Auxin co-receptor IAA17/AXR3 controls cell elongation in Arabidopsis thaliana root solely by modulation of nuclear auxin pathway
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
GAT3395
Gatsby Charitable Foundation
337021
Grantová Agentura, Univerzita Karlova
759282
H2020 European Research Council
803048
H2020 European Research Council
23-07813S
Grantová Agentura České Republiky
PubMed
38308183
DOI
10.1111/nph.19557
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis thaliana, ARF5/MP, AXR3-1, IAA17/AXR3, auxin, cell elongation, cytoplasmic auxin pathway, nuclear auxin pathway,
- MeSH
- Arabidopsis * metabolismus MeSH
- kořeny rostlin metabolismus MeSH
- kyseliny indoloctové metabolismus MeSH
- proteiny huseníčku * metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- AXR3 protein, Arabidopsis MeSH Prohlížeč
- kyseliny indoloctové MeSH
- proteiny huseníčku * MeSH
- regulátory růstu rostlin MeSH
The nuclear TIR1/AFB-Aux/IAA auxin pathway plays a crucial role in regulating plant growth and development. Specifically, the IAA17/AXR3 protein participates in Arabidopsis thaliana root development, response to auxin and gravitropism. However, the mechanism by which AXR3 regulates cell elongation is not fully understood. We combined genetical and cell biological tools with transcriptomics and determination of auxin levels and employed live cell imaging and image analysis to address how the auxin response pathways influence the dynamics of root growth. We revealed that manipulations of the TIR1/AFB-Aux/IAA pathway rapidly modulate root cell elongation. While inducible overexpression of the AXR3-1 transcriptional inhibitor accelerated growth, overexpression of the dominant activator form of ARF5/MONOPTEROS inhibited growth. In parallel, AXR3-1 expression caused loss of auxin sensitivity, leading to transcriptional reprogramming, phytohormone signaling imbalance and increased levels of auxin. Furthermore, we demonstrated that AXR3-1 specifically perturbs nuclear auxin signaling, while the rapid auxin response remains functional. Our results shed light on the interplay between the nuclear and cytoplasmic auxin pathways in roots, revealing their partial independence but also the dominant role of the nuclear auxin pathway during the gravitropic response of Arabidopsis thaliana roots.
Department of Experimental Plant Biology Charles University Prague 12844 Czech Republic
Sainsbury Laboratory Cambridge University Cambridge CB2 1LR UK
Zobrazit více v PubMed
Abel S, Oeller PW, Theologis A. 1994. Early auxin-induced genes encode short-lived nuclear proteins. Proceedings of the National Academy of Sciences, USA 91: 326-330.
Arase F, Nishitani H, Egusa M, Nishimoto N, Sakurai S, Sakamoto N, Kaminaka H. 2012. IAA8 involved in lateral root formation interacts with the TIR1 auxin receptor and ARF transcription factors in Arabidopsis. PLoS ONE 7: e43414.
Balleza E, Mark Kim J, Cluzel P. 2018. Systematic characterization of maturation time of fluorescent proteins in living cells. Nature Methods 15: 47-51.
Barbez E, Dünser K, Gaidora A, Lendl T, Busch W. 2017. Auxin steers root cell expansion via Apoplastic PH regulation in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, USA 114: E4884-E4893.
Beemster GTS, Baskin TI. 1998. Analysis of cell division and elongation underlying the developmental acceleration of root growth in Arabidopsis thaliana. Plant Physiology 116: 1515-1526.
Berardini TZ, Reiser L, Li D, Mezheritsky Y, Muller R, Strait E, Huala E. 2015. The Arabidopsis information resource: making and mining the ‘gold standard’ annotated reference plant genome. Genesis 53: 474-485.
Bindels DS, Haarbosch L, van Weeren L, Postma M, Wiese KE, Mastop M, Aumonier S, Gotthard G, Royant A, Hink MA et al. 2017. MScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nature Methods 14: 53-56.
Bonner J, Koepfli JB. 1939. The inhibition of root growth by auxins. American Journal of Botany 26: 557-566.
Brunoud G, Wells DM, Oliva M, Larrieu A, Mirabet V, Burrow AH, Beeckman T, Kepinski S, Traas J, Bennett MJ et al. 2012. A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482: 103-106.
Caumon H, Vernoux T. 2023. A matter of time: auxin signaling dynamics and the regulation of auxin responses during plant development. Journal of Experimental Botany 74: 3887-3902.
Clough SJ, Bent AF. 1998. Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16: 735-743.
Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B. 1993. Cellular organisation of the Arabidopsis thaliana root. Development 119: 71-84.
Dubey SM, Han S, Stutzman N, Prigge MJ, Medvecká E, Platre MP, Busch W, Fendrych M, Estelle M. 2023. The AFB1 auxin receptor controls the cytoplasmic auxin response pathway in Arabidopsis thaliana. Molecular Plant 16: 1120-1130.
Dubey SM, Serre NBC, Oulehlová D, Vittal P, Fendrych M. 2021. No time for transcription-rapid auxin responses in plants. Cold Spring Harbor Perspectives in Biology 13: a039891.
Dusek J, Plchova H, Cerovska N, Poborilova Z, Navratil O, Kratochvilova K, Gunter C, Jacobs R, Hitzeroth II, Rybicki EP et al. 2020. Extended set of goldenbraid compatible vectors for fast assembly of multigenic constructs and their use to create geminiviral expression vectors. Frontiers in Plant Science 11: 1-11.
Fendrych M, Leung J, Friml J. 2016. TIR1/AFB-Aux/IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls. eLife 5: 1-19.
Friml J, Wiśniewska J, Benková E, Mendgen K, Palme K. 2002. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415: 806-809.
Fu X, Harberd NP. 2003. Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421: 740-743.
Gonzalez JH, Taylor JS, Reed KM, Clay Wright R, Bargmann BOR. 2021. Temporal control of morphogenic factor expression determines efficacy in enhancing regeneration. Plants 10: 2271.
Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M. 2001. Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414: 271-276.
Grieneisen VA, Jian X, Marée AFM, Hogeweg P, Scheres B. 2007. Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449: 1008-1013.
Griffiths J, Rizza A, Tang B, Frommer WB, Jones AM. 2023. Gibberellin perception sensors 1 and 2 reveal cellular GA dynamics articulated by COP1 and GA20ox1 that are necessary but not sufficient to pattern hypocotyl cell elongation. BioRxiv. doi: 10.1101/2023.11.06.565859.
Haruta M, Gray WM, Sussman MR. 2015. Regulation of the plasma membrane proton pump (H+-ATPase) by phosphorylation. Current Opinion in Plant Biology 28: 68-75.
He W, Brumos J, Li H, Ji Y, Ke M, Gong X, Zeng Q, Li W, Zhang X, An F et al. 2011. A small-molecule screen identifies L-kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis. Plant Cell 23: 3944-3960.
Huang DW, Sherman BT, Lempicki RA. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols 4: 44-57.
Ishige F, Takaichi M, Foster R, Chua N-H, Oeda K. 1999. A G-box motif (GCCACGTGCC) tetramer confers high-level constitutive expression in dicot and monocot plants. The Plant Journal 18: 443-448.
Izumi K, Nakagawa S, Kobayashi M, Oshio H, Sakurai A, Takahashi N. 1988. Levels of IAA, cytokinins, ABA and ethylene in rice plants as affected by a gibberellin biosynthesis inhibitor, uniconazole-P. Plant and Cell Physiology 29: 97-104.
Kärkönen A, Kuchitsu K. 2015. Reactive oxygen species in cell wall metabolism and development in plants. Phytochemistry 112: 22-32.
Kim H, Park P-J, Hwang H-J, Lee S-Y, Man-Ho O, Kim S-G. 2006. Brassinosteroid signals control expression of the AXR3/IAA17 gene in the cross-talk point with auxin in root development. Bioscience, Biotechnology, and Biochemistry 70: 768-773.
Knox K. 2003. AXR3 and SHY2 interact to regulate root hair development. Development 130: 5769-5777.
Leyser HM, Ottoline FB, Pickett SD, Estelle M. 1996. Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter. The Plant Journal 10: 403-413.
Leyser O. 2018. Auxin signaling. Plant Physiology 176: 465-479.
Li G, Zhu C, Gan L, Ng D, Xia K. 2015. GA3 enhances root responsiveness to exogenous IAA by modulating auxin transport and signalling in Arabidopsis. Plant Cell Reports 34: 483-494.
Li H, Cheng Y, Murphy A, Hagen G, Guilfoyle TJ. 2009. Constitutive repression and activation of auxin signaling in Arabidopsis. Plant Physiology 149: 1277-1288.
Li L, Verstraeten I, Roosjen M, Takahashi K, Rodriguez L, Merrin J, Chen J, Shabala L, Smet W, Ren H et al. 2021. Cell surface and intracellular auxin signalling for H+ fluxes in root growth. Nature 599: 273-277.
Lindsey BE, Rivero L, Calhoun CS, Grotewold E, Brkljacic J. 2017. Standardized method for high-throughput sterilization of Arabidopsis seeds. Journal of Visualized Experiments 17: 1-7.
Ljung K, Hul AK, Kowalczyk M, Marchant A, Celenza J, Cohen JD, Sandberg G. 2002. Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Molecular Biology 50: 309-332.
Lord SJ, Velle KB, Dyche Mullins R, Fritz-Laylin LK. 2020. SuperPlots: communicating reproducibility and variability in cell biology. Journal of Cell Biology 219: e202001064.
Lucas M, Godin C, Jay-Allemand C, Laplaze L. 2008. Auxin fluxes in the root apex co-regulate gravitropism and lateral root initiation. Journal of Experimental Botany 59: 55-66.
Mähönen AP, ten Tusscher K, Siligato R, Smetana O, Díaz-Triviño S, Salojärvi J, Wachsman G, Prasad K, Heidstra R, Scheres B. 2014. PLETHORA gradient formation mechanism separates Auxin responses. Nature 515: 125-129.
Majda M, Robert S. 2018. The role of auxin in cell wall expansion. International Journal of Molecular Sciences 19: 951.
Mhamdi A, Van Breusegem F. 2018. Reactive oxygen species in plant development. Development 145: 1-28.
Monshausen GB, Miller ND, Murphy AS, Gilroy S. 2011. Dynamics of auxin-dependent Ca2+ and PH signaling in root growth revealed by integrating high-resolution imaging with automated computer vision-based analysis. The Plant Journal 65: 309-318.
Nishimura T, Nakano H, Hayashi K-i, Niwa C, Koshiba T. 2009. Differential downward stream of auxin synthesized at the tip has a key role in gravitropic curvature via TIR1/AFBs-mediated auxin signaling pathways. Plant and Cell Physiology 50: 1874-1885.
Ouellet F, Overvoorde PJ, Theologis A. 2001. IAA17/AXR3: biochemical insight into an auxin mutant phenotype. Plant Cell 13: 829-841.
Overvoorde P, Fukaki H, Beeckman T. 2010. Auxin control of root development. Cold Spring Harbor Perspectives in Biology 2: a001537.
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. 2017. Salmon provides fast and bias-aware quantification of transcript expression. Nature Methods 14: 417-419.
Pierre-Jerome E, Moss BL, Lanctot A, Hageman A, Nemhauser JL. 2016. Functional analysis of molecular interactions in synthetic auxin response circuits. Proceedings of the National Academy of Sciences, USA 113: 11354-11359.
Prerostova S, Dobrev PI, Knirsch V, Jarosova J, Gaudinova A, Zupkova B, Prášil IT, Janda T, Brzobohatý B, Skalák J et al. 2021. Light quality and intensity modulate cold acclimation in Arabidopsis. International Journal of Molecular Sciences 22: 2736.
Prigge MJ, Platre M, Kadakia N, Zhang Y, Greenham K, Szutu W, Pandey BK, Bhosale RA, Bennett MJ, Busch W et al. 2020. Genetic analysis of the arabidopsis TIR1/AFB auxin receptors reveals both overlapping and specialized functions. eLife 9: 1-28.
Qi L, Kwiatkowski M, Chen H, Hoermayer L, Sinclair S, Zou M, del Genio CI, Kubeš MF, Napier R, Jaworski K et al. 2022. Adenylate cyclase activity of TIR1/AFB auxin receptors in plants. Nature 611: 133-138.
Rayle DL, Cleland RE. 1992. The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiology 99: 1271-1274.
Reed JW. 2001. Roles and activities of Aux/IAA proteins in arabidopsis. Trends in Plant Science 6: 420-425.
Rieu I, Eriksson S, Powers SJ, Gong F, Griffiths J, Woolley L, Benlloch R, Nilsson O, Thomas SG, Hedden P et al. 2008. Genetic analysis reveals that C19-GA 2-oxidation is a major gibberellin inactivation pathway in Arabidopsis. Plant Cell 20: 2420-2436.
Rizza A, Walia A, Lanquar V, Frommer WB. 2017. In vivo gibberellin gradients visualised in elongating tissues with gibberellin perception sensor. Nature Plants 10: 803-813.
Růžička K, Ljung K, Vanneste S, Podhorská R, Beeckman T, Friml J, Benková E. 2007. Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19: 2197-2212.
Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P et al. 1999. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99: 463-472.
Sarrion-Perdigones A, Falconi EE, Zandalinas SI, Juárez P, Fernández-del-Carmen A, Granell A, Orzaez D. 2011. GoldenBraid: an iterative cloning system for standardized assembly of reusable genetic modules. PLoS ONE 6: e21622.
Sarrion-Perdigones A, Marta Vazquez-Vilar J, Palaci BC, Forment J, Ziarsolo P, Blanca J, Granell A, Orzaez D. 2013. GoldenBraid 2.0: a comprehensive DNA assembly framework for plant synthetic biology. Plant Physiology 162: 1618-1631.
Sauer M, Robert S, Kleine-Vehn J. 2013. Auxin: simply complicated. Journal of Experimental Botany 64: 2565-2577.
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B et al. 2012. Fiji: an open-source platform for biological-image analysis. Nature Methods 9: 676-682.
Schmitt J, Stunnenberg HG. 1993. The glucocorticoid receptor hormone binding domain mediates transcriptional activation in vitro in the absence of ligand. Nucleic Acids Research 21: 2673-2681.
Serre NBC, Fendrych M. 2022. Acorba: automated workflow to measure Arabidopsis thaliana root tip angle dynamics. Quantitative Plant Biology 3: e9.
Serre NBC, Kralík D, Yun P, Slouka Z, Shabala S, Fendrych M. 2021. AFB1 controls rapid auxin signalling through membrane depolarization in Arabidopsis thaliana root. Nature Plants 7: 1229-1238.
Serre NBC, Wernerová D, Vittal P, Dubey SM, Medvecká E, Jelínková A, Petrášek J, Grossmann G, Fendrych M. 2023. The AUX1-AFB1-CNGC14 module establishes a longitudinal root surface PH profile. eLife 12: e85193.
Shani E, Weinstain R, Zhang Y, Castillejo C, Kaiserli E, Chory J, Tsien RY, Estelle M. 2013. Gibberellins accumulate in the elongating endodermal cells of Arabidopsis root. Proceedings of the National Academy of Sciences, USA 110: 4834-4839.
Sharma P, Jha AB, Dubey RS, Pessarakli M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 2012: 1-26.
Shih H-W, DePew CL, Miller ND, Monshausen GB. 2015. The cyclic nucleotide-gated channel CNGC14 regulates root gravitropism in Arabidopsis thaliana. Current Biology 25: 3119-3125.
Suzuki M, Yamazaki C, Mitsui M, Kakei Y, Mitani Y, Nakamura A, Ishii T, Soeno K, Shimada Y. 2015. Transcriptional feedback regulation of YUCCA genes in response to auxin levels in Arabidopsis. Plant Cell Reports 34: 1343-1352.
Swarup R, Kramer EM, Perry P, Kirsten Knox HM, Leyser O, Haseloff J, Beemster GTS, Bhalerao R, Bennett MJ. 2005. Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nature Cell Biology 7: 1057-1065.
Tanimoto E. 1987. Gibberellin-dependent root elongation in Lactuca sativa: recovery from growth retardant-suppressed elongation with thickening by low concentration of GA3. Plant and Cell Physiology 28: 963-973.
Tanimoto E. 2012. Tall or short? slender or thick? a plant strategy for regulating elongation growth of roots by low concentrations of gibberellin. Annals of Botany 110: 373-381.
Tsukagoshi H, Busch W, Benfey PN. 2010. Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143: 606-616.
Ubeda-Tomás S, Swarup R, Coates J, Swarup K, Laplaze L, Beemster GTS, Hedden P, Bhalerao R, Bennett MJ. 2008. Root growth in Arabidopsis requires gibberellin/DELLA signalling in the endodermis. Nature Cell Biology 10: 625-628.
Urfus T, Kopecký M, Urfusová R, Chrtek J. 2021. Whole genome duplication increases ecological niche breadth of the perennial herb Urtica dioica. Preslia 93: 305-319.
Vanstraelen M, Benková E. 2012. Hormonal interactions in the regulation of plant development. Annual Review of Cell and Developmental Biology 28: 463-487.
von Wangenheim D, Hauschild R, Fendrych M, Barone V, Benková E, Friml J. 2017. Live tracking of moving samples in confocal microscopy for vertically grown roots. eLife 6: 26792.
Zhang H, Linster E, Gannon L, Leemhuis W, Rundle CA, Theodoulou FL, Wirtz M. 2019. Tandem fluorescent protein timers for noninvasive relative protein lifetime measurement in plants. Plant Physiology 180: 718-731.
Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J. 2001. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291: 306-309.
Zuo J, Niu Q-W, Chua N-H. 2000. An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. The Plant Journal 24: 265-273.
Unresolved roles of Aux/IAA proteins in auxin responses