Rapid prototyping of PMMA-based microfluidic spheroid-on-a-chip models using micromilling and vapour-assisted thermal bonding
Language English Country England, Great Britain Media electronic
Document type Journal Article
Grant support
22-20012S
Czech Science Foundation
CZ.02.2.69/0.0/0.0/18_053/0016627
European Structural and Investment Funds and Czech Ministry of Education, Youth, and Sports
PubMed
38310102
PubMed Central
PMC10838337
DOI
10.1038/s41598-024-53266-y
PII: 10.1038/s41598-024-53266-y
Knihovny.cz E-resources
- MeSH
- Chloroform MeSH
- Lab-On-A-Chip Devices MeSH
- Microfluidics * methods MeSH
- Microfluidic Analytical Techniques * MeSH
- Polymethyl Methacrylate chemistry MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Chloroform MeSH
- Polymethyl Methacrylate MeSH
The application of microfluidic devices as next-generation cell and tissue culture systems has increased impressively in the last decades. With that, a plethora of materials as well as fabrication methods for these devices have emerged. Here, we describe the rapid prototyping of microfluidic devices, using micromilling and vapour-assisted thermal bonding of polymethyl methacrylate (PMMA), to create a spheroid-on-a-chip culture system. Surface roughness of the micromilled structures was assessed using scanning electron microscopy (SEM) and atomic force microscopy (AFM), showing that the fabrication procedure can impact the surface quality of micromilled substrates with milling tracks that can be readily observed in micromilled channels. A roughness of approximately 153 nm was created. Chloroform vapour-assisted bonding was used for simultaneous surface smoothing and bonding. A 30-s treatment with chloroform-vapour was able to reduce the surface roughness and smooth it to approximately 39 nm roughness. Subsequent bonding of multilayer PMMA-based microfluidic chips created a durable assembly, as shown by tensile testing. MDA-MB-231 breast cancer cells were cultured as multicellular tumour spheroids in the device and their characteristics evaluated using immunofluorescence staining. Spheroids could be successfully maintained for at least three weeks. They consisted of a characteristic hypoxic core, along with expression of the quiescence marker, p27kip1. This core was surrounded by a ring of Ki67-positive, proliferative cells. Overall, the method described represents a versatile approach to generate microfluidic devices compatible with biological applications.
Department of Surgery University Medical Center Groningen Groningen The Netherlands
Institute of Physics Czech Academy of Sciences Prague Czech Republic
See more in PubMed
Wu Q, et al. Organ-on-a-chip: Recent breakthroughs and future prospects. Biomed. Eng. Online. 2020;19:9. doi: 10.1186/s12938-020-0752-0. PubMed DOI PMC
Leung CM, et al. A guide to the organ-on-a-chip. Nat. Rev. Methods Prim. 2022;2:33. doi: 10.1038/s43586-022-00118-6. DOI
Xia Y, Whitesides GM. Soft lithography. Angew. Chem. Int. Ed. Engl. 1998;37:550–575. doi: 10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G. PubMed DOI
Masuda S, Washizu M, Nanba T. Novel method of cell fusion in field constriction area in fluid integration circuit. IEEE Trans. Industry Appl. 1989;25:732–737. doi: 10.1109/28.31255. DOI
Sia SK, Whitesides GM. Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis. 2003;24:3563–3576. doi: 10.1002/elps.200305584. PubMed DOI
Silverio, V. & Cardoso de Freitas, S. in Complex Fluid-Flows in Microfluidics (ed Francisco José Galindo-Rosales) 25-51, doi: 10.1007/978-3-319-59593-1_2 (Springer International Publishing, 2018)
Ren K, Zhou J, Wu H. Materials for microfluidic chip fabrication. Acc. Chem. Res. 2013;46:2396–2406. doi: 10.1021/ar300314s. PubMed DOI
Toepke MW, Beebe DJ. PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip. 2006;6:1484–1486. doi: 10.1039/b612140c. PubMed DOI
van Meer BJ, et al. Small molecule absorption by PDMS in the context of drug response bioassays. Biochem. Biophys. Res. Commun. 2017;482:323–328. doi: 10.1016/j.bbrc.2016.11.062. PubMed DOI PMC
Moore TA, Brodersen P, Young EWK. Multiple myeloma cell drug responses differ in thermoplastic vs PDMS microfluidic devices. Anal. Chem. 2017;89:11391–11398. doi: 10.1021/acs.analchem.7b02351. PubMed DOI
Carter S-SD, et al. PDMS leaching and its implications for on-chip studies focusing on bone regeneration applications. Organs-on-a-Chip. 2020;2:100004. doi: 10.1016/j.ooc.2020.100004. DOI
Halldorsson S, Lucumi E, Gomez-Sjoberg R, Fleming RMT. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens. Bioelectron. 2015;63:218–231. doi: 10.1016/j.bios.2014.07.029. PubMed DOI
Gencturk E, Mutlu S, Ulgen KO. Advances in microfluidic devices made from thermoplastics used in cell biology and analyses. Biomicrofluidics. 2017;11:051502. doi: 10.1063/1.4998604. PubMed DOI PMC
Tsao CW. Polymer microfluidics: Simple, low-cost fabrication process bridging academic lab research to commercialized production. Micromachines (Basel) 2016 doi: 10.3390/mi7120225. PubMed DOI PMC
Li Y, et al. Effects of direct current electric fields on lung cancer cell electrotaxis in a PMMA-based microfluidic device. Anal. Bioanal. Chem. 2017;409:2163–2178. doi: 10.1007/s00216-016-0162-0. PubMed DOI
Humayun M, Chow CW, Young EWK. Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions. Lab Chip. 2018;18:1298–1309. doi: 10.1039/c7lc01357d. PubMed DOI
Wong JF, Mohan MD, Young EWK, Simmons CA. Integrated electrochemical measurement of endothelial permeability in a 3D hydrogel-based microfluidic vascular model. Biosens. Bioelectron. 2020;147:111757. doi: 10.1016/j.bios.2019.111757. PubMed DOI
Shah P, et al. A microfluidics-based in vitro model of the gastrointestinal human-microbe interface. Nat. Commun. 2016;7:11535. doi: 10.1038/ncomms11535. PubMed DOI PMC
Bruijns B, Veciana A, Tiggelaar R, Gardeniers H. Cyclic olefin copolymer microfluidic devices for forensic applications. Biosensors (Basel) 2019 doi: 10.3390/bios9030085. PubMed DOI PMC
Guckenberger DJ, de Groot TE, Wan AM, Beebe DJ, Young EW. Micromilling: A method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip. 2015;15:2364–2378. doi: 10.1039/c5lc00234f. PubMed DOI PMC
Lashkaripour A, Silva R, Densmore D. Desktop micromilled microfluidics. Microfluid. Nanofluid. 2018;22:31. doi: 10.1007/s10404-018-2048-2. DOI
Chai M, Cui R, Liu J, Zhang Y, Fan Y. Polyformaldehyde-based microfluidics and application in enhanced oil recovery. Microsyst. Technol. 2022;28:947–954. doi: 10.1007/s00542-021-05243-y. DOI
Shallan AI, Smejkal P, Corban M, Guijt RM, Breadmore MC. Cost-effective three-dimensional printing of visibly transparent microchips within minutes. Anal. Chem. 2014;86:3124–3130. doi: 10.1021/ac4041857. PubMed DOI
Prentner, S. et al. Effects of channel surface finish on blood flow in microfluidic devices. In 2009 Symposium on Design, Test, Integration & Packaging of MEMS/MOEMS. 51–54 (2009).
De Marco C, et al. Solvent vapor treatment controls surface wettability in PMMA femtosecond-laser-ablated microchannels. Microfluid . Nanofluid. 2013;14:171–176. doi: 10.1007/s10404-012-1035-2. DOI
Ogilvie IRG, et al. Reduction of surface roughness for optical quality microfluidic devices in PMMA and COC. J. Micromech. Microeng. 2010;20:065016. doi: 10.1088/0960-1317/20/6/065016. DOI
Matellan C, del Río Hernández AE. Cost-effective rapid prototyping and assembly of poly(methyl methacrylate) microfluidic devices. Sci. Rep. 2018;8:6971. doi: 10.1038/s41598-018-25202-4. PubMed DOI PMC
Zhu X, Liu G, Guo Y, Tian Y. Study of PMMA thermal bonding. Microsyst. Technol. 2007;13:403–407. doi: 10.1007/s00542-006-0224-x. DOI
Chiang C-C, Immanuel PN, Chiu Y-H, Huang S-J. Heterogeneous bonding of PMMA and double-sided polished silicon wafers through H2O plasma treatment for microfluidic devices. Coatings. 2021 doi: 10.3390/coatings11050580. DOI
Zhang Y, Gao K, Fan Y. Application of a new UV curable adhesive for rapid bonding in thermoplastic-based microfluidics. Micro Nano Lett. 2019;14:211–214. doi: 10.1049/mnl.2018.5479. DOI
Bamshad A, Nikfarjam A, Khaleghi H. A new simple and fast thermally-solvent assisted method to bond PMMA–PMMA in micro-fluidics devices. J. Micromech. Microeng. 2016;26:065017. doi: 10.1088/0960-1317/26/6/065017. DOI
Mahmoodi SR, Sun PK, Mayer M, Besser RS. Gas-assisted thermal bonding of thermoplastics for the fabrication of microfluidic devices. Microsyst. Technol. 2019;25:3923–3932. doi: 10.1007/s00542-019-04380-9. DOI
Park T, Song IH, Park DS, You BH, Murphy MC. Thermoplastic fusion bonding using a pressure-assisted boiling point control system. Lab Chip. 2012;12:2799–2802. doi: 10.1039/c2lc40252a. PubMed DOI
Gong Y, Park JM, Lim J. An interference-assisted thermal bonding method for the fabrication of thermoplastic microfluidic devices. Micromachines (Basel) 2016 doi: 10.3390/mi7110211. PubMed DOI PMC
Tsao CW, Hromada L, Liu J, Kumar P, DeVoe DL. Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment. Lab Chip. 2007;7:499–505. doi: 10.1039/b618901f. PubMed DOI
Wen X, Takahashi S, Hatakeyama K, Kamei KI. Evaluation of the effects of solvents used in the fabrication of microfluidic devices on cell cultures. Micromachines (Basel) 2021 doi: 10.3390/mi12050550. PubMed DOI PMC
Grimes DR, Kelly C, Bloch K, Partridge M. A method for estimating the oxygen consumption rate in multicellular tumour spheroids. J. R. Soc. Interface. 2014;11:20131124. doi: 10.1098/rsif.2013.1124. PubMed DOI PMC
Uxa S, et al. Ki-67 gene expression. Cell Death Differ. 2021;28:3357–3370. doi: 10.1039/b618901f. PubMed DOI PMC
Lloyd RV, et al. p27kip1: a multifunctional cyclin-dependent kinase inhibitor with prognostic significance in human cancers. Am. J. Pathol. 1999;154:313–323. doi: 10.1016/S0002-9440(10)65277-7. PubMed DOI PMC
Nagelkerke A, Bussink J, Sweep FCGJ, Span PN. Generation of multicellular tumor spheroids of breast cancer cells: How to go three-dimensional. Anal. Biochem. 2013;437:17–19. doi: 10.1016/j.ab.2013.02.004. PubMed DOI
Reichenbach IG, Bohley M, Sousa FJP, Aurich JC. Micromachining of PMMA—manufacturing of burr-free structures with single-edge ultra-small micro end mills. Int. J. Adv. Manuf. Technol. 2018;96:3665–3677. doi: 10.1007/s00170-018-1821-4. DOI
Chen P-C, Pan C-W, Lee W-C, Li K-M. Optimization of micromilling microchannels on a polycarbonate substrate. Int. J. Precis. Eng. Manuf. 2014;15:149–154. doi: 10.1007/s12541-013-0318-1. DOI
Yen DP, Ando Y, Shen K. A cost-effective micromilling platform for rapid prototyping of microdevices. Technology (Singap World Sci) 2016;4:234–239. doi: 10.1142/S2339547816200041. PubMed DOI PMC
Yuan X, Tao Z, Li H, Tian Y. Experimental investigation of surface roughness effects on flow behavior and heat transfer characteristics for circular microchannels. Chin. J. Aeronaut. 2016;29:1575–1581. doi: 10.1016/j.cja.2016.10.006. DOI
Tyagi P, Goulet T, Riso C, Garcia-Moreno F. Reducing surface roughness by chemical polishing of additively manufactured 3D printed 316 stainless steel components. Int. J. Adv. Manuf. Technol. 2019;100:2895–2900. doi: 10.1007/s00170-018-2890-0. DOI
Tsao CW, Wu ZK. Polymer microchannel and micromold surface polishing for rapid, low-quantity polydimethylsiloxane and thermoplastic microfluidic device fabrication. Polymers (Basel) 2020 doi: 10.3390/polym12112574. PubMed DOI PMC
Majhy B, Priyadarshini P, Sen AK. Effect of surface energy and roughness on cell adhesion and growth - facile surface modification for enhanced cell culture. RSC Adv. 2021;11:15467–15476. doi: 10.1039/d1ra02402g. PubMed DOI PMC
Akhil AV, et al. Vaporized solvent bonding of polymethyl methacrylate. J. Adhesion Sci. Technol. 2016;30:826–841. doi: 10.1080/01694243.2015.1125721. DOI
Nath S, Devi GR. Three-dimensional culture systems in cancer research: Focus on tumor spheroid model. Pharmacol. Ther. 2016;163:94–108. doi: 10.1016/j.pharmthera.2016.03.013. PubMed DOI PMC
Collins T, et al. Spheroid-on-chip microfluidic technology for the evaluation of the impact of continuous flow on metastatic potential in cancer models in vitro. Biomicrofluidics. 2021;15:044103. doi: 10.1063/5.0061373. PubMed DOI PMC
Khot MI, et al. Characterising a PDMS based 3D cell culturing microfluidic platform for screening chemotherapeutic drug cytotoxic activity. Sci. Rep. 2020;10:15915. doi: 10.1038/s41598-020-72952-1. PubMed DOI PMC
Aoun L, et al. Microdevice arrays of high aspect ratio poly(dimethylsiloxane) pillars for the investigation of multicellular tumour spheroid mechanical properties. Lab Chip. 2014;14:2344–2353. doi: 10.1039/c4lc00197d. PubMed DOI
Ruppen J, et al. A microfluidic platform for chemoresistive testing of multicellular pleural cancer spheroids. Lab Chip. 2014;14:1198–1205. doi: 10.1039/c3lc51093j. PubMed DOI
Liu W, Wang JC, Wang J. Controllable organization and high throughput production of recoverable 3D tumors using pneumatic microfluidics. Lab Chip. 2015;15:1195–1204. doi: 10.1039/c4lc01242a. PubMed DOI
Zhuang J, Zhang J, Minhao W, Zhang Y. A dynamic 3D tumor spheroid chip enables more accurate nanomedicine uptake evaluation. Adv. Sci. 2019 doi: 10.1002/advs.201901462. PubMed DOI PMC
Hirschhaeuser F, et al. Multicellular tumor spheroids: An underestimated tool is catching up again. J. Biotechnol. 2010;148:3–15. doi: 10.1016/j.jbiotec.2010.01.012. PubMed DOI
Mehta G, Hsiao AY, Ingram M, Luker GD, Takayama S. Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J. Controll. Release. 2012;164:192–204. doi: 10.1016/j.jconrel.2012.04.045. PubMed DOI PMC
Nagelkerke A, et al. Hypoxia stimulates migration of breast cancer cells via the PERK/ATF4/LAMP3-arm of the unfolded protein response. Breast Cancer Res. 2013;15:R2. doi: 10.1186/bcr3373. PubMed DOI PMC
Moshksayan K, et al. Spheroids-on-a-chip: Recent advances and design considerations in microfluidic platforms for spheroid formation and culture. Sens. Actuators B: Chem. 2018;263:151–176. doi: 10.1016/j.snb.2018.01.223. DOI