Laser-Induced Reactions of 4-Aminobenzenthiol Species Adsorbed on Ag, Au, and Cu Plasmonic Structures Followed by SERS Spectroscopy. The Role of Substrate and Excitation Energy - Surface-Complex Photochemistry and Plasmonic Catalysis
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
38343947
PubMed Central
PMC10851236
DOI
10.1021/acsomega.4c00121
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
This study focuses on investigating the laser-induced reactions of various surface complexes of 4-aminobenzenethiol on Ag, Au, and Cu surfaces. By utilizing different excitation wavelengths, the distinct behavior of the molecule species on the plasmonic substrates was observed. Density functional theory (DFT) calculations were employed to establish the significant role of chemical enhancement mechanisms in determining the observed behavior. The interaction between 4-aminobenzenethiol (4-ABT) molecules and plasmonic surfaces led to the formation of surface complexes with absorption bands red-shifted into the visible and near-infrared regions. Photochemical transformations were induced by excitation wavelengths from these regions, with the nature of the transformations varying based on the excitation wavelength and the plasmonic metal. Resonance with the electronic absorption transitions of these complexes amplifies surface-enhanced Raman scattering (SERS), enabling the detailed examination of ongoing processes. A kinetic study on the Ag surface revealed processes governed by both first- and second-order kinetics, attributed to the dimerization process and transformation processes of individual molecules interacting with photons or plasmons. The behavior of the molecules was found to be primarily determined by the position and variability of the band between 1170 and 1190 cm-1, with the former corresponding to molecules in the monomer state and the latter to dimerized molecules. Notably, laser-induced dimerization occurred most rapidly on the Cu surface, followed by Ag, and least on Au. These findings highlight the influence of plasmonic surfaces on molecular behavior and provide insights into the potential applications of laser-induced reactions for surface analysis and manipulation.
Central Laboratories University of Chemistry and Technology Technická 5 Prague 166 28 Czech Republic
See more in PubMed
Langer J.; Jimenez de Aberasturi D.; Aizpurua J.; Alvarez-Puebla R. A.; Auguié B.; Baumberg J. J.; Bazan G. C.; Bell S. E.; Boisen A.; Brolo A. G.; et al. Present and future of surface-enhanced Raman scattering. ACS Nano 2019, 14 (1), 28–117. 10.1021/acsnano.9b04224. PubMed DOI PMC
Kurouski D.; Deckert-Gaudig T.; Deckert V.; Lednev I. K. Surface characterization of insulin protofilaments and fibril polymorphs using tip-enhanced Raman spectroscopy (TERS). Biophys. J. 2014, 106 (1), 263–271. 10.1016/j.bpj.2013.10.040. PubMed DOI PMC
Volochanskyi O.; Švecová M.; Prokopec V. Detection and identification of medically important alkaloids using the surface-enhanced Raman scattering spectroscopy. Spectrochim. Acta, Part A 2019, 207, 143–149. 10.1016/j.saa.2018.09.009. PubMed DOI
Kale M. J.; Avanesian T.; Christopher P. Direct photocatalysis by plasmonic nanostructures. ACS Catal. 2014, 4 (1), 116–128. 10.1021/cs400993w. DOI
Geonmonond R. S.; da Silva A. G. M.; Rodrigues T. S.; de Freitas I. C.; Ando R. A.; Alves T. V.; Camargo P. H. Addressing the Effects of Size dependent Absorption, Scattering, and Near field Enhancements in Plasmonic Catalysis. ChemCatChem 2018, 10 (16), 3447–3452. 10.1002/cctc.201800691. DOI
Keller E. L.; Frontiera R. R. Ultrafast nanoscale Raman thermometry proves heating is not a primary mechanism for plasmon-driven photocatalysis. ACS Nano 2018, 12 (6), 5848–5855. 10.1021/acsnano.8b01809. PubMed DOI
Li Z.; Kurouski D. Plasmon-driven chemistry on mono-and bimetallic nanostructures. Acc. Chem. Res. 2021, 54 (10), 2477–2487. 10.1021/acs.accounts.1c00093. PubMed DOI
Xie W.; Zhang K.; Grzeschik R.; Schlücker S.. Synthesis of Plasmonic Nanoparticles for Photo-and Electrocatalysis. Plasmonic Catalysis: From Fundamentals to Applications; Wiley, 2021.
Xie W.; Herrmann C.; Kömpe K.; Haase M.; Schlücker S. Synthesis of bifunctional Au/Pt/Au core/shell nanoraspberries for in situ SERS monitoring of platinum-catalyzed reactions. J. Am. Chem. Soc. 2011, 133 (48), 19302–19305. 10.1021/ja208298q. PubMed DOI
Ren X.; Cao E.; Lin W.; Song Y.; Liang W.; Wang J. Recent advances in surface plasmon-driven catalytic reactions. RSC Adv. 2017, 7 (50), 31189–31203. 10.1039/C7RA05346K. PubMed DOI PMC
Žůrková-Kokošková M.; Šloufová I.; Gajdošová V.; Vlčková B. Plasmon-catalysed decarboxylation of dicarboxybipyridine ligands in Ru (ii) complexes chemisorbed on Ag nanoparticles: conditions, proposed mechanism and role of Ag (0) adsorption sites. Phys. Chem. Chem. Phys. 2022, 24 (24), 15034–15047. 10.1039/D2CP00765G. PubMed DOI
Schütz M.; Steinigeweg D.; Salehi M.; Kömpe K.; Schlücker S. Hydrophilically stabilized gold nanostars as SERS labels for tissue imaging of the tumor suppressor p63 by immuno-SERS microscopy. Chem. Commun. 2011, 47 (14), 4216–4218. 10.1039/c0cc05229a. PubMed DOI
Dendisová M.; Havránek L.; Ončák M.; Matějka P. In situ SERS study of azobenzene derivative formation from 4-aminobenzenethiol on gold, silver, and copper nanostructured surfaces: what is the role of applied potential and used metal?. J. Phys. Chem. C 2013, 117 (41), 21245–21253. 10.1021/jp4040985. DOI
Novák V.; Dendisová M.; Matějka P.; Bouř P. Explanation of surface-enhanced raman scattering intensities of p-aminobenzenethiol by density functional computations. J. Phys. Chem. C 2016, 120 (32), 18275–18280. 10.1021/acs.jpcc.6b05947. DOI
Kim K.; Kim K. L.; Shin D.; Choi J.-Y.; Shin K. S. Surface-enhanced Raman scattering of 4-aminobenzenethiol on Ag and Au: pH dependence of b 2-type bands. J. Phys. Chem. C 2012, 116 (7), 4774–4779. 10.1021/jp211730r. DOI
Kim K.; Yoon J. K.; Lee H. B.; Shin D.; Shin K. S. Surface-enhanced Raman scattering of 4-aminobenzenethiol in Ag sol: relative intensity of a1-and b2-type bands invariant against aggregation of Ag nanoparticles. Langmuir 2011, 27 (8), 4526–4531. 10.1021/la200293b. PubMed DOI
Kim K. L.; Lee S. J.; Kim K. Surface-enhanced Raman scattering of benzyl phenyl sulfide in silver sol: excitation-wavelength-dependent surface-induced photoreaction. J. Phys. Chem. B 2004, 108 (26), 9216–9220. 10.1021/jp049244m. DOI
Shin K. S.; Lee H. S.; Joo S. W.; Kim K. Surface-induced photoreduction of 4-nitrobenzenethiol on Cu revealed by surface-enhanced Raman scattering Spectroscopy. J. Phys. Chem. C 2007, 111 (42), 15223–15227. 10.1021/jp073053c. DOI
Osawa M.; Matsuda N.; Yoshii K.; Uchida I. Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution. J. Phys. Chem. 1994, 98 (48), 12702–12707. 10.1021/j100099a038. DOI
Lombardi J. R.; Birke R. L. A unified approach to surface-enhanced Raman spectroscopy. J. Phys. Chem. C 2008, 112 (14), 5605–5617. 10.1021/jp800167v. DOI
Shin D. Two different behaviors in 4 ABT and 4, 4′ DMAB surface enhanced Raman spectroscopy. J. Raman Spectrosc. 2017, 48 (2), 343–347. 10.1002/jrs.5016. DOI
Vidal-Iglesias F. J.; Solla-Gullon J.; Orts J. M.; Rodes A.; Perez J. M. Spectroelectrochemical study of the photoinduced catalytic formation of 4, 4′-dimercaptoazobenzene from 4-aminobenzenethiol adsorbed on nanostructured copper. J. Phys. Chem. C 2015, 119 (22), 12312–12324. 10.1021/acs.jpcc.5b01245. DOI
Vidal-Iglesias F. J.; Solla-Gullón J.; Rodes A.; Feliu J. M.; Pérez J. Spectroelectrochemical behavior of 4-aminobenzenethiol on nanostructured platinum and silver electrodes. Surf. Sci. 2015, 631, 213–219. 10.1016/j.susc.2014.05.023. DOI
Yamamoto Y. S.; Kayano Y.; Ozaki Y.; Zhang Z.; Kozu T.; Itoh T.; Nakanishi S. Single-Molecule Surface-Enhanced Raman Scattering Spectrum of Non-Resonant Aromatic Amine Showing Raman Forbidden Bands. arXiv 2016, arXiv:1610.08270.10.48550/arXiv.1610.08270. DOI
Merlen A.; Chaigneau M.; Coussan S. Vibrational modes of aminothiophenol: a TERS and DFT study. Phys. Chem. Chem. Phys. 2015, 17 (29), 19134–19138. 10.1039/C5CP01579K. PubMed DOI
Wen P.; Wang Y.; Wang N.; Zhang S.; Peng B.; Deng Z. Preparation and characterization of melamine-formaldehyde/Ag composite microspheres with surface-enhanced Raman scattering and antibacterial activities. J. Colloid Interface Sci. 2018, 531, 544–554. 10.1016/j.jcis.2018.07.014. PubMed DOI
Zhu J.; Wu N.; Zhang F.; Li X.; Li J.; Zhao J. SERS detection of 4-Aminobenzenethiol based on triangular Au-AuAg hierarchical-multishell nanostructure. Spectrochim. Acta, Part A 2018, 204, 754–762. 10.1016/j.saa.2018.06.105. PubMed DOI
Pastorello M.; Sigoli F. A.; Dos Santos D. P.; Mazali I. O. On the use of Au@ Ag core-shell nanorods for SERS detection of Thiram diluted solutions. Spectrochim. Acta, Part A 2020, 231, 118113.10.1016/j.saa.2020.118113. PubMed DOI
Zhong Q.; Zhang R.; Yang B.; Tian T.; Zhang K.; Liu B. A rational designed bioorthogonal surface-enhanced Raman scattering nanoprobe for quantitatively visualizing endogenous hydrogen sulfide in single living cells. ACS Sens. 2022, 7 (3), 893–899. 10.1021/acssensors.1c02711. PubMed DOI
Atkins P. W.; De Paula J.; Keeler J.. Atkins’ Physical Chemistry; Oxford University Press, 2023.
Kelesidis G. A.; Gao D.; Starsich F. H.; Pratsinis S. E. Light Extinction by Agglomerates of Gold Nanoparticles: A Plasmon Ruler for Sub-10 nm Interparticle Distances. Anal. Chem. 2022, 94 (13), 5310–5316. 10.1021/acs.analchem.1c05145. PubMed DOI PMC
Kopal I.; Švecová M.; Plicka M.; Dendisová M. Time dependent investigation of copper colloids SERS-activity. Mater. Today Commun. 2023, 35, 105722.10.1016/j.mtcomm.2023.105722. DOI
Markina N. E.; Ustinov S. N.; Zakharevich A. M.; Markin A. V. Copper nanoparticles for SERS-based determination of some cephalosporin antibiotics in spiked human urine. Anal. Chim. Acta 2020, 1138, 9–17. 10.1016/j.aca.2020.09.016. PubMed DOI
Dutta A.; Schürmann R.; Kogikoski S.; Mueller N. S.; Reich S.; Bald I. Kinetics and mechanism of plasmon-driven dehalogenation reaction of brominated purine nucleobases on Ag and Au. ACS Catal. 2021, 11 (13), 8370–8381. 10.1021/acscatal.1c01851. PubMed DOI PMC
Schürmann R.; Nagel A.; Juergensen S.; Pathak A.; Reich S.; Pacholski C.; Bald I. Microscopic Understanding of Reaction Rates Observed in Plasmon Chemistry of Nanoparticle-Ligand Systems. J. Phys. Chem. C 2022, 126 (11), 5333–5342. 10.1021/acs.jpcc.2c00278. PubMed DOI PMC
Liu Z.; Jiang D.; Yang L.; Yu J.; Li X.; Liu X.; Zhao L.; Zhang X. L.; Han F.; Zhou W.; et al. Plasmon-enhanced Hydrogen evolution reaction kinetics through the strong coupling of Au-O Bond on Au-MoO2 heterostructure nanosheets. Nano Energy 2021, 88, 106302.10.1016/j.nanoen.2021.106302. DOI
Fusco Z.; Catchpole K.; Beck F. J. Investigation of the mechanisms of plasmon-mediated photocatalysis: synergistic contribution of near-field and charge transfer effects. J. Mater. Chem. C 2022, 10 (19), 7511–7524. 10.1039/D2TC00491G. DOI