The evolution of the duckweed ionome mirrors losses in structural complexity

. 2024 May 13 ; 133 (7) : 997-1006.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid38307008

Grantová podpora
European Research Council - International

BACKGROUND AND AIMS: The duckweeds (Lemnaceae) consist of 36 species exhibiting impressive phenotypic variation, including the progressive evolutionary loss of a fundamental plant organ, the root. Loss of roots and reduction of vascular tissues in recently derived taxa occur in concert with genome expansions of ≤14-fold. Given the paired loss of roots and reduction in structural complexity in derived taxa, we focus on the evolution of the ionome (whole-plant elemental contents) in the context of these fundamental changes in body plan. We expect that progressive vestigiality and eventual loss of roots might have both adaptive and maladaptive consequences that are hitherto unknown. METHODS: We quantified the ionomes of 34 accessions in 21 species across all duckweed genera, spanning 70 Myr in this rapidly cycling plant (doubling times are as rapid as ~24 h). We related both micro- and macroevolutionary ionome contrasts to body plan remodelling and showed nimble microevolutionary shifts in elemental accumulation and exclusion in novel accessions. KEY RESULTS: We observed a robust directional trend in calcium and magnesium levels, decreasing from the ancestral representative Spirodela genus towards the derived rootless Wolffia, with the latter also accumulating cadmium. We also identified abundant within-species variation and hyperaccumulators of specific elements, with this extensive variation at the fine (as opposed to broad) scale. CONCLUSIONS: These data underscore the impact of root loss and reveal the very fine scale of microevolutionary variation in hyperaccumulation and exclusion of a wide range of elements. Broadly, they might point to trade-offs not well recognized in ionomes.

Zobrazit více v PubMed

An D, Li C, Zhou Y, Wu Y, Wang W.. 2018. Genomes and transcriptomes of duckweeds. Frontiers in Chemistry 6: 230. PubMed PMC

An D, Zhou Y, Li C, et al.. 2019. Plant evolution and environmental adaptation unveiled by long-read whole-genome sequencing of Spirodela. Proceedings of the National Academy of Sciences of the United States of America 116: 18893–18899. PubMed PMC

Appenroth K, Sree K.. 2020. Worldwide genetic resources of duckweed: stock collections. In: Cao X, Fourounjian P, Wang W. eds. The duckweed genomes. Switzerland: Springer, Cham, 39–46.

Appenroth KJ, Teller S, Horn M.. 1996. Photophysiology of turion formation and germination in Spirodela polyrhiza. Biologia Plantarum 38, 95–106.

Appenroth KJ, Borisjuk N, Lam E.. 2013. Telling duckweed apart: genotyping technologies for the Lemnaceae. Chinese Journal of Applied and Environmental Biology 19: 1–10.

Appenroth KJ, Sree KS, Böhm V, et al.. 2017. Nutritional value of duckweeds (Lemnaceae) as human food. Food Chemistry 217: 266–273. PubMed

Appenroth KJ, Sowjanya Sree K, Bog M, et al.. 2018. Nutritional value of the duckweed species of the genus Wolffia (Lemnaceae) as human food. Frontiers in Chemistry 6: 483. PubMed PMC

Arnold BJ, Lahner B, DaCosta JM, et al.. 2016. Borrowed alleles and convergence in serpentine adaptation. Proceedings of the National Academy of Sciences of the United States of America 113: 8320–8325. PubMed PMC

Bog M, Lautenschlager U, Landrock MF, et al.. 2015. Genetic characterization and barcoding of taxa in the genera Landoltia and Spirodela (Lemnaceae) by three plastidic markers and amplified fragment length polymorphism (AFLP). Hydrobiologia 749: 169–182.

Bog M, Sree KS, Fuchs J, et al.. 2020. A taxonomic revision of Lemna sect. Uninerves (Lemnaceae). Taxon 69: 56–66.

Boonyapookana B, Upatham ES, Kruatrachue M, Pokethitiyook P, Singhakaew S.. 2002. Phytoaccumulation and phytotoxicity of cadmium and chromium in duckweed Wolffia globosa. International Journal of Phytoremediation 4: 87–100. PubMed

Braglia L, Lauria M, Appenroth KJ, et al.. 2021. Duckweed species genotyping and interspecific hybrid discovery by tubulin-based polymorphism fingerprinting. Frontiers in Plant Science 12: 625670. PubMed PMC

Ceschin S, Abati S, Ellwood NTW, Zuccarello V.. 2018. Riding invasion waves: spatial and temporal patterns of the invasive Lemna minuta from its arrival to its spread across Europe. Aquatic Botany 150: 1–8.

Ceschin S, Crescenzi M, Iannelli MA.. 2020. Phytoremediation potential of the duckweeds Lemna minuta and Lemna minor to remove nutrients from treated waters. Environmental Science and Pollution Research 27: 15806–15814. PubMed

Crawford DJ, Landolt E, Les DH.. 1996. An allozyme study of two sibling species of Lemna (Lemnaceae) with comments on their morphology, ecology and distribution. Bulletin of the Torrey Botanical Club 123: 1–6.

Cross JW. 2017. Duckweed roots: their role in vegetative dispersal. Duckweed Forum 5: 58–59.

Danku JM, Lahner B, Yakubova E, Salt DE.. 2013. Large-scale plant ionomics. Methods in Molecular Biology 953:255–276. PubMed

Ekperusi AO, Sikoki FD, Nwachukwu EO.. 2019. Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: state and future perspective. Chemosphere 223: 285–309. PubMed

Franceschi VR. 1989. Calcium oxalate formation is a rapid and reversible process in Lemna minor L. Protoplasma 148: 130–137.

Hoang PTN, Schubert V, Meister A, Fuchs J, Schubert I.. 2019. Variation in genome size, cell and nucleus volume, chromosome number and rDNA loci among duckweeds. Scientific Reports 9: 3234. PubMed PMC

Kadono Y, Iida S.. 2022. Identification of a small, spring water-associated duckweed with special reference to the taxonomy of sect. Uninerves of the genus Lemna (Lemnaceae) in Japan. Acta Phytotaxonomica et Geobotanica 73: 57–65.

Kara Y, Kara I.. 2005. Removal of cadmium from water using duckweed (Lemna trisulca L.). International Journal of Agriculture and Biology 7: 660–662.

Khellaf N, Zerdaoui M.. 2009. Growth response of the duckweed Lemna minor to heavy metal pollution. Iranian Journal of Environmental Health Science and Engineering 6: 161–166.

Kimball RT, Crawford DJ, Les DH, Landolt E.. 2003. Out of Africa: molecular phylogenetics and biogeography of Wolffiella (Lemnaceae). Biological Journal of the Linnean Society 79: 565–576.

Kirjakov IK, Velichkova KN.. 2016. Invasive species Lemna L. (Lemnaceae) in the flora of Bulgaria. Periodicum Biologorum 118: 131–138.

Kurihara D, Mizuta Y, Sato Y, Higashiyama T.. 2015. ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging. Development (Cambridge, England) 142: 4168–4179. PubMed PMC

Lahive E, O’Callaghan MJA, Jansen MAK, O’Halloran J.. 2011. Uptake and partitioning of zinc in Lemnaceae. Ecotoxicology 20: 1992–2002. PubMed

Lam E, Michael TP.. 2022. Wolffia, a minimalist plant and synthetic biology chassis. Trends in Plant Science 27: 430–439. PubMed

Landolt E. 1980. Key to the determination of taxa within the family of Lemnaceae. Veröffentlichungen des Geobotanischen Institutes der Eidgenössisch. Technische Hochschule, Stiftung Rübel, Zürich 70: 13–21.

Landolt E. 1986. Biosystematic investigations in the family of duckweeds (Lemnaceae). Vols 1 and 2. Zürich: Geobotanisches Institut der ETH.

Landolt E. 1998. Lemna yungensis, a new duckweed species from rocks of the Andean Yungas in Bolivia Andean Yungas in Bolivia. Bulletin of the Geobotanical Institute ETH 64: 15–21.

Landolt E, Kandeler R.. 1987. The family of Lemnaceae: a monographic study, Vol. 2. Zurich: Geobotanischen Institutes der ETH.

Leblebici Z, Aksoy A, Duman F.. 2010. Influence of nutrient addition on growth and accumulation of cadmium and copper in Lemna gibba. Chemical Speciation and Bioavailability 22: 157–164.

Les DH, Crawford DJ.. 1999. Landoltia (Lemnaceae), a new genus of duckweeds. Novon 9: 530–533.

Les DH, Crawford DJ, Landolt E, Gabel JD, Kimball RT.. 2002. Phylogeny and systematics of Lemnaceae, the duckweed family. Systematic Botany 27: 221–240.

Liu Y, Sanguanphun T, Yuan W, Cheng JJ, Meetam M.. 2017. The biological responses and metal phytoaccumulation of duckweed Spirodela polyrhiza to manganese and chromium. Environmental Science and Pollution Research International 24: 19104–19113. PubMed

Ma X, Zeng J, He Y, et al.. 2023. Cadmium accumulation in duckweed relates to pH and oxalate synthesis in Cd shock. Journal of Aquatic Plant Management 61: 55–62.

Mazen AMA, Zhang D, Franceschi VR.. 2003. Calcium oxalate formation in Lemna minor: physiological and ultrastructural aspects of high capacity calcium sequestration. New Phytologist 161: 435–448. PubMed

McKenna S, Meyer M, Gregg C, Gerber S.. 2016. s-CorrPlot: an interactive scatterplot for exploring correlation. Journal of Computational and Graphical Statistics 25: 445–463.

Michael TP, Ernst E, Hartwick N, et al.2020. Genome and time-of-day transcriptome of Wolffia australiana link morphological extreme minimization with un-gated plant growth. Genome Research 31: 225–238. PubMed PMC

Mkandawire M, Dudel E.. 2007. Are Lemna spp. effective phytoremediation agents? Bioremediation, Biodiversity and Bioavailability 1: 56–71.

Naumann B, Eberius M, Appenroth KJ.. 2007. Growth rate based dose–response relationships and EC-values of ten heavy metals using the duckweed growth inhibition test (ISO 20079) with Lemna minor L. clone St. Journal of Plant Physiology 164: 1656–1664. PubMed

Njambuya J, Stiers I, Triest L.. 2011. Competition between Lemna minuta and Lemna minor at different nutrient concentrations. Aquatic Botany 94: 158–164.

Paolacci S, Harrison S, Jansen MAK.. 2016. A comparative study of the nutrient responses of the invasive duckweed Lemna minuta, and the native, co-generic species Lemna minor. Aquatic Botany 134: 47–53.

Park H, Park JH, Lee Y, et al.. 2021. Genome of the world’s smallest flowering plant, Wolffia australiana, helps explain its specialized physiology and unique morphology. Communications Biology 4: 900. PubMed PMC

Prasad MNV, Malec P, Waloszek A, Bojko M, Strzalka K.. 2001. Physiological responses of Lemna trisulca L. (duckweed) to cadmium and copper bioaccumulation. Plant Science 161: 881–889.

Ren Q, Xu Z, Xue Y, et al.. 2022. Mechanism of calcium signal response to cadmium stress in duckweed. Plant Signaling and Behavior 17: 2119340. PubMed PMC

R Development Core Team. 2023. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

RStudio Team. 2020. RStudio: integrated development for R. Boston, MA: R Studio, Inc.

Schreinemakers WAC. 1986. The interaction Cd-absorption and Cd-compartmentation in Wolffiella gladiata. Acta Botanica Neerlandica 35: 23–34.

Tippery NP, Les DH, Crawford DJ.. 2015. Evaluation of phylogenetic relationships in Lemnaceae using nuclear ribosomal data. Plant Biology (Stuttgart, Germany) 17: 50–58. PubMed

Van Dam RA, Hogan AC, McCullough CD, Houston MA, Humphrey CL, Harford AJ.. 2010. Aquatic toxicity of magnesium sulfate, and the influence of calcium, in very low ionic concentration water. Environmental Toxicology and Chemistry 29: 410–421. PubMed

Van Steveninck RFM, Van Steveninck ME, Fernando DR.. 1992. Heavy-metal (Zn, Cd) tolerance in selected clones of duck weed (Lemna minor). Plant and Soil 146: 271–280.

Verma R, Suthar S.. 2015. Lead and cadmium removal from water using duckweed – Lemna gibba L.: impact of pH and initial metal load. Alexandria Engineering Journal 54: 1297–1304.

Volkova PA, Nachatoi VA, Bobrov AA.. 2023. Hybrid between Lemna minor and L. turionifera (L. × japonica, Lemnaceae) in East Europe is more frequent than parental species and poorly distinguishable from them. Aquatic Botany 184: 103593.

Walsh E, Paolacci S, Burnell G, Jansen MAK.. 2020. The importance of the calcium-to-magnesium ratio for phytoremediation of dairy industry wastewater using the aquatic plant Lemna minor L. International Journal of Phytoremediation 22: 694–702. PubMed

Wang W. 1991. Literature review on higher plants for toxicity testing. Water, Air, and Soil Pollution 59: 381–400.

Wang W, Wu Y, Yan Y, Ermakova M, Kerstetter R, Messing J.. 2010. DNA barcoding of the Lemnaceae, a family of aquatic monocots. BMC Plant Biology 10: 205. PubMed PMC

Wang W, Kerstetter RA, Michael TP.. 2011. Evolution of genome size in duckweeds (Lemnaceae). Journal of Botany 2011: 570319.

Ware A, Jones DH, Flis P, et al.. 2023. Loss of ancestral function in duckweed roots is accompanied by progressive anatomical simplification and a re-distribution of nutrient transporters. Current Biology 33: 1795–1802.e4. PubMed

Wong ELY, Hiscock SJ, Filatov DA.. 2022. The role of interspecific hybridisation in adaptation and speciation: insights from studies in Senecio. Frontiers in Plant Science 13: 907363–907373. PubMed PMC

Xie WY, Huang Q, Li G, Rensing C, Zhu YG.. 2013. Cadmium accumulation in the rootless macrophyte Wolffia globosa and its potential for phytoremediation. International Journal of Phytoremediation 15: 385–397. PubMed

Xu S, Stapley J, Gablenz S, et al.. 2019. Low genetic variation is associated with low mutation rate in the giant duckweed. Nature Communications 10: 1243. PubMed PMC

Yang GL, Fang Y, Xu YL, et al.. 2018a. Frond transformation system mediated by Agrobacterium tumefaciens for Lemna minor. Plant Molecular Biology 98: 319–331. PubMed

Yang J, Li G, Hu S, et al.. 2018b. A protocol for efficient callus induction and stable transformation of Spirodela polyrhiza (L.) Schleiden using Agrobacterium tumefaciens. Aquatic Botany 151: 80–86.

Yang J, Zhao X, Li G, Hu S, Hou H.. 2021. Frond architecture of the rootless duckweed Wolffia globosa. BMC Plant Biology 21: 1–10. PubMed PMC

Zayed A, Gowthaman S, Terry N.. 1998. Phytoaccumulation of trace elements by wetland plants: I. Duckweed. Journal of Environmental Quality 27: 715–721.

Zhang X, Zhao FJ, Huang Q, Williams PN, Sun GX, Zhu YG.. 2009. Arsenic uptake and speciation in the rootless duckweed Wolffia globosa. The New Phytologist 182: 421–428. PubMed

Zheng MM, Feng D, Liu HJ, Yang GL.. 2023. Subcellular distribution, chemical forms of cadmium and rhizosphere microbial community in the process of cadmium hyperaccumulation in duckweed. The Science of the Total Environment 859: 160389. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...