The Oncogenic Lipid Sphingosine-1-Phosphate Impedes the Phagocytosis of Tumor Cells by M1 Macrophages in Diffuse Large B Cell Lymphoma
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
28028
Cancer Research UK - United Kingdom
No. 13045
Blood Cancer UK - United Kingdom
PubMed
38339325
PubMed Central
PMC10854869
DOI
10.3390/cancers16030574
PII: cancers16030574
Knihovny.cz E-zdroje
- Klíčová slova
- CD20 monoclonal antibodies, DLBCL, S1P, S1PR1, SPHK1, macrophages, ofatumumab, phagocytosis, rituximab,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: A total of 30-40% of diffuse large B cell lymphoma (DLBCL) patients will either not respond to the standard therapy or their disease will recur. The first-line treatment for DLBCL is rituximab and combination chemotherapy. This treatment involves the chemotherapy-induced recruitment of tumor-associated macrophages that recognize and kill rituximab-opsonized DLBCL cells. However, we lack insights into the factors responsible for the recruitment and functionality of macrophages in DLBCL tumors. METHODS: We have studied the effects of the immunomodulatory lipid sphingosine-1-phosphate (S1P) on macrophage activity in DLBCL, both in vitro and in animal models. RESULTS: We show that tumor-derived S1P mediates the chemoattraction of both monocytes and macrophages in vitro and in animal models, an effect that is dependent upon the S1P receptor S1PR1. However, S1P inhibited M1 macrophage-mediated phagocytosis of DLBCL tumor cells opsonized with the CD20 monoclonal antibodies rituximab and ofatumumab, an effect that could be reversed by an S1PR1 inhibitor. CONCLUSIONS: Our data show that S1P signaling can modulate macrophage recruitment and tumor cell killing by anti-CD20 monoclonal antibodies in DLBCL. The administration of S1PR1 inhibitors could enhance the phagocytosis of tumor cells and improve outcomes for patients.
Institute of Cancer and Genomic Sciences University of Birmingham Birmingham B15 2TT UK
Institute of Immunology and Immunotherapy University of Birmingham Birmingham B15 2TT UK
Royal College of Surgeons in Ireland Medical University of Bahrain Manama P O Box 15503 Bahrain
Zobrazit více v PubMed
Coiffier B., Sarkozy C. Diffuse large B-cell lymphoma: R-CHOP failure-what to do? Hematol. Am. Soc. Hematol. Educ. Program. 2016;2016:366–378. doi: 10.1182/asheducation-2016.1.366. PubMed DOI PMC
Thieblemont C., Coiffier B. Combination of chemotherapy and monoclonal antibodies for the treatment of lymphoma. Int. J. Hematol. 2002;76:394–400. doi: 10.1007/BF02982804. PubMed DOI
Coiffier B., Lepage E., Briere J., Herbrecht R., Tilly H., Bouabdallah R., Morel P., Van Den Neste E., Salles G., Gaulard P., et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N. Engl. J. Med. 2002;346:235–242. doi: 10.1056/NEJMoa011795. PubMed DOI
Coiffier B. Treatment paradigms in aggressive non-Hodgkin’s lymphoma in elderly patients. Clin. Lymphoma. 2002;3((Suppl. S1)):S12–S18. doi: 10.3816/CLM.2002.s.010. PubMed DOI
Tavakkoli M., Barta S.K. 2024 Update: Advances in the risk stratification and management of large B-cell lymphoma. Am. J. Hematol. 2023;98:1791–1805. doi: 10.1002/ajh.27075. PubMed DOI
Poletto S., Novo M., Paruzzo L., Frascione P.M.M., Vitolo U. Treatment strategies for patients with diffuse large B-cell lymphoma. Cancer Treat. Rev. 2022;110:102443. doi: 10.1016/j.ctrv.2022.102443. PubMed DOI
Swerdlow S.H., Campo E., Pileri S.A., Harris N.L., Stein H., Siebert R., Advani R., Ghielmini M., Salles G.A., Zelenetz A.D., et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127:2375–2390. doi: 10.1182/blood-2016-01-643569. PubMed DOI PMC
Scott D.W., Gascoyne R.D. The tumour microenvironment in B cell lymphomas. Nat. Rev. Cancer. 2014;14:517–534. doi: 10.1038/nrc3774. PubMed DOI
Ye X., Wang L., Nie M., Wang Y., Dong S., Ren W., Li G., Li Z.M., Wu K., Pan-Hammarstrom Q. A single-cell atlas of diffuse large B cell lymphoma. Cell Rep. 2022;39:110713. doi: 10.1016/j.celrep.2022.110713. PubMed DOI
Steen C.B., Luca B.A., Esfahani M.S., Azizi A., Sworder B.J., Nabet B.Y., Kurtz D.M., Liu C.L., Khameneh F., Advani R.H., et al. The landscape of tumor cell states and ecosystems in diffuse large B cell lymphoma. Cancer Cell. 2021;39:1422–1437.e1410. doi: 10.1016/j.ccell.2021.08.011. PubMed DOI PMC
Lenz G., Wright G., Dave S.S., Xiao W., Powell J., Zhao H., Xu W., Tan B., Goldschmidt N., Iqbal J., et al. Stromal gene signatures in large-B-cell lymphomas. N. Engl. J. Med. 2008;359:2313–2323. doi: 10.1056/NEJMoa0802885. PubMed DOI PMC
Riihijarvi S., Fiskvik I., Taskinen M., Vajavaara H., Tikkala M., Yri O., Karjalainen-Lindsberg M.L., Delabie J., Smeland E., Holte H., et al. Prognostic influence of macrophages in patients with diffuse large B-cell lymphoma: A correlative study from a Nordic phase II trial. Haematologica. 2015;100:238–245. doi: 10.3324/haematol.2014.113472. PubMed DOI PMC
Cai Q.C., Liao H., Lin S.X., Xia Y., Wang X.X., Gao Y., Lin Z.X., Lu J.B., Huang H.Q. High expression of tumor-infiltrating macrophages correlates with poor prognosis in patients with diffuse large B-cell lymphoma. Med. Oncol. 2012;29:2317–2322. doi: 10.1007/s12032-011-0123-6. PubMed DOI
Nam S.J., Kim S., Paik J.H., Kim T.M., Heo D.S., Kim C.W., Jeon Y.K. An increase in indoleamine 2,3-dioxygenase-positive cells in the tumor microenvironment predicts favorable prognosis in patients with diffuse large B-cell lymphoma treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone. Leuk. Lymphoma. 2016;57:1956–1960. doi: 10.3109/10428194.2015.1117610. PubMed DOI
Kridel R., Steidl C., Gascoyne R.D. Tumor-associated macrophages in diffuse large B-cell lymphoma. Haematologica. 2015;100:143–145. doi: 10.3324/haematol.2015.124008. PubMed DOI PMC
Taskinen M., Karjalainen-Lindsberg M.L., Nyman H., Eerola L.M., Leppa S. A high tumor-associated macrophage content predicts favorable outcome in follicular lymphoma patients treated with rituximab and cyclophosphamide-doxorubicin-vincristine-prednisone. Clin. Cancer Res. 2007;13:5784–5789. doi: 10.1158/1078-0432.CCR-07-0778. PubMed DOI
Canioni D., Salles G., Mounier N., Brousse N., Keuppens M., Morchhauser F., Lamy T., Sonet A., Rousselet M.C., Foussard C., et al. High numbers of tumor-associated macrophages have an adverse prognostic value that can be circumvented by rituximab in patients with follicular lymphoma enrolled onto the GELA-GOELAMS FL-2000 trial. J. Clin. Oncol. 2008;26:440–446. doi: 10.1200/JCO.2007.12.8298. PubMed DOI
Glennie M.J., French R.R., Cragg M.S., Taylor R.P. Mechanisms of killing by anti-CD20 monoclonal antibodies. Mol. Immunol. 2007;44:3823–3837. doi: 10.1016/j.molimm.2007.06.151. PubMed DOI
Minard-Colin V., Xiu Y., Poe J.C., Horikawa M., Magro C.M., Hamaguchi Y., Haas K.M., Tedder T.F. Lymphoma depletion during CD20 immunotherapy in mice is mediated by macrophage FcgammaRI, FcgammaRIII, and FcgammaRIV. Blood. 2008;112:1205–1213. doi: 10.1182/blood-2008-01-135160. PubMed DOI PMC
Mellor J.D., Brown M.P., Irving H.R., Zalcberg J.R., Dobrovic A. A critical review of the role of Fc gamma receptor polymorphisms in the response to monoclonal antibodies in cancer. J. Hematol. Oncol. 2013;6:1. doi: 10.1186/1756-8722-6-1. PubMed DOI PMC
Adams D.R., Pyne S., Pyne N.J. Sphingosine Kinases: Emerging Structure-Function Insights. Trends Biochem. Sci. 2016;41:395–409. doi: 10.1016/j.tibs.2016.02.007. PubMed DOI
Wang X., Sun Y., Peng X., Naqvi S., Yang Y., Zhang J., Chen M., Chen Y., Chen H., Yan H., et al. The Tumorigenic Effect of Sphingosine Kinase 1 and Its Potential Therapeutic Target. Cancer Control. 2020;27:1073274820976664. doi: 10.1177/1073274820976664. PubMed DOI PMC
Takabe K., Kim R.H., Allegood J.C., Mitra P., Ramachandran S., Nagahashi M., Harikumar K.B., Hait N.C., Milstien S., Spiegel S. Estradiol induces export of sphingosine 1-phosphate from breast cancer cells via ABCC1 and ABCG2. J. Biol. Chem. 2010;285:10477–10486. doi: 10.1074/jbc.M109.064162. PubMed DOI PMC
Kawahara A., Nishi T., Hisano Y., Fukui H., Yamaguchi A., Mochizuki N. The sphingolipid transporter spns2 functions in migration of zebrafish myocardial precursors. Science. 2009;323:524–527. doi: 10.1126/science.1167449. PubMed DOI
Rivera J., Proia R.L., Olivera A. The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat. Rev. Immunol. 2008;8:753–763. doi: 10.1038/nri2400. PubMed DOI PMC
Blaho V.A., Hla T. An update on the biology of sphingosine 1-phosphate receptors. J. Lipid Res. 2014;55:1596–1608. doi: 10.1194/jlr.R046300. PubMed DOI PMC
Anu B., Namitha N.N., Harikumar K.B. S1PR1 signaling in cancer: A current perspective. Adv. Protein Chem. Struct. Biol. 2021;125:259–274. PubMed
Aoki M., Aoki H., Ramanathan R., Hait N.C., Takabe K. Sphingosine-1-Phosphate Signaling in Immune Cells and Inflammation: Roles and Therapeutic Potential. Mediat. Inflamm. 2016;2016:8606878. PubMed PMC
Hla T., Venkataraman K., Michaud J. The vascular S1P gradient-cellular sources and biological significance. Biochim. Biophys. Acta. 2008;1781:477–482. doi: 10.1016/j.bbalip.2008.07.003. PubMed DOI PMC
Weigert A., Olesch C., Brune B. Sphingosine-1-Phosphate and Macrophage Biology-How the Sphinx Tames the Big Eater. Front. Immunol. 2019;10:1706. doi: 10.3389/fimmu.2019.01706. PubMed DOI PMC
Tsuchida J., Nagahashi M., Nakajima M., Moro K., Tatsuda K., Ramanathan R., Takabe K., Wakai T. Breast cancer sphingosine-1-phosphate is associated with phospho-sphingosine kinase 1 and lymphatic metastasis. J. Surg. Res. 2016;205:85–94. doi: 10.1016/j.jss.2016.06.022. PubMed DOI PMC
Nagahashi M., Tsuchida J., Moro K., Hasegawa M., Tatsuda K., Woelfel I.A., Takabe K., Wakai T. High levels of sphingolipids in human breast cancer. J. Surg. Res. 2016;204:435–444. doi: 10.1016/j.jss.2016.05.022. PubMed DOI PMC
Pyne N.J., Pyne S. Sphingosine 1-phosphate and cancer. Nat. Rev. Cancer. 2010;10:489–503. doi: 10.1038/nrc2875. PubMed DOI
Pyne N.J., Tonelli F., Lim K.G., Long J.S., Edwards J., Pyne S. Sphingosine 1-phosphate signalling in cancer. Biochem. Soc. Trans. 2012;40:94–100. doi: 10.1042/BST20110602. PubMed DOI
Maceyka M., Harikumar K.B., Milstien S., Spiegel S. Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol. 2012;22:50–60. doi: 10.1016/j.tcb.2011.09.003. PubMed DOI PMC
Sukocheva O.A., Furuya H., Ng M.L., Friedemann M., Menschikowski M., Tarasov V.V., Chubarev V.N., Klochkov S.G., Neganova M.E., Mangoni A.A., et al. Sphingosine kinase and sphingosine-1-phosphate receptor signaling pathway in inflammatory gastrointestinal disease and cancers: A novel therapeutic target. Pharmacol. Ther. 2020;207:107464. doi: 10.1016/j.pharmthera.2019.107464. PubMed DOI
Li W., Cai H., Ren L., Yang Y., Yang H., Liu J., Li S., Zhang Y., Zheng X., Tan W., et al. Sphingosine kinase 1 promotes growth of glioblastoma by increasing inflammation mediated by the NF-kappaB /IL-6/STAT3 and JNK/PTX3 pathways. Acta Pharm. Sin. B. 2022;12:4390–4406. doi: 10.1016/j.apsb.2022.09.012. PubMed DOI PMC
Kluk M.J., Ryan K.P., Wang B., Zhang G., Rodig S.J., Sanchez T. Sphingosine-1-phosphate receptor 1 in classical Hodgkin lymphoma: Assessment of expression and role in cell migration. Lab. Investig. 2013;93:462–471. doi: 10.1038/labinvest.2013.7. PubMed DOI PMC
Vockerodt M., Vrzalikova K., Ibrahim M., Nagy E., Margielewska S., Hollows R., Lupino L., Tooze R., Care M., Simmons W., et al. Regulation of S1PR2 by the EBV oncogene LMP1 in aggressive ABC subtype diffuse large B cell lymphoma. J. Pathol. 2019;248:142–154. doi: 10.1002/path.5237. PubMed DOI
Vrzalikova K., Ibrahim M., Vockerodt M., Perry T., Margielewska S., Lupino L., Nagy E., Soilleux E., Liebelt D., Hollows R., et al. S1PR1 drives a feedforward signalling loop to regulate BATF3 and the transcriptional programme of Hodgkin lymphoma cells. Leukemia. 2018;32:214–223. doi: 10.1038/leu.2017.275. PubMed DOI PMC
Liu Y., Deng J., Wang L., Lee H., Armstrong B., Scuto A., Kowolik C., Weiss L.M., Forman S., Yu H. S1PR1 is an effective target to block STAT3 signaling in activated B cell-like diffuse large B-cell lymphoma. Blood. 2012;120:1458–1465. doi: 10.1182/blood-2011-12-399030. PubMed DOI PMC
Flori M., Schmid C.A., Sumrall E.T., Tzankov A., Law C.W., Robinson M.D., Muller A. The hematopoietic oncoprotein FOXP1 promotes tumor cell survival in diffuse large B-cell lymphoma by repressing S1PR2 signaling. Blood. 2016;127:1438–1448. doi: 10.1182/blood-2015-08-662635. PubMed DOI
Stelling A., Hashwah H., Bertram K., Manz M.G., Tzankov A., Muller A. The tumor suppressive TGF-beta/SMAD1/S1PR2 signaling axis is recurrently inactivated in diffuse large B-cell lymphoma. Blood. 2018;131:2235–2246. doi: 10.1182/blood-2017-10-810630. PubMed DOI
Lupino L., Perry T., Margielewska S., Hollows R., Ibrahim M., Care M., Allegood J., Tooze R., Sabbadini R., Reynolds G., et al. Sphingosine-1-phosphate signalling drives an angiogenic transcriptional programme in diffuse large B cell lymphoma. Leukemia. 2019;33:2884–2897. doi: 10.1038/s41375-019-0478-9. PubMed DOI PMC
Wang X., Guo W., Shi X., Chen Y., Yu Y., Du B., Tan M., Tong L., Wang A., Yin X., et al. S1PR1/S1PR3-YAP signaling and S1P-ALOX15 signaling contribute to an aggressive behavior in obesity-lymphoma. J. Exp. Clin. Cancer Res. 2023;42:3. doi: 10.1186/s13046-022-02589-7. PubMed DOI PMC
Huang Y., Mao K., Chen X., Sun M.A., Kawabe T., Li W., Usher N., Zhu J., Urban J.F., Jr., Paul W.E., et al. S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science. 2018;359:114–119. doi: 10.1126/science.aam5809. PubMed DOI PMC
Verstockt B., Vetrano S., Salas A., Nayeri S., Duijvestein M., Vande Casteele N., Alimentiv Translational Research C. Sphingosine 1-phosphate modulation and immune cell trafficking in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2022;19:351–366. doi: 10.1038/s41575-021-00574-7. PubMed DOI
Hutami I.R., Izawa T., Khurel-Ochir T., Sakamaki T., Iwasa A., Tanaka E. Macrophage Motility in Wound Healing Is Regulated by HIF-1alpha via S1P Signaling. Int. J. Mol. Sci. 2021;22:8992. doi: 10.3390/ijms22168992. PubMed DOI PMC
Singer I.I., Tian M., Wickham L.A., Lin J., Matheravidathu S.S., Forrest M.J., Mandala S., Quackenbush E.J. Sphingosine-1-phosphate agonists increase macrophage homing, lymphocyte contacts, and endothelial junctional complex formation in murine lymph nodes. J. Immunol. 2005;175:7151–7161. doi: 10.4049/jimmunol.175.11.7151. PubMed DOI
Reddy A., Zhang J., Davis N.S., Moffitt A.B., Love C.L., Waldrop A., Leppa S., Pasanen A., Meriranta L., Karjalainen-Lindsberg M.L., et al. Genetic and Functional Drivers of Diffuse Large B Cell Lymphoma. Cell. 2017;171:481–494.e415. doi: 10.1016/j.cell.2017.09.027. PubMed DOI PMC
Liao Y., Smyth G.K., Shi W. The Subread aligner: Fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 2013;41:e108. doi: 10.1093/nar/gkt214. PubMed DOI PMC
Robinson M.D., McCarthy D.J., Smyth G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC
Morin R.D., Mendez-Lago M., Mungall A.J., Goya R., Mungall K.L., Corbett R.D., Johnson N.A., Severson T.M., Chiu R., Field M., et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature. 2011;476:298–303. doi: 10.1038/nature10351. PubMed DOI PMC
Morin R.D., Johnson N.A., Severson T.M., Mungall A.J., An J., Goya R., Paul J.E., Boyle M., Woolcock B.W., Kuchenbauer F., et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat. Genet. 2010;42:181–185. doi: 10.1038/ng.518. PubMed DOI PMC
Care M.A., Westhead D.R., Tooze R.M. Gene expression meta-analysis reveals immune response convergence on the IFNgamma-STAT1-IRF1 axis and adaptive immune resistance mechanisms in lymphoma. Genome Med. 2015;7:96. doi: 10.1186/s13073-015-0218-3. PubMed DOI PMC
Doig T.N. Tumour Associated Macrophages in Diffuse Large B Cell Lymphoma. Edinburgh Medical School, University of Edinburgh; Edinburgh, Scotland: 2016.
Gude D.R., Alvarez S.E., Paugh S.W., Mitra P., Yu J., Griffiths R., Barbour S.E., Milstien S., Spiegel S. Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a “come-and-get-me” signal. FASEB J. 2008;22:2629–2638. doi: 10.1096/fj.08-107169. PubMed DOI PMC
Matloubian M., Lo C.G., Cinamon G., Lesneski M.J., Xu Y., Brinkmann V., Allende M.L., Proia R.L., Cyster J.G. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature. 2004;427:355–360. doi: 10.1038/nature02284. PubMed DOI
Michaud J., Im D.S., Hla T. Inhibitory role of sphingosine 1-phosphate receptor 2 in macrophage recruitment during inflammation. J. Immunol. 2010;184:1475–1483. doi: 10.4049/jimmunol.0901586. PubMed DOI PMC
Kappos L., Bar-Or A., Cree B.A.C., Fox R.J., Giovannoni G., Gold R., Vermersch P., Arnold D.L., Arnould S., Scherz T., et al. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): A double-blind, randomised, phase 3 study. Lancet. 2018;391:1263–1273. doi: 10.1016/S0140-6736(18)30475-6. PubMed DOI
Lewis N.D., Haxhinasto S.A., Anderson S.M., Stefanopoulos D.E., Fogal S.E., Adusumalli P., Desai S.N., Patnaude L.A., Lukas S.M., Ryan K.R., et al. Circulating monocytes are reduced by sphingosine-1-phosphate receptor modulators independently of S1P3. J. Immunol. 2013;190:3533–3540. doi: 10.4049/jimmunol.1201810. PubMed DOI
Ianniello A., Pozzilli C. Ponesimod to treat multiple sclerosis. Drugs Today. 2021;57:745–758. doi: 10.1358/dot.2021.57.12.3353166. PubMed DOI
Golay J., Introna M. Mechanism of action of therapeutic monoclonal antibodies: Promises and pitfalls of in vitro and in vivo assays. Arch. Biochem. Biophys. 2012;526:146–153. doi: 10.1016/j.abb.2012.02.011. PubMed DOI
Gul N., van Egmond M. Antibody-Dependent Phagocytosis of Tumor Cells by Macrophages: A Potent Effector Mechanism of Monoclonal Antibody Therapy of Cancer. Cancer Res. 2015;75:5008–5013. doi: 10.1158/0008-5472.CAN-15-1330. PubMed DOI
Manfroi B., De Grandis M., Moreaux J., Tabruyn S., Mayol J.F., Quintero M., Righini C., Sturm N., Aurrand-Lions M., Huard B. The microenvironment of DLBCL is characterized by noncanonical macrophages recruited by tumor-derived CCL5. Blood Adv. 2021;5:4338–4351. doi: 10.1182/bloodadvances.2021004203. PubMed DOI PMC
Pham L.V., Pogue E., Ford R.J. The Role of Macrophage/B-Cell Interactions in the Pathophysiology of B-Cell Lymphomas. Front. Oncol. 2018;8:147. doi: 10.3389/fonc.2018.00147. PubMed DOI PMC
Al-Jarallah A., Chen X., Gonzalez L., Trigatti B.L. High density lipoprotein stimulated migration of macrophages depends on the scavenger receptor class B, type I, PDZK1 and Akt1 and is blocked by sphingosine 1 phosphate receptor antagonists. PLoS ONE. 2014;9:e106487. doi: 10.1371/journal.pone.0106487. PubMed DOI PMC
Liao C.Y., Song M.J., Gao Y., Mauer A.S., Revzin A., Malhi H. Hepatocyte-Derived Lipotoxic Extracellular Vesicle Sphingosine 1-Phosphate Induces Macrophage Chemotaxis. Front. Immunol. 2018;9:2980. doi: 10.3389/fimmu.2018.02980. PubMed DOI PMC
Weichand B., Weis N., Weigert A., Grossmann N., Levkau B., Brune B. Apoptotic cells enhance sphingosine-1-phosphate receptor 1 dependent macrophage migration. Eur. J. Immunol. 2013;43:3306–3313. doi: 10.1002/eji.201343441. PubMed DOI
Uchida J., Hamaguchi Y., Oliver J.A., Ravetch J.V., Poe J.C., Haas K.M., Tedder T.F. The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor-dependent mechanisms during anti-CD20 antibody immunotherapy. J. Exp. Med. 2004;199:1659–1669. doi: 10.1084/jem.20040119. PubMed DOI PMC
Montalvao F., Garcia Z., Celli S., Breart B., Deguine J., Van Rooijen N., Bousso P. The mechanism of anti-CD20-mediated B cell depletion revealed by intravital imaging. J. Clin. Investig. 2013;123:5098–5103. doi: 10.1172/JCI70972. PubMed DOI PMC
Gul N., Babes L., Siegmund K., Korthouwer R., Bogels M., Braster R., Vidarsson G., ten Hagen T.L., Kubes P., van Egmond M. Macrophages eliminate circulating tumor cells after monoclonal antibody therapy. J. Clin. Investig. 2014;124:812–823. doi: 10.1172/JCI66776. PubMed DOI PMC
Weiskopf K., Weissman I.L. Macrophages are critical effectors of antibody therapies for cancer. MAbs. 2015;7:303–310. doi: 10.1080/19420862.2015.1011450. PubMed DOI PMC
Grandjean C.L., Montalvao F., Celli S., Michonneau D., Breart B., Garcia Z., Perro M., Freytag O., Gerdes C.A., Bousso P. Intravital imaging reveals improved Kupffer cell-mediated phagocytosis as a mode of action of glycoengineered anti-CD20 antibodies. Sci. Rep. 2016;6:34382. doi: 10.1038/srep34382. PubMed DOI PMC
Church A.K., VanDerMeid K.R., Baig N.A., Baran A.M., Witzig T.E., Nowakowski G.S., Zent C.S. Anti-CD20 monoclonal antibody-dependent phagocytosis of chronic lymphocytic leukaemia cells by autologous macrophages. Clin. Exp. Immunol. 2016;183:90–101. doi: 10.1111/cei.12697. PubMed DOI PMC
Wright K.T., Weirather J.L., Jiang S., Kao K.Z., Sigal Y., Giobbie-Hurder A., Shipp M.A., Rodig S.J. Diffuse large B-cell lymphomas have spatially defined, tumor immune microenvironments revealed by high-parameter imaging. Blood Adv. 2023;7:4633–4646. doi: 10.1182/bloodadvances.2023009813. PubMed DOI PMC
Wiendl H., Gold R., Berger T., Derfuss T., Linker R., Maurer M., Aktas O., Baum K., Berghoff M., Bittner S., et al. Multiple Sclerosis Therapy Consensus Group (MSTCG): Position statement on disease-modifying therapies for multiple sclerosis (white paper) Ther. Adv. Neurol. Disord. 2021;14:17562864211039648. doi: 10.1177/17562864211039648. PubMed DOI PMC
Cao L., Li M., Yao L., Yan P., Wang X., Yang Z., Lao Y., Li H., Yang K., Li K. Siponimod for multiple sclerosis. Cochrane Database Syst. Rev. 2021;11:CD013647. PubMed PMC
Bravo G.A., Cedeno R.R., Casadevall M.P., Ramio-Torrenta L. Sphingosine-1-Phosphate (S1P) and S1P Signaling Pathway Modulators, from Current Insights to Future Perspectives. Cells. 2022;11:2058. doi: 10.3390/cells11132058. PubMed DOI PMC
Dumitrescu L., Papathanasiou A., Coclitu C., Garjani A., Evangelou N., Constantinescu C.S., Popescu B.O., Tanasescu R. An update on the use of sphingosine 1-phosphate receptor modulators for the treatment of relapsing multiple sclerosis. Expert. Opin. Pharmacother. 2023;24:495–509. doi: 10.1080/14656566.2023.2178898. PubMed DOI PMC