• This record comes from PubMed

Laser-Induced Reactions of 4-Aminobenzenthiol Species Adsorbed on Ag, Au, and Cu Plasmonic Structures Followed by SERS Spectroscopy. The Role of Substrate and Excitation Energy - Surface-Complex Photochemistry and Plasmonic Catalysis

. 2024 Feb 06 ; 9 (5) : 6005-6017. [epub] 20240125

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

This study focuses on investigating the laser-induced reactions of various surface complexes of 4-aminobenzenethiol on Ag, Au, and Cu surfaces. By utilizing different excitation wavelengths, the distinct behavior of the molecule species on the plasmonic substrates was observed. Density functional theory (DFT) calculations were employed to establish the significant role of chemical enhancement mechanisms in determining the observed behavior. The interaction between 4-aminobenzenethiol (4-ABT) molecules and plasmonic surfaces led to the formation of surface complexes with absorption bands red-shifted into the visible and near-infrared regions. Photochemical transformations were induced by excitation wavelengths from these regions, with the nature of the transformations varying based on the excitation wavelength and the plasmonic metal. Resonance with the electronic absorption transitions of these complexes amplifies surface-enhanced Raman scattering (SERS), enabling the detailed examination of ongoing processes. A kinetic study on the Ag surface revealed processes governed by both first- and second-order kinetics, attributed to the dimerization process and transformation processes of individual molecules interacting with photons or plasmons. The behavior of the molecules was found to be primarily determined by the position and variability of the band between 1170 and 1190 cm-1, with the former corresponding to molecules in the monomer state and the latter to dimerized molecules. Notably, laser-induced dimerization occurred most rapidly on the Cu surface, followed by Ag, and least on Au. These findings highlight the influence of plasmonic surfaces on molecular behavior and provide insights into the potential applications of laser-induced reactions for surface analysis and manipulation.

See more in PubMed

Langer J.; Jimenez de Aberasturi D.; Aizpurua J.; Alvarez-Puebla R. A.; Auguié B.; Baumberg J. J.; Bazan G. C.; Bell S. E.; Boisen A.; Brolo A. G.; et al. Present and future of surface-enhanced Raman scattering. ACS Nano 2019, 14 (1), 28–117. 10.1021/acsnano.9b04224. PubMed DOI PMC

Kurouski D.; Deckert-Gaudig T.; Deckert V.; Lednev I. K. Surface characterization of insulin protofilaments and fibril polymorphs using tip-enhanced Raman spectroscopy (TERS). Biophys. J. 2014, 106 (1), 263–271. 10.1016/j.bpj.2013.10.040. PubMed DOI PMC

Volochanskyi O.; Švecová M.; Prokopec V. Detection and identification of medically important alkaloids using the surface-enhanced Raman scattering spectroscopy. Spectrochim. Acta, Part A 2019, 207, 143–149. 10.1016/j.saa.2018.09.009. PubMed DOI

Kale M. J.; Avanesian T.; Christopher P. Direct photocatalysis by plasmonic nanostructures. ACS Catal. 2014, 4 (1), 116–128. 10.1021/cs400993w. DOI

Geonmonond R. S.; da Silva A. G. M.; Rodrigues T. S.; de Freitas I. C.; Ando R. A.; Alves T. V.; Camargo P. H. Addressing the Effects of Size dependent Absorption, Scattering, and Near field Enhancements in Plasmonic Catalysis. ChemCatChem 2018, 10 (16), 3447–3452. 10.1002/cctc.201800691. DOI

Keller E. L.; Frontiera R. R. Ultrafast nanoscale Raman thermometry proves heating is not a primary mechanism for plasmon-driven photocatalysis. ACS Nano 2018, 12 (6), 5848–5855. 10.1021/acsnano.8b01809. PubMed DOI

Li Z.; Kurouski D. Plasmon-driven chemistry on mono-and bimetallic nanostructures. Acc. Chem. Res. 2021, 54 (10), 2477–2487. 10.1021/acs.accounts.1c00093. PubMed DOI

Xie W.; Zhang K.; Grzeschik R.; Schlücker S.. Synthesis of Plasmonic Nanoparticles for Photo-and Electrocatalysis. Plasmonic Catalysis: From Fundamentals to Applications; Wiley, 2021.

Xie W.; Herrmann C.; Kömpe K.; Haase M.; Schlücker S. Synthesis of bifunctional Au/Pt/Au core/shell nanoraspberries for in situ SERS monitoring of platinum-catalyzed reactions. J. Am. Chem. Soc. 2011, 133 (48), 19302–19305. 10.1021/ja208298q. PubMed DOI

Ren X.; Cao E.; Lin W.; Song Y.; Liang W.; Wang J. Recent advances in surface plasmon-driven catalytic reactions. RSC Adv. 2017, 7 (50), 31189–31203. 10.1039/C7RA05346K. PubMed DOI PMC

Žůrková-Kokošková M.; Šloufová I.; Gajdošová V.; Vlčková B. Plasmon-catalysed decarboxylation of dicarboxybipyridine ligands in Ru (ii) complexes chemisorbed on Ag nanoparticles: conditions, proposed mechanism and role of Ag (0) adsorption sites. Phys. Chem. Chem. Phys. 2022, 24 (24), 15034–15047. 10.1039/D2CP00765G. PubMed DOI

Schütz M.; Steinigeweg D.; Salehi M.; Kömpe K.; Schlücker S. Hydrophilically stabilized gold nanostars as SERS labels for tissue imaging of the tumor suppressor p63 by immuno-SERS microscopy. Chem. Commun. 2011, 47 (14), 4216–4218. 10.1039/c0cc05229a. PubMed DOI

Dendisová M.; Havránek L.; Ončák M.; Matějka P. In situ SERS study of azobenzene derivative formation from 4-aminobenzenethiol on gold, silver, and copper nanostructured surfaces: what is the role of applied potential and used metal?. J. Phys. Chem. C 2013, 117 (41), 21245–21253. 10.1021/jp4040985. DOI

Novák V.; Dendisová M.; Matějka P.; Bouř P. Explanation of surface-enhanced raman scattering intensities of p-aminobenzenethiol by density functional computations. J. Phys. Chem. C 2016, 120 (32), 18275–18280. 10.1021/acs.jpcc.6b05947. DOI

Kim K.; Kim K. L.; Shin D.; Choi J.-Y.; Shin K. S. Surface-enhanced Raman scattering of 4-aminobenzenethiol on Ag and Au: pH dependence of b 2-type bands. J. Phys. Chem. C 2012, 116 (7), 4774–4779. 10.1021/jp211730r. DOI

Kim K.; Yoon J. K.; Lee H. B.; Shin D.; Shin K. S. Surface-enhanced Raman scattering of 4-aminobenzenethiol in Ag sol: relative intensity of a1-and b2-type bands invariant against aggregation of Ag nanoparticles. Langmuir 2011, 27 (8), 4526–4531. 10.1021/la200293b. PubMed DOI

Kim K. L.; Lee S. J.; Kim K. Surface-enhanced Raman scattering of benzyl phenyl sulfide in silver sol: excitation-wavelength-dependent surface-induced photoreaction. J. Phys. Chem. B 2004, 108 (26), 9216–9220. 10.1021/jp049244m. DOI

Shin K. S.; Lee H. S.; Joo S. W.; Kim K. Surface-induced photoreduction of 4-nitrobenzenethiol on Cu revealed by surface-enhanced Raman scattering Spectroscopy. J. Phys. Chem. C 2007, 111 (42), 15223–15227. 10.1021/jp073053c. DOI

Osawa M.; Matsuda N.; Yoshii K.; Uchida I. Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution. J. Phys. Chem. 1994, 98 (48), 12702–12707. 10.1021/j100099a038. DOI

Lombardi J. R.; Birke R. L. A unified approach to surface-enhanced Raman spectroscopy. J. Phys. Chem. C 2008, 112 (14), 5605–5617. 10.1021/jp800167v. DOI

Shin D. Two different behaviors in 4 ABT and 4, 4′ DMAB surface enhanced Raman spectroscopy. J. Raman Spectrosc. 2017, 48 (2), 343–347. 10.1002/jrs.5016. DOI

Vidal-Iglesias F. J.; Solla-Gullon J.; Orts J. M.; Rodes A.; Perez J. M. Spectroelectrochemical study of the photoinduced catalytic formation of 4, 4′-dimercaptoazobenzene from 4-aminobenzenethiol adsorbed on nanostructured copper. J. Phys. Chem. C 2015, 119 (22), 12312–12324. 10.1021/acs.jpcc.5b01245. DOI

Vidal-Iglesias F. J.; Solla-Gullón J.; Rodes A.; Feliu J. M.; Pérez J. Spectroelectrochemical behavior of 4-aminobenzenethiol on nanostructured platinum and silver electrodes. Surf. Sci. 2015, 631, 213–219. 10.1016/j.susc.2014.05.023. DOI

Yamamoto Y. S.; Kayano Y.; Ozaki Y.; Zhang Z.; Kozu T.; Itoh T.; Nakanishi S. Single-Molecule Surface-Enhanced Raman Scattering Spectrum of Non-Resonant Aromatic Amine Showing Raman Forbidden Bands. arXiv 2016, arXiv:1610.08270.10.48550/arXiv.1610.08270. DOI

Merlen A.; Chaigneau M.; Coussan S. Vibrational modes of aminothiophenol: a TERS and DFT study. Phys. Chem. Chem. Phys. 2015, 17 (29), 19134–19138. 10.1039/C5CP01579K. PubMed DOI

Wen P.; Wang Y.; Wang N.; Zhang S.; Peng B.; Deng Z. Preparation and characterization of melamine-formaldehyde/Ag composite microspheres with surface-enhanced Raman scattering and antibacterial activities. J. Colloid Interface Sci. 2018, 531, 544–554. 10.1016/j.jcis.2018.07.014. PubMed DOI

Zhu J.; Wu N.; Zhang F.; Li X.; Li J.; Zhao J. SERS detection of 4-Aminobenzenethiol based on triangular Au-AuAg hierarchical-multishell nanostructure. Spectrochim. Acta, Part A 2018, 204, 754–762. 10.1016/j.saa.2018.06.105. PubMed DOI

Pastorello M.; Sigoli F. A.; Dos Santos D. P.; Mazali I. O. On the use of Au@ Ag core-shell nanorods for SERS detection of Thiram diluted solutions. Spectrochim. Acta, Part A 2020, 231, 118113.10.1016/j.saa.2020.118113. PubMed DOI

Zhong Q.; Zhang R.; Yang B.; Tian T.; Zhang K.; Liu B. A rational designed bioorthogonal surface-enhanced Raman scattering nanoprobe for quantitatively visualizing endogenous hydrogen sulfide in single living cells. ACS Sens. 2022, 7 (3), 893–899. 10.1021/acssensors.1c02711. PubMed DOI

Atkins P. W.; De Paula J.; Keeler J.. Atkins’ Physical Chemistry; Oxford University Press, 2023.

Kelesidis G. A.; Gao D.; Starsich F. H.; Pratsinis S. E. Light Extinction by Agglomerates of Gold Nanoparticles: A Plasmon Ruler for Sub-10 nm Interparticle Distances. Anal. Chem. 2022, 94 (13), 5310–5316. 10.1021/acs.analchem.1c05145. PubMed DOI PMC

Kopal I.; Švecová M.; Plicka M.; Dendisová M. Time dependent investigation of copper colloids SERS-activity. Mater. Today Commun. 2023, 35, 105722.10.1016/j.mtcomm.2023.105722. DOI

Markina N. E.; Ustinov S. N.; Zakharevich A. M.; Markin A. V. Copper nanoparticles for SERS-based determination of some cephalosporin antibiotics in spiked human urine. Anal. Chim. Acta 2020, 1138, 9–17. 10.1016/j.aca.2020.09.016. PubMed DOI

Dutta A.; Schürmann R.; Kogikoski S.; Mueller N. S.; Reich S.; Bald I. Kinetics and mechanism of plasmon-driven dehalogenation reaction of brominated purine nucleobases on Ag and Au. ACS Catal. 2021, 11 (13), 8370–8381. 10.1021/acscatal.1c01851. PubMed DOI PMC

Schürmann R.; Nagel A.; Juergensen S.; Pathak A.; Reich S.; Pacholski C.; Bald I. Microscopic Understanding of Reaction Rates Observed in Plasmon Chemistry of Nanoparticle-Ligand Systems. J. Phys. Chem. C 2022, 126 (11), 5333–5342. 10.1021/acs.jpcc.2c00278. PubMed DOI PMC

Liu Z.; Jiang D.; Yang L.; Yu J.; Li X.; Liu X.; Zhao L.; Zhang X. L.; Han F.; Zhou W.; et al. Plasmon-enhanced Hydrogen evolution reaction kinetics through the strong coupling of Au-O Bond on Au-MoO2 heterostructure nanosheets. Nano Energy 2021, 88, 106302.10.1016/j.nanoen.2021.106302. DOI

Fusco Z.; Catchpole K.; Beck F. J. Investigation of the mechanisms of plasmon-mediated photocatalysis: synergistic contribution of near-field and charge transfer effects. J. Mater. Chem. C 2022, 10 (19), 7511–7524. 10.1039/D2TC00491G. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...