111/mec.13725. PubMed DOI
Waples, R. 2024a. “The idiot's Guide to Effective Population Size.” Authorea Inc: 1–51. 10.22541/au.172536694.46670112/v1. DOI
Waples, R. S. 1989. “A Generalized Approach for Estimating Effective Population Size From Temporal Changes in Allele Frequency.” Genetics 121, no. 2: 379–391. 10.1093/genetics/121.2.379. PubMed DOI PMC
Waples, R. S. 2005. “Genetic Estimates of Contemporary Effective Population Size: To What Time Periods Do the Estimates Apply?” Molecular Ecology 14, no. 11: 3335–3352. 10.1111/j.1365-294X.2005.02673.x. PubMed DOI
Waples, R. S. 2006. “Seed Banks, Salmon, and Sleeping Genes: Effective Population Size in Semelparous, Age‐Structured Species With Fluctuating Abundance.” American Naturalist 167, no. 1: 118–135. PubMed
Waples, R. S. 2010. “Spatial‐Temporal Stratifications in Natural Populations and How They Affect Understanding and Estimation of Effective Population Size.” Molecular Ecology Resources 10, no. 5: 785–796. 10.1111/j.1755-0998.2010.02876.x. PubMed DOI
Waples, R. S. 2016. “Life‐History Traits and Effective Population Size in Species With Overlapping Generations Revisited: the Importance of Adult Mortality.” Heredity 117, no. 4: 241–250. 10.1038/hdy.2016.29. PubMed DOI PMC
Waples, R. S. 2021. “Relative Precision of the Sibship and LD Methods for Estimating Effective Population Size With Genomics‐Scale Datasets.” Journal of Heredity 112, no. 6: 535–539. 10.1093/jhered/esab042. PubMed DOI
Waples, R. S. 2022. “What Is Ne, Anyway?” Journal of Heredity 113, no. 4: 371–379. https://academic.oup.com/jhered/article‐abstract/113/4/371/6582684. PubMed
Waples, R. S. 2024b. “Practical Application of the Linkage Disequilibrium Method for Estimating Contemporary Effective Population Size: A Review.” Molecular Ecology Resources 24, no. 1: e13879. 10.1111/1755-0998.13879. PubMed DOI
Waples, R. S. , Antao T., and Luikart G.. 2014. “Effects of Overlapping Generations on Linkage Disequilibrium Estimates of Effective Population Size.” Genetics 197, no. 2: 769–780. 10.1534/genetics.114.164822. PubMed DOI PMC
Waples, R. S. , and Do C.. 2008. “Ldne: A Program for Estimating Effective Population Size From Data on Linkage Disequilibrium.” Molecular Ecology Resources 8, no. 4: 753–756. 10.1111/j.1755-0998.2007.02061.x. PubMed DOI
Waples, R. S. , and Do C.. 2010. “Linkage Disequilibrium Estimates of Contemporary N e Using Highly Variable Genetic Markers: A Largely Untapped Resource for Applied Conservation and Evolution.” Evolutionary Applications 3, no. 3: 244–262. 10.1111/j.1752-4571.2009.00104.x. PubMed DOI PMC
Waples, R. S. , Luikart G., Faulkner J. R., and Tallmon D. A.. 2013. “Simple Life‐History Traits Explain Key Effective Population Size Ratios Across Diverse Taxa.” Proceedings. Biological Sciences/The Royal Society 280, no. 1768: 20131339. 10.1098/rspb.2013.1339. PubMed DOI PMC
Whitlock, M. C. , and Barton N. H.. 1997. “The Effective Size of a Subdivided Population.” Genetics 146: 427–441. PubMed PMC
Wright, P. G. R. , Schofield H., and Mathews F.. 2021. “Can Effective Population Size Estimates be Used to Monitor Population Trends of Woodland Bats? A Case Study of Myotis bechsteinii .” Ecology and Evolution 11, no. 5: 2015–2023. 10.1002/ece3.7143. PubMed DOI PMC
Wright, S. 1931. “Evolution in Mendelian Populations.” Genetics 16, no. 2: 97–159. 10.1093/genetics/16.2.97. PubMed DOI PMC
Wright, S. 1951. “The Genetical Structure of Populations.” Annals of Eugenics 15, no. 4: 323–354. 10.1111/j.1469-1809.1949.tb02451.x. PubMed DOI