Distinct leukocyte populations and cytokine secretion profiles define tumoral and peritumoral areas in renal cell carcinoma
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38310685
PubMed Central
PMC10862072
DOI
10.1016/j.tranon.2024.101891
PII: S1936-5233(24)00017-2
Knihovny.cz E-zdroje
- Klíčová slova
- CAFs, CD8 T cells, Kidney cancer, PECAM-1, RCC TME, Renal carcinoma immunotherapy, Tumor immune microenvironment, Tumor-infiltrating lymphocytes, cytotoxicity, kidney cancer cytokines, peritumoral tissue,
- Publikační typ
- časopisecké články MeSH
Renal cell carcinoma (RCC) is a common malignancy frequently diagnosed at the metastatic stage. We performed a comprehensive analysis of the tumor immune microenvironment (TIME) in RCC patients, including the peritumoral tissue microenvironment, to characterize the phenotypic patterns and functional characteristics of infiltrating immune cells. T cells from various compartments (peripheral blood, tumor, peritumoral area, and adjacent healthy renal tissue) were assessed using flow cytometry and Luminex analyses, both before and after T cell-specific stimulation, to evaluate activation status and migratory potential. Our findings demonstrated that tumor-infiltrating lymphocytes (TILs) exhibited heightened cytokine production compared to peritumoral T cells (pTILs), acting as the primary source of cytotoxic markers (IFN-γ, granzyme B, and FasL). CD8+ T cells primarily employed Fas Ligand for cytotoxicity, while CD4+ T cells relied on CD107a. In addition, a statistically significant negative correlation between patient mortality and the presence of CD4+CD107+ pTILs was demonstrated. The engagement with the PD-1/PD-L1 pathway was also more evident in CD4+ and CD8+ pTILs as opposed to TILs. PD-L1 expression in the non-leukocyte fraction of the tumor tissue was relatively lower than in their leukocytic counterparts and upon stimulation, peripheral blood T cells displayed much stronger responses to stimulation than TILs and pTILs. Our results suggest that tumor and peritumoral T cells exhibit limited responsiveness to additional activation signals, while peripheral T cells retain their capacity to respond to stimulatory signals.
Zobrazit více v PubMed
Hsieh J.J., Purdue M.P., Signoretti S., Swanton C., Albiges L., Schmidinger M., et al. Renal cell carcinoma. Nat. Rev. Disease Primers. 2017;3:17009. PubMed PMC
Albiges L., Molinie V., Escudier B. Non-clear cell renal cell carcinoma: does the mammalian target of rapamycin represent a rational therapeutic target? Oncologist. 2012;17(8):1051–1062. PubMed PMC
Motzer R.J., Escudier B., McDermott D.F., George S., Hammers H.J., Srinivas S., et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. New Engl. J. Med. 2015;373(19):1803–1813. PubMed PMC
Tran J., Ornstein M.C. Clinical review on the management of metastatic renal cell carcinoma. JCO. Oncol. Practice. 2022;18(3):187–196. PubMed
Rini B.I., Plimack E.R., Stus V., Gafanov R., Hawkins R., Nosov D., et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 2019;380(12):1116–1127. PubMed
Motzer R.J., Penkov K., Haanen J., Rini B., Albiges L., Campbell M.T., et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 2019;380(12):1103–1115. PubMed PMC
Motzer R.J., Tannir N.M., McDermott D.F., Arén Frontera O., Melichar B., Choueiri T.K., et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med. 2018;378(14):1277–1290. PubMed PMC
Choueiri T.K., Powles T., Burotto M., Escudier B., Bourlon M.T., Zurawski B., et al. Nivolumab plus cabozantinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 2021;384(9):829–841. PubMed PMC
Tran J., Ornstein M.C. Clinical review on the management of metastatic renal cell carcinoma. JCO. Oncol. Pract. 2022;18(3):187–196. PubMed
Bagchi S., Yuan R., Engleman E.G. Immune Checkpoint Inhibitors for the Treatment of Cancer: clinical Impact and Mechanisms of Response and Resistance. Annual Rev. Pathol.:. Mechan. Disease. 2021;16(1):223–249. PubMed
Chen M.Y., Zeng Y.C. Pseudoprogression in lung cancer patients treated with immunotherapy. Crit. Rev. Oncol. Hematol. 2022;169 PubMed
Taleb B.A. Tumour flare reaction in cancer treatments: a comprehensive literature review. Antican. Drugs. 2019;30(9):953–958. PubMed PMC
McGrail D.J., Pilié P.G., Rashid N.U., Voorwerk L., Slagter M., Kok M., et al. High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types. Annal. Oncol. 2021;32(5):661–672. PubMed PMC
Fridman W.H., Galon J., Pagès F., Tartour E., Sautès-Fridman C., Kroemer G. Prognostic and predictive impact of intra- and peritumoral immune infiltrates. Cancer Res. 2011;71(17):5601–5605. PubMed
Sorbye S.W., Kilvaer T.K., Valkov A., Donnem T., Smeland E., Al-Shibli K., et al. Prognostic impact of peritumoral lymphocyte infiltration in soft tissue sarcomas. BMC. Clin. Pathol. 2012;12:5. PubMed PMC
Strizova Z., Taborska P., Stakheev D., Partlová S., Havlova K., Vesely S., et al. NK and T cells with a cytotoxic/migratory phenotype accumulate in peritumoral tissue of patients with clear cell renal carcinoma. Urol. Oncol. 2019;37(7):503–509. PubMed
Sabbatino F., Scognamiglio G., Liguori L., Marra A., Anniciello A.M., Polcaro G., et al. Peritumoral immune infiltrate as a prognostic biomarker in thin melanoma. Front. Immunol. 2020;11 PubMed PMC
Keun Park C., Kyum Kim S. Clinicopathological significance of intratumoral and peritumoral lymphocytes and lymphocyte score based on the histologic subtypes of cutaneous melanoma. Oncotarget. 2017;8(9) PubMed PMC
Fridman W.H., Galon J., Pagès F., Tartour E., Sautès-Fridman C., Kroemer G. Prognostic and predictive impact of intra- and peritumoral immune infiltrates. Cancer Res. 2011;71(17):5601–5605. PubMed
Brück O., Lee M.H., Turkki R., Uski I., Penttilä P., Paavolainen L., et al. Spatial immunoprofiling of the intratumoral and peritumoral tissue of renal cell carcinoma patients. Modern. Pathol. 2021;34(12):2229–2241. PubMed PMC
Braun D.A., Hou Y., Bakouny Z., Ficial M., Sant’ Angelo M., Forman J., et al. Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma. Nat. Med. 2020;26(6):909–918. PubMed PMC
Gorchs L., Fernández Moro C., Bankhead P., Kern K.P., Sadeak I., Meng Q., et al. Human pancreatic carcinoma-associated fibroblasts promote expression of co-inhibitory markers on CD4(+) and CD8(+) T-cells. Front. Immunol. 2019;10:847. PubMed PMC
Harryvan T.J., Verdegaal E.M.E., Hardwick J.C.H., Hawinkels L., van der Burg S.H. Targeting of the cancer-associated fibroblast-T-cell axis in solid malignancies. J. Clin. Med. 2019;8(11) PubMed PMC
Kinoshita T., Ishii G., Hiraoka N., Hirayama S., Yamauchi C., Aokage K., et al. Forkhead box P3 regulatory T cells coexisting with cancer associated fibroblasts are correlated with a poor outcome in lung adenocarcinoma. Cancer. Sci. 2013;104(4):409–415. PubMed PMC
Salmon H., Franciszkiewicz K., Damotte D., Dieu-Nosjean M.C., Validire P., Trautmann A., et al. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J. Clin. Invest. 2012;122(3):899–910. PubMed PMC
Sahai E., Astsaturov I., Cukierman E., DeNardo D.G., Egeblad M., Evans R.M., et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer. 2020;20(3):174–186. PubMed PMC
Liu T., Han C., Wang S., Fang P., Ma Z., Xu L., et al. Cancer-associated fibroblasts: an emerging target of anti-cancer immunotherapy. J. Hematol. Oncol. 2019;12(1):86. PubMed PMC
Newman D.K., Fu G., Adams T., Cui W., Arumugam V., Bluemn T., et al. The adhesion molecule PECAM-1 enhances the TGF-β–mediated inhibition of T cell function. Sci. Signal. 2016;9(418):ra27–rara. PubMed PMC
Ross E.A., Coughlan R.E., Flores-Langarica A., Bobat S., Marshall J.L., Hussain K., et al. CD31 is required on CD4+ T cells to promote T cell survival during salmonella infection. The. J. Immunol. 2011;187(4):1553–1565. PubMed PMC
O'Connell J. Fas ligand and the fate of antitumour cytotoxic T lymphocytes. Immunology. 2002;105(3):263–266. PubMed PMC
Alter G., Malenfant J.M., Altfeld M. CD107a as a functional marker for the identification of natural killer cell activity. J. Immunol. Methods. 2004;294(1–2):15–22. PubMed
Zhu J., Petit P.F., Van den Eynde .BJ. Apoptosis of tumor-infiltrating T lymphocytes: a new immune checkpoint mechanism. Cancer Immunol., Immunother.: CII. 2019;68(5):835–847. PubMed PMC
Kuchar M., Strizova Z., Votava M., Plzak J. The relevance of Fas/Fas ligand axis in the tumor microenvironment of salivary gland adenoid cystic carcinoma. Oral. Oncol. 2019;97:135–136. PubMed
Saad M.B., Hong L., Aminu M., Vokes N.I., Chen P., Salehjahromi M., et al. Predicting benefit from immune checkpoint inhibitors in patients with non-small-cell lung cancer by CT-based ensemble deep learning: a retrospective study. Lancet Digital Heal. 2023;5(7):e404–ee20. PubMed PMC
Chen X.J., Yuan S.Q., Duan J.L., Chen Y.M., Chen S., Wang Y., et al. The value of PD-L1 expression in predicting the efficacy of anti-PD-1 or anti-PD-L1 therapy in patients with cancer: a systematic review and meta-analysis. Dis. Markers. 2020;2020 PubMed PMC
Yi M., Jiao D., Xu H., Liu Q., Zhao W., Han X., et al. Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol. Cancer. 2018;17(1):129. PubMed PMC
Bronger H., Singer J., Windmüller C., Reuning U., Zech D., Delbridge C., et al. CXCL9 and CXCL10 predict survival and are regulated by cyclooxygenase inhibition in advanced serous ovarian cancer. Br. J. Cancer. 2016;115(5):553–563. PubMed PMC
Singla N., Margulis V. Locally advanced kidney cancer: a new space for immunotherapy? Europ. Urol. Oncol. 2022;5(1):118–119. PubMed
Ma L., Cheung K.C., Kishore M., Nourshargh S., Mauro C., Marelli-Berg F.M. CD31 exhibits multiple roles in regulating T lymphocyte trafficking in vivo. J. Immunol. (Baltimore,. Md:. 1950) 2012;189(8):4104–4111. PubMed PMC
Kravtsov D.S., Erbe A.K., Sondel P.M., Rakhmilevich A.L. Roles of CD4+ T cells as mediators of antitumor immunity. Front. Immunol. 2022;13 PubMed PMC
Leclair L., Depil S. [CD4(+) T Lymphocytes: major players in antitumor immune response] Med. Sci. (Paris) 2021;37(6–7):671–673. PubMed
Li T., Wu B., Yang T., Zhang L., Jin K. The outstanding antitumor capacity of CD4+ T helper lymphocytes. Biochimica. et Biophysica. Acta (BBA). -. Rev. Cancer. 2020;1874(2) PubMed