Cross-Modal Imaging Reveals Nanoparticle Uptake Dynamics in Hematopoietic Bone Marrow during Inflammation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38343099
PubMed Central
PMC10919094
DOI
10.1021/acsnano.3c11201
Knihovny.cz E-zdroje
- Klíčová slova
- MRI, inflammation, intravital microscopy, iron nanoparticle, myelopoiesis,
- MeSH
- experimentální diabetes mellitus * patologie MeSH
- kostní dřeň diagnostické zobrazování MeSH
- lipopolysacharidy MeSH
- myši MeSH
- nanočástice * MeSH
- zánět diagnostické zobrazování patologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- lipopolysacharidy MeSH
Nanoparticles have been employed to elucidate the innate immune cell biology and trace cells accumulating at inflammation sites. Inflammation prompts innate immune cells, the initial responders, to undergo rapid turnover and replenishment within the hematopoietic bone marrow. Yet, we currently lack a precise understanding of how inflammation affects cellular nanoparticle uptake at the level of progenitors of innate immune cells in the hematopoietic marrow. To bridge this gap, we aimed to develop imaging tools to explore the uptake dynamics of fluorescently labeled cross-linked iron oxide nanoparticles in the bone marrow niche under varying degrees of inflammation. The inflammatory models included mice that received intramuscular lipopolysaccharide injections to induce moderate inflammation and streptozotocin-induced diabetic mice with additional intramuscular lipopolysaccharide injections to intensify inflammation. In vivo magnetic resonance imaging (MRI) and fluorescence imaging revealed an elevated level of nanoparticle uptake at the bone marrow as the levels of inflammation increased. The heightened uptake of nanoparticles within the inflamed marrow was attributed to enhanced permeability and retention with increased nanoparticle intake by hematopoietic progenitor cells. Moreover, intravital microscopy showed increased colocalization of nanoparticles within slowly patrolling monocytes in these inflamed hematopoietic marrow niches. Our discoveries unveil a previously unknown role of the inflamed hematopoietic marrow in enhanced storage and rapid deployment of nanoparticles, which can specifically target innate immune cells at their production site during inflammation. These insights underscore the critical function of the hematopoietic bone marrow in distributing iron nanoparticles to innate immune cells during inflammation. Our findings offer diagnostic and prognostic value, identifying the hematopoietic bone marrow as an imaging biomarker for early detection in inflammation imaging, advancing personalized clinical care.
3rd Faculty of Medicine Charles University Prague 100 00 Czech Republic
Faculty of Biomedical Engineering Technion Israel Institute of Technology Haifa 3200003 Israel
Zobrazit více v PubMed
Kirschbaum K.; Sonner J. K.; Zeller M. W.; Deumelandt K.; Bode J.; Sharma R.; Kruwel T.; Fischer M.; Hoffmann A.; Costa da Silva M.; et al. In Vivo Nanoparticle Imaging of Innate Immune Cells Can Serve as a Marker of Disease Severity in a Model of Multiple Sclerosis. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (46), 13227–13232. 10.1073/pnas.1609397113. PubMed DOI PMC
Moon H.; Park H. E.; Kang J.; Lee H.; Cheong C.; Lim Y. T.; Ihm S. H.; Seung K. B.; Jaffer F. A.; Narula J.; Chang K.; Hong K. S. Noninvasive Assessment of Myocardial Inflammation by Cardiovascular Magnetic Resonance in a Rat Model of Experimental Autoimmune Myocarditis. Circulation 2012, 125 (21), 2603–2612. 10.1161/CIRCULATIONAHA.111.075283. PubMed DOI
Daldrup-Link H. E.; Golovko D.; Ruffell B.; DeNardo D. G.; Castaneda R.; Ansari C.; Rao J.; Tikhomirov G. A.; Wendland M. F.; Corot C.; Coussens L. M. MRI of Tumor-Associated Macrophages with Clinically Applicable Iron Oxide Nanoparticles. Clin. Cancer Res. 2011, 17 (17), 5695–5704. 10.1158/1078-0432.CCR-10-3420. PubMed DOI PMC
Yilmaz A.; Dengler M. A.; Van Der Kuip H.; Yildiz H.; Rösch S.; Klumpp S.; Klingel K.; Kandolf R.; Helluy X.; Hiller K. H.; Jakob P. M.; Sechtem U. Imaging of Myocardial Infarction Using Ultrasmall Superparamagnetic Iron Oxide Nanoparticles: A Human Study Using a Multi-Parametric Cardiovascular Magnetic Resonance Imaging Approach. Eur. Heart J. 2013, 34 (6), 462–475. 10.1093/eurheartj/ehs366. PubMed DOI
Montet-Abou K.; Daire J. L.; Hyacinthe J. N.; Jorge-Costa M.; Grosdemange K.; MacH F.; Petri-Fink A.; Hofmann H.; Morel D. R.; Vallée J. P.; Montet X. In Vivo Labelling of Resting Monocytes in the Reticuloendothelial System with Fluorescent Iron Oxide Nanoparticles Prior to Injury Reveals That They Are Mobilized to Infarcted Myocardium. Eur. Heart J. 2010, 31 (11), 1410–1420. 10.1093/eurheartj/ehp547. PubMed DOI
Furman D.; Campisi J.; Verdin E.; Carrera-Bastos P.; Targ S.; Franceschi C.; Ferrucci L.; Gilroy D. W.; Fasano A.; Miller G. W.; Miller A. H.; Mantovani A.; Weyand C. M.; Barzilai N.; Goronzy J. J.; Rando T. A.; Effros R. B.; Lucia A.; Kleinstreuer N.; Slavich G. M. Chronic Inflammation in the Etiology of Disease across the Life Span. Nat. Med. 2019, 25 (12), 1822–1832. 10.1038/s41591-019-0675-0. PubMed DOI PMC
Swirski F. K.; Nahrendorf M.; Etzrodt M.; Wildgruber M.; Cortez-Retamozo V.; Panizzi P.; Figueiredo J. L.; Kohler R. H.; Chudnovskiy A.; Waterman P.; Aikawa E.; Mempel T. R.; Libby P.; Weissleder R.; Pittet M. J. Identification of Splenic Reservoir Monocytes and Their Deployment to Inflammatory Sites. Science (80-.). 2009, 325 (5940), 612–616. 10.1126/science.1175202. PubMed DOI PMC
Shi C.; Pamer E. G. Monocyte Recruitment during Infection and Inflammation. Nat. Rev. Immunol. 2011, 11 (11), 762–774. 10.1038/nri3070. PubMed DOI PMC
Vandoorne K.; Rohde D.; Kim H. Y.; Courties G.; Wojtkiewicz G.; Honold L.; Hoyer F. F.; Frodermann V.; Nayar R.; Herisson F.; Jung Y.; Désogère P. A.; Vinegoni C.; Caravan P.; Weissleder R.; Sosnovik D. E.; Lin C. P.; Swirski F. K.; Nahrendorf M. Imaging the Vascular Bone Marrow Niche during Inflammatory Stress. Circ. Res. 2018, 123, 415.10.1161/CIRCRESAHA.118.313302. PubMed DOI PMC
Leenders G. J.; Smeets M. B.; Van Den Boomen M.; Berben M.; Nabben M.; Van Strijp D.; Strijkers G. J.; Prompers J. J.; Arslan F.; Nicolay K.; Vandoorne K. Statins Promote Cardiac Infarct Healing by Modulating Endothelial Barrier Function Revealed by Contrast-Enhanced Magnetic Resonance Imaging. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 186.10.1161/ATVBAHA.117.310339. PubMed DOI
Merx M. W.; Weber C. Sepsis and the Heart. Circulation 2007, 116 (7), 793–802. 10.1161/CIRCULATIONAHA.106.678359. PubMed DOI
Rohm T. V.; Meier D. T.; Olefsky J. M.; Donath M. Y. Inflammation in Obesity, Diabetes, and Related Disorders. Immunity 2022, 55 (1), 31–55. 10.1016/j.immuni.2021.12.013. PubMed DOI PMC
Pinho S.; Frenette P. S. Haematopoietic Stem Cell Activity and Interactions with the Niche. Nat. Rev. Mol. Cell Biol. 2019, 20 (5), 303–320. 10.1038/s41580-019-0103-9. PubMed DOI PMC
Leuschner F.; Rauch P. J.; Ueno T.; Gorbatov R.; Marinelli B.; Lee W. W.; Dutta P.; Wei Y.; Robbins C.; Iwamoto Y.; Sena B.; Chudnovskiy A.; Panizzi P.; Keliher E.; Higgins J. M.; Libby P.; Moskowitz M. A.; Pittet M. J.; Swirski F. K.; Weissleder R.; Nahrendorf M. Rapid Monocyte Kinetics in Acute Myocardial Infarction Are Sustained by Extramedullary Monocytopoiesis. J. Exp. Med. 2012, 209, 123.10.1084/jem.20111009. PubMed DOI PMC
Vandoorne K.; Rohde D.; Kim H. Y.; Courties G.; Wojtkiewicz G.; Honold L.; Hoyer F. F.; Frodermann V.; Nayar R.; Herisson F.; Jung Y.; Désogère P. A.; Vinegoni C.; Caravan P.; Weissleder R.; Sosnovik D. E.; Lin C. P.; Swirski F. K.; Nahrendorf M. Imaging the Vascular Bone Marrow Niche during Inflammatory Stress. Circ. Res. 2018, 123 (4), 415–427. 10.1161/CIRCRESAHA.118.313302. PubMed DOI PMC
Lee N.; Yoo D.; Ling D.; Cho M. H.; Hyeon T.; Cheon J. Iron Oxide Based Nanoparticles for Multimodal Imaging and Magnetoresponsive Therapy. Chem. Rev. 2015, 115 (19), 10637–10689. 10.1021/acs.chemrev.5b00112. PubMed DOI
Storey P.; Arbini A. A. Bone Marrow Uptake of Ferumoxytol: A Preliminary Study in Healthy Human Subjects. J. Magn. Reson. Imaging 2014, 39 (6), 1401–1410. 10.1002/jmri.24320. PubMed DOI PMC
Keliher E. J.; Yoo J.; Nahrendorf M.; Lewis J. S.; Marinelli B.; Newton A.; Pittet M. J.; Weissleder R. 89Zr-Labeled Dextran Nanoparticles Allow in Vivo Macrophage Imaging. Bioconjugate Chem. 2011, 22 (12), 2383–2389. 10.1021/bc200405d. PubMed DOI PMC
Tang K. S.; Hann B.; Shapiro E. M. On the Use of Micron-Sized Iron Oxide Particles (MPIOS) to Label Resting Monocytes in Bone Marrow. Mol. Imaging Biol. 2011, 13 (5), 819–824. 10.1007/s11307-010-0437-3. PubMed DOI PMC
Rohde D.; Vandoorne K.; Lee I.-H.; Grune J.; Zhang S.; McAlpine C. S.; Schloss M. J.; Nayar R.; Courties G.; Frodermann V.; Wojtkiewicz G.; Honold L.; Chen Q.; Schmidt S.; Iwamoto Y.; Sun Y.; Cremer S.; Hoyer F. F.; Iborra-Egea O.; Muñoz-Guijosa C.; Ji F.; Zhou B.; Adams R. H.; Wythe J. D.; Hidalgo J.; Watanabe H.; Jung Y.; van der Laan A. M.; Piek J. J.; Kfoury Y.; Désogère P. A.; Vinegoni C.; Dutta P.; Sadreyev R. I.; Caravan P.; Bayes-Genis A.; Libby P.; Scadden D. T.; Lin C. P.; Naxerova K.; Swirski F. K.; Nahrendorf M. Bone Marrow Endothelial Dysfunction Promotes Myeloid Cell Expansion in Cardiovascular Disease. Nat. Cardiovasc. Res. 2022, 1 (1), 28–44. 10.1038/s44161-021-00002-8. PubMed DOI PMC
Nombela-Arrieta C.; Pivarnik G.; Winkel B.; Canty K. J.; Harley B.; Mahoney J. E.; Park S. Y.; Lu J.; Protopopov A.; Silberstein L. E. Quantitative Imaging of Haematopoietic Stem and Progenitor Cell Localization and Hypoxic Status in the Bone Marrow Microenvironment. Nat. Cell Biol. 2013, 15, 533.10.1038/ncb2730. PubMed DOI PMC
Lo Celso C.; Lin C. P.; Scadden D. T. In Vivo Imaging of Transplanted Hematopoietic Stem and Progenitor Cells in Mouse Calvarium Bone Marrow. Nat. Protoc. 2011, 6, 1.10.1038/nprot.2010.168. PubMed DOI PMC
Kircher M. F.; Mahmood U.; King R. S.; Weissleder R.; Josephson L. A Multimodal Nanoparticle for Preoperative Magnetic Resonance Imaging and Intraoperative Optical Brain Tumor Delineation. Cancer Res. 2003, 63 (23), 8122–8125. PubMed
Leimgruber A.; Berger C.; Cortez-Retamozo V.; Etzrodt M.; Newton A. P.; Waterman P.; Figueiredo J. L.; Kohler R. H.; Elpek N.; Mempel T. R.; Swirski F. K.; Nahrendorf M.; Weissleder R.; Pittet M. J. Behavior of Endogenous Tumor-Associated Macrophages Assessed in Vivo Using a Functionalized Nanoparticle. Neoplasia 2009, 11 (5), 459–468. 10.1593/neo.09356. PubMed DOI PMC
Leblond F.; Davis S. C.; Valdés P. A.; Pogue B. W. Pre-Clinical Whole-Body Fluorescence Imaging: Review of Instruments, Methods and Applications. J. Photochem. Photobiol. B Biol. 2010, 98 (1), 77–94. 10.1016/j.jphotobiol.2009.11.007. PubMed DOI PMC
Jung S.; Aliberti J.; Graemmel P.; Sunshine M. J.; Kreutzberg G. W.; Sher A.; Littman D. R. Analysis of Fractalkine Receptor CX3CR1 Function by Targeted Deletion and Green Fluorescent Protein Reporter Gene Insertion. Mol. Cell. Biol. 2000, 20, 4106.10.1128/MCB.20.11.4106-4114.2000. PubMed DOI PMC
Bakermans O.; Abdurrachim D.; Moonen R. P. M.; Motaal A. G.; Prompers J. J.; Strijkers G. J.; Vandoorne K.; Nicolay K. Small Animal Cardiovascular MR Imaging and Spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 2015, 88–89, 1–47. 10.1016/j.pnmrs.2015.03.001. PubMed DOI
Nagai Y.; Garrett K. P.; Ohta S.; Bahrun U.; Kouro T.; Akira S.; Takatsu K.; Kincade P. W. Toll-like Receptors on Hematopoietic Progenitor Cells Stimulate Innate Immune System Replenishment. Immunity 2006, 24 (6), 801–812. 10.1016/j.immuni.2006.04.008. PubMed DOI PMC
Weissleder R.; Nahrendorf M.; Pittet M. J. Imaging Macrophages with Nanoparticles. Nat. Mater. 2014, 13, 125–138. 10.1038/nmat3780. PubMed DOI
Levin-Konigsberg R.; Mantegazza A. R. A Guide to Measuring Phagosomal Dynamics. FEBS J. 2021, 288 (5), 1412–1433. 10.1111/febs.15506. PubMed DOI PMC
Reichel D.; Tripathi M.; Perez J. M. Biological Effects of Nanoparticles on Macrophage Polarization in the Tumor Microenvironment. Nanotheranostics 2019, 3 (1), 66–88. 10.7150/ntno.30052. PubMed DOI PMC
Zanganeh S.; Hutter G.; Spitler R.; Lenkov O.; Mahmoudi M.; Shaw A.; Pajarinen J. S.; Nejadnik H.; Goodman S.; Moseley M.; Coussens L. M.; Daldrup-Link H. E. Iron Oxide Nanoparticles Inhibit Tumour Growth by Inducing Pro-Inflammatory Macrophage Polarization in Tumour Tissues. Nat. Nanotechnol. 2016, 11 (11), 986–994. 10.1038/nnano.2016.168. PubMed DOI PMC
Kuhlpeter R.; Dahnke H.; Matuszewski L.; Persigehl T.; Von Wallbrunn A.; Allkemper T.; Heindel W. L.; Schaeffter T.; Bremer C. R2 and R2* Mapping for Sensing Cell-Bound Superparamagnetic Nanoparticles: In Vitro and Murine in Vivo Testing. Radiology 2007, 245 (2), 449–457. 10.1148/radiol.2451061345. PubMed DOI
Bouvain P.; Ding Z.; Kadir S.; Kleimann P.; Kluge N.; Tiren Z.-B.; Steckel B.; Flocke V.; Zalfen R.; Petzsch P.; Wachtmeister T.; John G.; Subramaniam N.; Krämer W.; Strasdeit T.; Mehrabipour M.; Moll J. M.; Schubert R.; Ahmadian M. R.; Bönner F.; Boeken U.; Westenfeld R.; Engel D. R.; Kelm M.; Schrader J.; Köhrer K.; Grandoch M.; Temme S.; Flögel U. Non-Invasive Mapping of Systemic Neutrophil Dynamics upon Cardiovascular Injury. Nat. Cardiovasc. Res. 2023, 2 (2), 126–143. 10.1038/s44161-022-00210-w. PubMed DOI PMC
Simon G. H.; Raatschen H.-J.; Wendland M. F.; von Vopelius-Feldt J.; Fu Y.; Chen M.-H.; Daldrup-Link H. E. Ultrasmall Superparamagnetic Iron-Oxide-Enhanced MR Imaging of Normal Bone Marrow in Rodents: Original Research Original Research. Acad. Radiol. 2005, 12 (9), 1190–1197. 10.1016/j.acra.2005.05.014. PubMed DOI
Bierry G.; Jehl F.; Boehm N.; Robert P.; Prévost G.; Dietemann J. L.; Desal H.; Kremer S. Macrophage Activity in Infected Areas of an Experimental Vertebral Osteomyelitis Model: USPIO-Enhanced MR Imaging - Feasibility Study. Radiology 2008, 248 (1), 114–123. 10.1148/radiol.2481071260. PubMed DOI
Ginzburg Y.; An X.; Rivella S.; Goldfarb A. Normal and Dysregulated Crosstalk between Iron Metabolism and Erythropoiesis. Elife 2023, 12, e9018910.7554/eLife.90189. PubMed DOI PMC
Noyes W. D.; Bothwell T. H.; Finch C. A. The Role of the Reticulo-Endothelial Cell in Iron Metabolism. Br. J. Hamaetol. 1960, 6 (1), 43–55. 10.1111/j.1365-2141.1960.tb06216.x. PubMed DOI
Bankston P. W.; De Bruyn P. P. H. The Permeability to Carbon of the Sinusoidal Lining Cells of the Embryonic Rat Liver and Rat Bone Marrow. Am. J. Anat. 1974, 141 (2), 281–289. 10.1002/aja.1001410209. PubMed DOI
Roberts W. G.; Palade G. E. Neovasculature Induced by Vascular Endothelial Growth Factor Is Fenestrated. Cancer Res. 1997, 57 (4), 765–772. PubMed
King K. Y.; Goodell M. A. Inflammatory Modulation of HSCs: Viewing the HSC as a Foundation for the Immune Response. Nat. Rev. Immunol. 2011, 11 (10), 685–692. 10.1038/nri3062. PubMed DOI PMC
Seita J.; Weissman I. L. Hematopoietic Stem Cell: Self-Renewal versus Differentiation. Wiley Interdiscip. Rev. Syst. Biol. Med. 2010, 2 (6), 640–653. 10.1002/wsbm.86. PubMed DOI PMC
Mitroulis I.; Ruppova K.; Wang B.; Chen L. S.; Grzybek M.; Grinenko T.; Eugster A.; Troullinaki M.; Palladini A.; Kourtzelis I.; et al. Modulation of Myelopoiesis Progenitors Is an Integral Component of Trained Immunity. Cell 2018, 172 (1–2), 147–161.e12. 10.1016/j.cell.2017.11.034. PubMed DOI PMC
Nejadnik H.; Tseng J.; Daldrup-Link H. Magnetic Resonance Imaging of Stem Cell–Macrophage Interactions with Ferumoxytol and Ferumoxytol-Derived Nanoparticles. Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology 2019, 11 (4), e155210.1002/wnan.1552. PubMed DOI PMC
Wickramasinghe S. N. Observations on the Ultrastructure of Sinusoids and Reticular Cells in Human Bone Marrow. Clin. Lab. Haematol. 1991, 13 (3), 263–278. 10.1111/j.1365-2257.1991.tb00282.x. PubMed DOI
Leimberg M. J.; Prus E.; Konijn A. M.; Fibach E. Macrophages Function as a Ferritin Iron Source for Cultured Human Erythroid Precursors. J. Cell. Biochem. 2008, 103 (4), 1211–1218. 10.1002/jcb.21499. PubMed DOI
Nagasawa T.; Omatsu Y.; Sugiyama T. Control of Hematopoietic Stem Cells by the Bone Marrow Stromal Niche: The Role of Reticular Cells. Trends Immunol. 2011, 32 (7), 315–320. 10.1016/j.it.2011.03.009. PubMed DOI
Buscher K.; Marcovecchio P.; Hedrick C. C.; Ley K. Patrolling Mechanics of Non-Classical Monocytes in Vascular Inflammation. Front. Cardiovasc. Med. 2017, 4, 80.10.3389/fcvm.2017.00080. PubMed DOI PMC
Calil I. L.; Zarpelon A. C.; Guerrero A. T. G.; Alves-Filho J. C.; Ferreira S. H.; Cunha F. Q.; Cunha T. M.; Verri W. A. Lipopolysaccharide Induces Inflammatory Hyperalgesia Triggering a TLR4/MyD88-Dependent Cytokine Cascade in the Mice Paw. PLoS One 2014, 9 (3), e90013.10.1371/journal.pone.0090013. PubMed DOI PMC