Cross-Modal Imaging Reveals Nanoparticle Uptake Dynamics in Hematopoietic Bone Marrow during Inflammation

. 2024 Mar 05 ; 18 (9) : 7098-7113. [epub] 20240211

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38343099

Nanoparticles have been employed to elucidate the innate immune cell biology and trace cells accumulating at inflammation sites. Inflammation prompts innate immune cells, the initial responders, to undergo rapid turnover and replenishment within the hematopoietic bone marrow. Yet, we currently lack a precise understanding of how inflammation affects cellular nanoparticle uptake at the level of progenitors of innate immune cells in the hematopoietic marrow. To bridge this gap, we aimed to develop imaging tools to explore the uptake dynamics of fluorescently labeled cross-linked iron oxide nanoparticles in the bone marrow niche under varying degrees of inflammation. The inflammatory models included mice that received intramuscular lipopolysaccharide injections to induce moderate inflammation and streptozotocin-induced diabetic mice with additional intramuscular lipopolysaccharide injections to intensify inflammation. In vivo magnetic resonance imaging (MRI) and fluorescence imaging revealed an elevated level of nanoparticle uptake at the bone marrow as the levels of inflammation increased. The heightened uptake of nanoparticles within the inflamed marrow was attributed to enhanced permeability and retention with increased nanoparticle intake by hematopoietic progenitor cells. Moreover, intravital microscopy showed increased colocalization of nanoparticles within slowly patrolling monocytes in these inflamed hematopoietic marrow niches. Our discoveries unveil a previously unknown role of the inflamed hematopoietic marrow in enhanced storage and rapid deployment of nanoparticles, which can specifically target innate immune cells at their production site during inflammation. These insights underscore the critical function of the hematopoietic bone marrow in distributing iron nanoparticles to innate immune cells during inflammation. Our findings offer diagnostic and prognostic value, identifying the hematopoietic bone marrow as an imaging biomarker for early detection in inflammation imaging, advancing personalized clinical care.

Zobrazit více v PubMed

Kirschbaum K.; Sonner J. K.; Zeller M. W.; Deumelandt K.; Bode J.; Sharma R.; Kruwel T.; Fischer M.; Hoffmann A.; Costa da Silva M.; et al. In Vivo Nanoparticle Imaging of Innate Immune Cells Can Serve as a Marker of Disease Severity in a Model of Multiple Sclerosis. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (46), 13227–13232. 10.1073/pnas.1609397113. PubMed DOI PMC

Moon H.; Park H. E.; Kang J.; Lee H.; Cheong C.; Lim Y. T.; Ihm S. H.; Seung K. B.; Jaffer F. A.; Narula J.; Chang K.; Hong K. S. Noninvasive Assessment of Myocardial Inflammation by Cardiovascular Magnetic Resonance in a Rat Model of Experimental Autoimmune Myocarditis. Circulation 2012, 125 (21), 2603–2612. 10.1161/CIRCULATIONAHA.111.075283. PubMed DOI

Daldrup-Link H. E.; Golovko D.; Ruffell B.; DeNardo D. G.; Castaneda R.; Ansari C.; Rao J.; Tikhomirov G. A.; Wendland M. F.; Corot C.; Coussens L. M. MRI of Tumor-Associated Macrophages with Clinically Applicable Iron Oxide Nanoparticles. Clin. Cancer Res. 2011, 17 (17), 5695–5704. 10.1158/1078-0432.CCR-10-3420. PubMed DOI PMC

Yilmaz A.; Dengler M. A.; Van Der Kuip H.; Yildiz H.; Rösch S.; Klumpp S.; Klingel K.; Kandolf R.; Helluy X.; Hiller K. H.; Jakob P. M.; Sechtem U. Imaging of Myocardial Infarction Using Ultrasmall Superparamagnetic Iron Oxide Nanoparticles: A Human Study Using a Multi-Parametric Cardiovascular Magnetic Resonance Imaging Approach. Eur. Heart J. 2013, 34 (6), 462–475. 10.1093/eurheartj/ehs366. PubMed DOI

Montet-Abou K.; Daire J. L.; Hyacinthe J. N.; Jorge-Costa M.; Grosdemange K.; MacH F.; Petri-Fink A.; Hofmann H.; Morel D. R.; Vallée J. P.; Montet X. In Vivo Labelling of Resting Monocytes in the Reticuloendothelial System with Fluorescent Iron Oxide Nanoparticles Prior to Injury Reveals That They Are Mobilized to Infarcted Myocardium. Eur. Heart J. 2010, 31 (11), 1410–1420. 10.1093/eurheartj/ehp547. PubMed DOI

Furman D.; Campisi J.; Verdin E.; Carrera-Bastos P.; Targ S.; Franceschi C.; Ferrucci L.; Gilroy D. W.; Fasano A.; Miller G. W.; Miller A. H.; Mantovani A.; Weyand C. M.; Barzilai N.; Goronzy J. J.; Rando T. A.; Effros R. B.; Lucia A.; Kleinstreuer N.; Slavich G. M. Chronic Inflammation in the Etiology of Disease across the Life Span. Nat. Med. 2019, 25 (12), 1822–1832. 10.1038/s41591-019-0675-0. PubMed DOI PMC

Swirski F. K.; Nahrendorf M.; Etzrodt M.; Wildgruber M.; Cortez-Retamozo V.; Panizzi P.; Figueiredo J. L.; Kohler R. H.; Chudnovskiy A.; Waterman P.; Aikawa E.; Mempel T. R.; Libby P.; Weissleder R.; Pittet M. J. Identification of Splenic Reservoir Monocytes and Their Deployment to Inflammatory Sites. Science (80-.). 2009, 325 (5940), 612–616. 10.1126/science.1175202. PubMed DOI PMC

Shi C.; Pamer E. G. Monocyte Recruitment during Infection and Inflammation. Nat. Rev. Immunol. 2011, 11 (11), 762–774. 10.1038/nri3070. PubMed DOI PMC

Vandoorne K.; Rohde D.; Kim H. Y.; Courties G.; Wojtkiewicz G.; Honold L.; Hoyer F. F.; Frodermann V.; Nayar R.; Herisson F.; Jung Y.; Désogère P. A.; Vinegoni C.; Caravan P.; Weissleder R.; Sosnovik D. E.; Lin C. P.; Swirski F. K.; Nahrendorf M. Imaging the Vascular Bone Marrow Niche during Inflammatory Stress. Circ. Res. 2018, 123, 415.10.1161/CIRCRESAHA.118.313302. PubMed DOI PMC

Leenders G. J.; Smeets M. B.; Van Den Boomen M.; Berben M.; Nabben M.; Van Strijp D.; Strijkers G. J.; Prompers J. J.; Arslan F.; Nicolay K.; Vandoorne K. Statins Promote Cardiac Infarct Healing by Modulating Endothelial Barrier Function Revealed by Contrast-Enhanced Magnetic Resonance Imaging. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 186.10.1161/ATVBAHA.117.310339. PubMed DOI

Merx M. W.; Weber C. Sepsis and the Heart. Circulation 2007, 116 (7), 793–802. 10.1161/CIRCULATIONAHA.106.678359. PubMed DOI

Rohm T. V.; Meier D. T.; Olefsky J. M.; Donath M. Y. Inflammation in Obesity, Diabetes, and Related Disorders. Immunity 2022, 55 (1), 31–55. 10.1016/j.immuni.2021.12.013. PubMed DOI PMC

Pinho S.; Frenette P. S. Haematopoietic Stem Cell Activity and Interactions with the Niche. Nat. Rev. Mol. Cell Biol. 2019, 20 (5), 303–320. 10.1038/s41580-019-0103-9. PubMed DOI PMC

Leuschner F.; Rauch P. J.; Ueno T.; Gorbatov R.; Marinelli B.; Lee W. W.; Dutta P.; Wei Y.; Robbins C.; Iwamoto Y.; Sena B.; Chudnovskiy A.; Panizzi P.; Keliher E.; Higgins J. M.; Libby P.; Moskowitz M. A.; Pittet M. J.; Swirski F. K.; Weissleder R.; Nahrendorf M. Rapid Monocyte Kinetics in Acute Myocardial Infarction Are Sustained by Extramedullary Monocytopoiesis. J. Exp. Med. 2012, 209, 123.10.1084/jem.20111009. PubMed DOI PMC

Vandoorne K.; Rohde D.; Kim H. Y.; Courties G.; Wojtkiewicz G.; Honold L.; Hoyer F. F.; Frodermann V.; Nayar R.; Herisson F.; Jung Y.; Désogère P. A.; Vinegoni C.; Caravan P.; Weissleder R.; Sosnovik D. E.; Lin C. P.; Swirski F. K.; Nahrendorf M. Imaging the Vascular Bone Marrow Niche during Inflammatory Stress. Circ. Res. 2018, 123 (4), 415–427. 10.1161/CIRCRESAHA.118.313302. PubMed DOI PMC

Lee N.; Yoo D.; Ling D.; Cho M. H.; Hyeon T.; Cheon J. Iron Oxide Based Nanoparticles for Multimodal Imaging and Magnetoresponsive Therapy. Chem. Rev. 2015, 115 (19), 10637–10689. 10.1021/acs.chemrev.5b00112. PubMed DOI

Storey P.; Arbini A. A. Bone Marrow Uptake of Ferumoxytol: A Preliminary Study in Healthy Human Subjects. J. Magn. Reson. Imaging 2014, 39 (6), 1401–1410. 10.1002/jmri.24320. PubMed DOI PMC

Keliher E. J.; Yoo J.; Nahrendorf M.; Lewis J. S.; Marinelli B.; Newton A.; Pittet M. J.; Weissleder R. 89Zr-Labeled Dextran Nanoparticles Allow in Vivo Macrophage Imaging. Bioconjugate Chem. 2011, 22 (12), 2383–2389. 10.1021/bc200405d. PubMed DOI PMC

Tang K. S.; Hann B.; Shapiro E. M. On the Use of Micron-Sized Iron Oxide Particles (MPIOS) to Label Resting Monocytes in Bone Marrow. Mol. Imaging Biol. 2011, 13 (5), 819–824. 10.1007/s11307-010-0437-3. PubMed DOI PMC

Rohde D.; Vandoorne K.; Lee I.-H.; Grune J.; Zhang S.; McAlpine C. S.; Schloss M. J.; Nayar R.; Courties G.; Frodermann V.; Wojtkiewicz G.; Honold L.; Chen Q.; Schmidt S.; Iwamoto Y.; Sun Y.; Cremer S.; Hoyer F. F.; Iborra-Egea O.; Muñoz-Guijosa C.; Ji F.; Zhou B.; Adams R. H.; Wythe J. D.; Hidalgo J.; Watanabe H.; Jung Y.; van der Laan A. M.; Piek J. J.; Kfoury Y.; Désogère P. A.; Vinegoni C.; Dutta P.; Sadreyev R. I.; Caravan P.; Bayes-Genis A.; Libby P.; Scadden D. T.; Lin C. P.; Naxerova K.; Swirski F. K.; Nahrendorf M. Bone Marrow Endothelial Dysfunction Promotes Myeloid Cell Expansion in Cardiovascular Disease. Nat. Cardiovasc. Res. 2022, 1 (1), 28–44. 10.1038/s44161-021-00002-8. PubMed DOI PMC

Nombela-Arrieta C.; Pivarnik G.; Winkel B.; Canty K. J.; Harley B.; Mahoney J. E.; Park S. Y.; Lu J.; Protopopov A.; Silberstein L. E. Quantitative Imaging of Haematopoietic Stem and Progenitor Cell Localization and Hypoxic Status in the Bone Marrow Microenvironment. Nat. Cell Biol. 2013, 15, 533.10.1038/ncb2730. PubMed DOI PMC

Lo Celso C.; Lin C. P.; Scadden D. T. In Vivo Imaging of Transplanted Hematopoietic Stem and Progenitor Cells in Mouse Calvarium Bone Marrow. Nat. Protoc. 2011, 6, 1.10.1038/nprot.2010.168. PubMed DOI PMC

Kircher M. F.; Mahmood U.; King R. S.; Weissleder R.; Josephson L. A Multimodal Nanoparticle for Preoperative Magnetic Resonance Imaging and Intraoperative Optical Brain Tumor Delineation. Cancer Res. 2003, 63 (23), 8122–8125. PubMed

Leimgruber A.; Berger C.; Cortez-Retamozo V.; Etzrodt M.; Newton A. P.; Waterman P.; Figueiredo J. L.; Kohler R. H.; Elpek N.; Mempel T. R.; Swirski F. K.; Nahrendorf M.; Weissleder R.; Pittet M. J. Behavior of Endogenous Tumor-Associated Macrophages Assessed in Vivo Using a Functionalized Nanoparticle. Neoplasia 2009, 11 (5), 459–468. 10.1593/neo.09356. PubMed DOI PMC

Leblond F.; Davis S. C.; Valdés P. A.; Pogue B. W. Pre-Clinical Whole-Body Fluorescence Imaging: Review of Instruments, Methods and Applications. J. Photochem. Photobiol. B Biol. 2010, 98 (1), 77–94. 10.1016/j.jphotobiol.2009.11.007. PubMed DOI PMC

Jung S.; Aliberti J.; Graemmel P.; Sunshine M. J.; Kreutzberg G. W.; Sher A.; Littman D. R. Analysis of Fractalkine Receptor CX3CR1 Function by Targeted Deletion and Green Fluorescent Protein Reporter Gene Insertion. Mol. Cell. Biol. 2000, 20, 4106.10.1128/MCB.20.11.4106-4114.2000. PubMed DOI PMC

Bakermans O.; Abdurrachim D.; Moonen R. P. M.; Motaal A. G.; Prompers J. J.; Strijkers G. J.; Vandoorne K.; Nicolay K. Small Animal Cardiovascular MR Imaging and Spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 2015, 88–89, 1–47. 10.1016/j.pnmrs.2015.03.001. PubMed DOI

Nagai Y.; Garrett K. P.; Ohta S.; Bahrun U.; Kouro T.; Akira S.; Takatsu K.; Kincade P. W. Toll-like Receptors on Hematopoietic Progenitor Cells Stimulate Innate Immune System Replenishment. Immunity 2006, 24 (6), 801–812. 10.1016/j.immuni.2006.04.008. PubMed DOI PMC

Weissleder R.; Nahrendorf M.; Pittet M. J. Imaging Macrophages with Nanoparticles. Nat. Mater. 2014, 13, 125–138. 10.1038/nmat3780. PubMed DOI

Levin-Konigsberg R.; Mantegazza A. R. A Guide to Measuring Phagosomal Dynamics. FEBS J. 2021, 288 (5), 1412–1433. 10.1111/febs.15506. PubMed DOI PMC

Reichel D.; Tripathi M.; Perez J. M. Biological Effects of Nanoparticles on Macrophage Polarization in the Tumor Microenvironment. Nanotheranostics 2019, 3 (1), 66–88. 10.7150/ntno.30052. PubMed DOI PMC

Zanganeh S.; Hutter G.; Spitler R.; Lenkov O.; Mahmoudi M.; Shaw A.; Pajarinen J. S.; Nejadnik H.; Goodman S.; Moseley M.; Coussens L. M.; Daldrup-Link H. E. Iron Oxide Nanoparticles Inhibit Tumour Growth by Inducing Pro-Inflammatory Macrophage Polarization in Tumour Tissues. Nat. Nanotechnol. 2016, 11 (11), 986–994. 10.1038/nnano.2016.168. PubMed DOI PMC

Kuhlpeter R.; Dahnke H.; Matuszewski L.; Persigehl T.; Von Wallbrunn A.; Allkemper T.; Heindel W. L.; Schaeffter T.; Bremer C. R2 and R2* Mapping for Sensing Cell-Bound Superparamagnetic Nanoparticles: In Vitro and Murine in Vivo Testing. Radiology 2007, 245 (2), 449–457. 10.1148/radiol.2451061345. PubMed DOI

Bouvain P.; Ding Z.; Kadir S.; Kleimann P.; Kluge N.; Tiren Z.-B.; Steckel B.; Flocke V.; Zalfen R.; Petzsch P.; Wachtmeister T.; John G.; Subramaniam N.; Krämer W.; Strasdeit T.; Mehrabipour M.; Moll J. M.; Schubert R.; Ahmadian M. R.; Bönner F.; Boeken U.; Westenfeld R.; Engel D. R.; Kelm M.; Schrader J.; Köhrer K.; Grandoch M.; Temme S.; Flögel U. Non-Invasive Mapping of Systemic Neutrophil Dynamics upon Cardiovascular Injury. Nat. Cardiovasc. Res. 2023, 2 (2), 126–143. 10.1038/s44161-022-00210-w. PubMed DOI PMC

Simon G. H.; Raatschen H.-J.; Wendland M. F.; von Vopelius-Feldt J.; Fu Y.; Chen M.-H.; Daldrup-Link H. E. Ultrasmall Superparamagnetic Iron-Oxide-Enhanced MR Imaging of Normal Bone Marrow in Rodents: Original Research Original Research. Acad. Radiol. 2005, 12 (9), 1190–1197. 10.1016/j.acra.2005.05.014. PubMed DOI

Bierry G.; Jehl F.; Boehm N.; Robert P.; Prévost G.; Dietemann J. L.; Desal H.; Kremer S. Macrophage Activity in Infected Areas of an Experimental Vertebral Osteomyelitis Model: USPIO-Enhanced MR Imaging - Feasibility Study. Radiology 2008, 248 (1), 114–123. 10.1148/radiol.2481071260. PubMed DOI

Ginzburg Y.; An X.; Rivella S.; Goldfarb A. Normal and Dysregulated Crosstalk between Iron Metabolism and Erythropoiesis. Elife 2023, 12, e9018910.7554/eLife.90189. PubMed DOI PMC

Noyes W. D.; Bothwell T. H.; Finch C. A. The Role of the Reticulo-Endothelial Cell in Iron Metabolism. Br. J. Hamaetol. 1960, 6 (1), 43–55. 10.1111/j.1365-2141.1960.tb06216.x. PubMed DOI

Bankston P. W.; De Bruyn P. P. H. The Permeability to Carbon of the Sinusoidal Lining Cells of the Embryonic Rat Liver and Rat Bone Marrow. Am. J. Anat. 1974, 141 (2), 281–289. 10.1002/aja.1001410209. PubMed DOI

Roberts W. G.; Palade G. E. Neovasculature Induced by Vascular Endothelial Growth Factor Is Fenestrated. Cancer Res. 1997, 57 (4), 765–772. PubMed

King K. Y.; Goodell M. A. Inflammatory Modulation of HSCs: Viewing the HSC as a Foundation for the Immune Response. Nat. Rev. Immunol. 2011, 11 (10), 685–692. 10.1038/nri3062. PubMed DOI PMC

Seita J.; Weissman I. L. Hematopoietic Stem Cell: Self-Renewal versus Differentiation. Wiley Interdiscip. Rev. Syst. Biol. Med. 2010, 2 (6), 640–653. 10.1002/wsbm.86. PubMed DOI PMC

Mitroulis I.; Ruppova K.; Wang B.; Chen L. S.; Grzybek M.; Grinenko T.; Eugster A.; Troullinaki M.; Palladini A.; Kourtzelis I.; et al. Modulation of Myelopoiesis Progenitors Is an Integral Component of Trained Immunity. Cell 2018, 172 (1–2), 147–161.e12. 10.1016/j.cell.2017.11.034. PubMed DOI PMC

Nejadnik H.; Tseng J.; Daldrup-Link H. Magnetic Resonance Imaging of Stem Cell–Macrophage Interactions with Ferumoxytol and Ferumoxytol-Derived Nanoparticles. Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology 2019, 11 (4), e155210.1002/wnan.1552. PubMed DOI PMC

Wickramasinghe S. N. Observations on the Ultrastructure of Sinusoids and Reticular Cells in Human Bone Marrow. Clin. Lab. Haematol. 1991, 13 (3), 263–278. 10.1111/j.1365-2257.1991.tb00282.x. PubMed DOI

Leimberg M. J.; Prus E.; Konijn A. M.; Fibach E. Macrophages Function as a Ferritin Iron Source for Cultured Human Erythroid Precursors. J. Cell. Biochem. 2008, 103 (4), 1211–1218. 10.1002/jcb.21499. PubMed DOI

Nagasawa T.; Omatsu Y.; Sugiyama T. Control of Hematopoietic Stem Cells by the Bone Marrow Stromal Niche: The Role of Reticular Cells. Trends Immunol. 2011, 32 (7), 315–320. 10.1016/j.it.2011.03.009. PubMed DOI

Buscher K.; Marcovecchio P.; Hedrick C. C.; Ley K. Patrolling Mechanics of Non-Classical Monocytes in Vascular Inflammation. Front. Cardiovasc. Med. 2017, 4, 80.10.3389/fcvm.2017.00080. PubMed DOI PMC

Calil I. L.; Zarpelon A. C.; Guerrero A. T. G.; Alves-Filho J. C.; Ferreira S. H.; Cunha F. Q.; Cunha T. M.; Verri W. A. Lipopolysaccharide Induces Inflammatory Hyperalgesia Triggering a TLR4/MyD88-Dependent Cytokine Cascade in the Mice Paw. PLoS One 2014, 9 (3), e90013.10.1371/journal.pone.0090013. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...