The Cabrières Biota (France) provides insights into Ordovician polar ecosystems
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
PZ00P2_209102
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
205321_179084
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
PZ00P2_193520
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
CRSII5_198691
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
PubMed
38337049
PubMed Central
PMC11009115
DOI
10.1038/s41559-024-02331-w
PII: 10.1038/s41559-024-02331-w
Knihovny.cz E-zdroje
- MeSH
- členovci * MeSH
- Echinodermata MeSH
- ekosystém * MeSH
- společenstvo MeSH
- zkameněliny MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Early Palaeozoic sites with soft-tissue preservation are predominantly found in Cambrian rocks and tend to capture past tropical and temperate ecosystems. In this study, we describe the diversity and preservation of the Cabrières Biota, a newly discovered Early Ordovician Lagerstätte from Montagne Noire, southern France. The Cabrières Biota showcases a diverse polar assemblage of both biomineralized and soft-bodied organisms predominantly preserved in iron oxides. Echinoderms are extremely scarce, while sponges and algae are abundantly represented. Non-biomineralized arthropod fragments are also preserved, along with faunal elements reminiscent of Cambrian Burgess Shale-type ecosystems, such as armoured lobopodians. The taxonomic diversity observed in the Cabrières Biota mixes Early Ordovician Lagerstätten taxa with Cambrian forms. By potentially being the closest Lagerstätte to the South Pole, the Cabrières Biota probably served as a biotic refuge amid the high-water temperatures of the Early Ordovician, and shows comparable ecological structuring to modern polar communities.
Czech Academy of Sciences Institute of Geology Prague Czech Republic
Czech Geological Survey Prague Czech Republic
Department of Earth and Environmental Sciences University of Iowa Iowa City IA USA
Department of Earth Sciences University of Geneva Geneva Switzerland
Institute of Earth Sciences University of Lausanne Lausanne Switzerland
Société d'Etudes Scientifiques de l'Aude Carcassonne France
Synchrotron SOLEIL L'Orme des merisiers Gif sur Yvette France
Zobrazit více v PubMed
Seilacher, A., Reif, W. E. & Westphal, F. Sedimentological, ecological and temporal patterns of fossil Lagerstätten. Philos. Trans. R. Soc. Lond. B311, 5–24 (1985).
Allison, P. A. & Briggs, D. E. Exceptional fossil record: distribution of soft-tissue preservation through the Phanerozoic. Geology21, 527–530 (1993).
Brasier, M. D., Antcliffe, J. B. & Callow, R. H. T. in Taphonomy: Process and Bias Through Time 2nd edn, Vol. 32 (eds P. A. Allison & D. J. Bottjer) Ch. 15, 519–567 (Springer Science, 2011).
Muscente, A. D. et al. Exceptionally preserved fossil assemblages through geologic time and space. Gondwana Res.48, 164–188 (2017).
Van Roy, P. et al. Ordovician faunas of Burgess Shale type. Nature465, 215–218 (2010). PubMed
Muir, L. A., Ng, T. W., Li, X. F., Zhang, Y. D. & Lin, J. P. Palaeoscolecidan worms and a possible nematode from the Early Ordovician of South China. Palaeoworld23, 15–24 (2014).
Balinski, A. & Sun, Y. Fenxiang biota: a new Early Ordovician shallow-water fauna with soft-part preservation from China. Sci. Bull.60, 812–818 (2015). PubMed PMC
Botting, J. P., Muir, L. A., Sutton, M. D. & Barnie, T. Welsh gold: a new exceptionally preserved pyritized Ordovician biota. Geology39, 879–882 (2011).
Botting, J. P., Muir, L. A., Jordan, N. & Upton, C. An Ordovician variation on Burgess Shale-type biotas. Sci. Rep.5, 9947 (2015). PubMed PMC
Botting, J. P. et al. A Middle Ordovician Burgess Shale-type fauna from Castle Bank, Wales (UK). Nat. Ecol. Evol.7, 666–674 (2023). PubMed
Gabbott, S. E., Browning, C., Theron, J. N. & Whittle, R. J. The late Ordovician Soom Shale Lagerstätte: an extraordinary post-glacial fossil and sedimentary record. J. Geol. Soc.174, 1–9 (2017).
Lamsdell, J. C., LoDuca, S. T., Gunderson, G. O., Meyer, R. C. & Briggs, D. E. A new Lagerstätte from the Late Ordovician Big Hill Formation, Upper Peninsula, Michigan. J. Geol. Soc.174, 18–22 (2017).
Briggs, D. E., Liu, H. P., McKay, R. M. & Witzke, B. J. The Winneshiek biota: exceptionally well-preserved fossils in a Middle Ordovician impact crater. J. Geol. Soc.175, 865–874 (2018).
Kimmig, J., Couto, H., Leibach, W. W. & Lieberman, B. S. Soft-bodied fossils from the upper Valongo Formation (Middle Ordovician: Dapingian–Darriwilian) of northern Portugal. Sci. Nat.106, 1–13 (2019). PubMed
Fang, X. et al. The Liexi fauna: a new Lagerstätte from the Lower Ordovician of South China. Proc. R. Soc. B289, 20221027 (2022). PubMed PMC
Kraft, P. et al. Ordovician of the Bohemian Massif. Geol. Soc. Lond. Spec. Publ.532, 433–464 (2023).
Moysiuk, J., Izquierdo-López, A., Kampouris, G. E. & Caron, J. B. A new marrellomorph arthropod from southern Ontario: a rare case of soft-tissue preservation on a Late Ordovician open marine shelf. J. Paleontol.96, 859–874 (2022).
Daley, A. C., Antcliffe, J. B., Drage, H. B. & Pates, S. Early fossil record of Euarthropoda and the Cambrian Explosion. Proc. Natl Acad. Sci. USA115, 5323–5331 (2018). PubMed PMC
Stigall, A. L., Edwards, C. T., Freeman, R. L. & Rasmussen, C. M. Coordinated biotic and abiotic change during the Great Ordovician Biodiversification Event: Darriwilian assembly of early Paleozoic building blocks. Palaeogeogr. Palaeoclimatol. Palaeoecol.530, 249–270 (2019).
Álvaro, J. J., González-Gómez, C. & Vizcaïno, D. Paleogeographic patterns of the Cambrian–Ordovician transition in the southern Montagne Noire (France): preliminary results. Bull. Soc. Geol. Fr.174, 217–225 (2003).
Courtessole, R., Marek, L., Pillet, J., Ubaghs, G. & Vizcaïno, D. Calymenina, Echinodermata et Hyolitha de l’Ordovicien inférieur de la Montagne Noire (France meridionale) (Société d’Etudes Scientifiques de l’Aude, Carcassonne 1983).
Courtessole, R., Pillet, J. & Vizcaïno, D. Nouvelles données sur la biostratigraphie de l’Ordovicien inférieur de la Montagne Noire. Revision des Taihungshaniidae, de Megistaspis (Ekeraspis) et d’Asaphopsoides (Trilobites) (Société d’Etudes Scientifiques de l’Aude, Carcassonne, 1981).
Courtessole R., Pillet J., Vizcaïno D. & Eschard R. Etude biostratigraphique et sédimentologique des formations arénacées de l’Arenigien du Saint-Chinianais oriental (Hérault) versant sud de la Montagne Noire (France méridionale) (Société d’Etudes Scientifiques de l’Aude, Carcassonne, 1985).
Vizcaïno, D., Alvaro, J. J. & Lefebvre, B. The Lower Ordovician of the southern Montagne Noire. Ann. Soc. Géol. Nord.8, 213–220 (2001).
Fortey, R. A. Trilobites of the genus Dikelokephalina from Ordovician Gondwana and Avalonia. Geol. J.46, 405–415 (2011).
Noffke, N. & Nitsch, E. Sedimentology of Lower Ordovician clastic shelf deposits, Montagne Noire (France). Géol. de la France4, 3–19 (1994).
Vizcaïno, D. & Álvaro, J. J. Adequacy of the Early Ordovician trilobite record in the southern Montagne Noire (France): biases for biodiversity documentation. Earth Environ. Sci. Trans. R. Soc. Edinb.93, 393–401 (2003).
Saleh, F. et al. The Chengjiang Biota inhabited a deltaic environment. Nat. Commun.13, 1569 (2022). PubMed PMC
Vidal, M. Le modèle des biofaciès à trilobites: un test dans l’Ordovicien inférieur de l’Anti-Atlas, Maroc. C.R. Acad. Sci., Ser. IIa: Sci. Terre Planets327, 327–333 (1998).
Brayard, A. et al. Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna. Sci. Adv.3, e1602159 (2017). PubMed PMC
Conway Morris, S. & Robison, R. A. More soft-bodied animals and algae from the Middle Cambrian of Utah and British Columbia. Univ. Kansas. Paleo. Contrib.122, 1–48 (1988).
Nanglu, K., Caron, J. B., Conway Morris, S. & Cameron, C. B. Cambrian suspension-feeding tubicolous hemichordates. BMC Biol.14, 56 (2016). PubMed PMC
Schoenemann, B., Poschmann, M. & Clarkson, E. N. Insights into the 400 million-year-old eyes of giant sea scorpions (Eurypterida) suggest the structure of Palaeozoic compound eyes. Sci. Rep.9, 17797 (2019). PubMed PMC
Bicknell, R. D., Amati, L. & Ortega-Hernández, J. New insights into the evolution of lateral compound eyes in Palaeozoic horseshoe crabs. Zool. J. Linn. Soc.187, 1061–1077 (2019).
Saleh, F. et al. Taphonomic pathway of exceptionally preserved fossils in the Lower Ordovician of Morocco. Geobios60, 99–115 (2020).
Saleh, F. et al. Insights into soft-part preservation from the Early Ordovician Fezouata Biota. Earth Sci. Rev.213, 103464 (2021).
Saleh, F. et al. Taphonomic bias in exceptionally preserved biotas. Earth Planet. Sci. Lett.529, 115873 (2020).
Saleh, F. et al. A novel tool to untangle the ecology and fossil preservation knot in exceptionally preserved biotas. Earth Planet. Sci. Lett.569, 117061 (2021).
Saleh, F. et al. Probability-based preservational variations within the early Cambrian Chengjiang biota (China). PeerJ10, e13869 (2022). PubMed PMC
Saleh, F., Clements, T., Perrier, V., Daley, A. C. & Antcliffe, J. B. Variations in preservation of exceptional fossils within concretions. Swiss J. Palaeontol.142, 20 (2023). PubMed PMC
Whitaker, A. F., Schiffbauer, J. D., Briggs, D. E., Leibach, W. W. & Kimmig, J. Preservation and diagenesis of soft-bodied fossils and the occurrence of phosphate-associated rare earth elements in the Cambrian (Wuliuan) Spence Shale Lagerstätte. Palaeogeogr. Palaeoclimatol. Palaeoecol.592, 110909 (2022).
Vidal, M. Quelques Asaphidae (Trilobita) de la Formation de Saint-Chinian, Ordovicien inférieur, Montagne Noire (France): systématique et paléoenvironnements. Geobios29, 725–744 (1996).
Tortello, M. F., Vizcaïno, D. & Álvaro, J. J. Early Ordovician agnostoid trilobites from the southern Montagne Noire, France. J. Paleontol.80, 477–495 (2006).
Saleh, F. et al. Contrasting Early Ordovician assembly patterns highlight the complex initial stages of the Ordovician Radiation. Sci. Rep.12, 3852 (2022). PubMed PMC
Vizcaïno, D. & Lefebvre, B. Les échinodermes du Paléozoïque inférieur de Montagne Noire: Biostratigraphie et paléodiversité. Geobios32, 353–364 (1999).
Nardin, E.New specimens of Lingulocystis Thoral, 1935 (Eocrinoidea, Blastozoa) from the Arenig (Lower Ordovician) of Montagne Noire (southern France): intraspecific morphological variability, stratigraphic, and palaeoecological implications. Ann. Paléontol.93, 199–214 (2007).
Van Iten, H. & Lefebvre, B. Conulariids from the Lower Ordovician of the southern Montagne Noire, France. Acta Palaeontol. Pol.65, 629–639 (2020).
Fortey, R. A. A critical graptolite correlation into the Lower Ordovician of Gondwana. Proc. Yorks. Geol. Soc.58, 223–226 (2011).
Saleh, F., Lefebvre, B., Martin, E. L., Nohejlová, M. & Spaccesi, L. Skeletal elements controlled soft-tissue preservation in echinoderms from the Early Ordovician Fezouata Biota. Geobios81, 51–66 (2023).
Allaire, N., Lefebvre, B., Martin, E., Nardin, E. & Vaucher, R. in Progress in Echinoderm Palaeobiology (eds Zamora, S. & Rábano, I.) 21–26 (Instituto Geológico y Minero De España, 2015).
Allaire, N. et al. Morphological disparity and systematic revision of the eocrinoid genus Rhopalocystis (Echinodermata, Blastozoa) from the Lower Ordovician of the central Anti-Atlas (Morocco). J. Paleontol.91, 685–714 (2017).
Lefebvre, B. et al. Palaeoecological aspects of the diversification of echinoderms in the Lower Ordovician of central Anti-Atlas, Morocco. Palaeogeogr. Palaeoclimatol. Palaeoecol.460, 97–121 (2016).
Lefebvre, B. et al. Exceptionally preserved soft parts in fossils from the Lower Ordovician of Morocco clarify stylophoran affinities within basal deuterostomes. Geobios52, 27–36 (2019).
Martin, E., Lefebvre, B. & Vaucher, R. in Progress in Echinoderm Palaeobiology (eds Zamora, S. & Rábano, I.) 95–100 (Instituto Geológico y Minero De España, 2015).
Martin, E. L. et al. The Lower Ordovician Fezouata Konservat-Lagerstätte from Morocco: age, environment and evolutionary perspectives. Gondwana Res.34, 274–283 (2016).
Saleh, F., Lefebvre, B., Hunter, A. W. & Nohejlová, M. Fossil weathering and preparation mimic soft tissues in eocrinoid and somasteroid echinoderms from the Lower Ordovician of Morocco. Microsc. Today28, 24–28 (2020).
Hou, X. G., et al. The Cambrian Fossils of Chengjiang, China: the Flowering of Early Animal Life (John Wiley & Sons, 2017).
Van Roy, P., Briggs, D. E. & Gaines, R. R. The Fezouata fossils of Morocco; an extraordinary record of marine life in the Early Ordovician. J. Geol. Soc.172, 541–549 (2015).
Servais, T. et al. No (Cambrian) explosion and no (Ordovician) event: a single long-term radiation in the early Palaeozoic. Palaeogeogr. Palaeoclimatol. Palaeoecol.623, 111592 (2023).
Saleh, F., Antcliffe, J. B., Lustri, L., Daley, A. C. & Gibert, C. Contrasting Cambrian and Ordovician diversity fluctuations could be resolved through a single ecological hypothesis. Lethaia56, 1–13 (2023).
Alabia, I. D. et al. Marine biodiversity refugia in a climate‐sensitive subarctic shelf. Glob. Change Biol.27, 3299–3311 (2021). PubMed
Ashcroft, M. B. Identifying refugia from climate change. J. Biogeogr.37, 1407–1413 (2010).
Stewart, J. R., Lister, A. M., Barnes, I. & Dalén, L. Refugia revisited: individualistic responses of species in space and time. Proc. R. Soc. B277, 661–671 (2010). PubMed PMC
Morelli, T. L. et al. Climate Change refugia and habitat connectivity promote species persistence. Clim. Change Responses4, 8 (2017).
Trotter, J. A., Williams, I. S., Barnes, C. R., Lécuyer, C. & Nicoll, R. S. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. Science321, 550–554 (2008). PubMed
Fortey, R. A., Heward, A. P. & Miller, C. G. Sedimentary facies and trilobite and conodont faunas of the Ordovician Rann Formation, Ras al Khaimah, United Arab Emirates. GeoArabia16, 127–152 (2011).
Ghobaldi Pour, M. G., Vidal, M. & Hosseini-Nezhad, M. An Early Ordovician trilobite assemblage from the Lashkarak Formation, Damghan area, northern Iran. Geobios40, 489–500 (2007).
Ghobadi Pour, M. & Popov, L. E. The Ordovician of the Middle East (Iran, Afghanistan, Pakistan). Geol. Soc. Lond. Spec. Publ.533, 279–312 (2023).
Pillola, G. L. & Vidal, M. Lower Ordovician Trilobites from SE Sardinia (Italy): a new record of the “Taihungshania bioprovince”. Geobios81, 67–84 (2023).
Saleh, F. et al. Large trilobites in a stress-free Early Ordovician environment. Geol. Mag.158, 261–270 (2021).
Laibl, L., Saleh, F. & Pérez-Peris, F. Drifting with trilobites: the invasion of early post-embryonic trilobite stages to the pelagic realm. Palaeogeogr. Palaeoclimatol. Palaeoecol.613, 111403 (2023).
Laibl, L. et al. Babies from the Fezouata Biota: early developmental trilobite stages and their adaptation to high latitudes. Geobios81, 31–50 (2023).
Martin, E. L. et al. Biostratigraphic and palaeoenvironmental controls on the trilobite associations from the Lower Ordovician Fezouata Shale of the central Anti-Atlas, Morocco. Palaeogeogr. Palaeoclimatol. Palaeoecol.460, 142–154 (2016).
Colmenar, J., Villas, E. & Vizcaino, D. Upper Ordovician brachiopods from the Montagne Noire (France): endemic Gondwanan predecessors of Prehirnantian low-latitude immigrants. Bull. Geosci.88, 153–174 (2013).
Álvaro, J. J., Colmenar, J., Monceret, E., Pouclet, A. & Vizcaïno, D. Late Ordovician (post-Sardic) rifting branches in the North Gondwanan Montagne Noire and Mouthoumet massifs of southern France. Tectonophysics681, 111–123 (2016).
Ballèvre, M., Bosse, V., Ducassou, C. & Pitra, P. Palaeozoic history of the Armorican Massif: models for the tectonic evolution of the suture zones. C.R. Geosci.341, 174–201 (2009).
Catalan, J. R. M., Schulmann, K. & Ghienne, J. F. The Mid-Variscan Allochthon: keys from correlation, partial retrodeformation and plate-tectonic reconstruction to unlock the geometry of a non-cylindrical belt. Earth Sci. Rev.220, 103700 (2021).
Caroff, M. et al. Relations between basalts and adakitic–felsic intrusive bodies in a soft-substrate environment: the South Ouessant Visean basin in the Variscan belt, Armorican Massif, France. Can. J. Earch Sci.53, 441–456 (2016).
Smetacek, V. & Nicol, S. Polar ocean ecosystems in a changing world. Nature437, 362–368 (2005). PubMed
Downey, R. V., Griffiths, H. J., Linse, K. & Janussen, D. Diversity and distribution patterns in high southern latitude sponges. PLoS ONE7, e41672 (2012). PubMed PMC
Michel, C. in Arctic Biodiversity Assessment: Status and Trends in Biodiversity (eds Meltofte, H., Josefson, A.B. & Payer, D.) Ch. 14, 487–527 (Arctic Council, 2013).
Stratmann, T. et al. Habitat types and megabenthos composition from three sponge-dominated high-Arctic seamounts. Sci. Rep.12, 20610 (2022). PubMed PMC
Karsten, U. et al. Physiological responses of polar benthic algae to ultraviolet radiation. Botanica Marina52, 639–654 (2009).
Dayton, P. K., Robilliard, G. A., Paine, R. T. & Dayton, L. B. Biological accommodation in the benthic community at McMurdo Sound, Antarctica. Ecol. Monogr.44, 105–128 (1974).
McClintock, J. B., Amsler, C. D., Baker, B. J. & Van Soest, R. W. Ecology of Antarctic marine sponges: an overview. Integr. Comp. Biol.45, 359–368 (2005). PubMed
Matheson, P. & McGaughran, A. How might climate change affect adaptive responses of polar arthropods? Diversity15, 47 (2022).
Saleh, F. et al. New fossil assemblages from the Early Ordovician Fezouata biota. Sci. Rep.12, 20773 (2022). PubMed PMC
Laibl, L. et al. Early developmental stages of a Lower Ordovician marrellid from Morocco suggest simple ontogenetic niche differentiation in early euarthropods. Front. Ecol. Evol.11, 1232612 (2023).
Potin, G. J. M., Gueriau, P. & Daley, A. C. Radiodont frontal appendages from the Fezouata Biota (Morocco) reveal high diversity and ecological adaptations to suspension-feeding during the Early Ordovician. Front. Ecol. Evol.11, 1214109 (2023).
Orejas, C., Gili, J., López-González, P. J. & Arntz, W. Feeding strategies and diet composition of four Antarctic cnidarian species. Polar Biol.24, 620–627 (2021).
O’Loughlin, P. M., Paulay, G., Davey, N. & Michonneau, F. The Antarctic region as a marine biodiversity hotspot for echinoderms: diversity and diversification of sea cucumbers. Deep Sea Res. Part II Top. Stud. Oceanogr.58, 264–275 (2011).
Smirnov, A. V. in Echinoderms Through Time (eds David, B., Guille, A., Feral, J. P. & Roux, M.) 135–143 (CRC Press, 1994).
Stöhr, S., O’Hara, T. D. & Thuy, B. Global diversity of brittle stars (Echinodermata: Ophiuroidea). PLoS ONE7, e31940 (2012). PubMed PMC
Botting, J. P. et al. Flourishing sponge-based ecosystems after the end-Ordovician mass extinction. Curr. Biol.27, 556–562 (2017). PubMed
Solé, V. A., Papillon, E., Cotte, M., Walter, P. & Susini, J. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim. Acta Part B62, 63–68 (2007).
Scotese, C. R. Ordovician plate tectonic and palaeogeographical maps. Geol. Soc. Lond. Spec. Publ.532, 91–109 (2023).
Cocks, L. R. M. & Torsvik, T. H. Ordovician palaeogeography and climate change. Gondwana Res.100, 53–72 (2021).
Reply to: The Cabrières Biota is not a Konservat-Lagerstätte
Highly resolved taphonomic variations within the Early Ordovician Fezouata Biota