Optogenetic confirmation of transverse-tubular membrane excitability in intact cardiac myocytes
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
422681845
German Research Foundation
871124
European Union's Horizon 2020 research and innovation programme
PubMed
38348881
DOI
10.1113/jp285202
Knihovny.cz E-zdroje
- Klíčová slova
- cardiac electrophysiology, excitation-contraction coupling, imaging,
- MeSH
- akční potenciály fyziologie MeSH
- buněčná membrána MeSH
- kardiomyocyty * metabolismus MeSH
- membránové potenciály MeSH
- optogenetika * MeSH
- sarkolema metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
T-tubules (TT) form a complex network of sarcolemmal membrane invaginations, essential for well-co-ordinated excitation-contraction coupling (ECC) and thus homogeneous mechanical activation of cardiomyocytes. ECC is initiated by rapid depolarization of the sarcolemmal membrane. Whether TT membrane depolarization is active (local generation of action potentials; AP) or passive (following depolarization of the outer cell surface sarcolemma; SS) has not been experimentally validated in cardiomyocytes. Based on the assessment of ion flux pathways needed for AP generation, we hypothesize that TT are excitable. We therefore explored TT excitability experimentally, using an all-optical approach to stimulate and record trans-membrane potential changes in TT that were structurally disconnected, and hence electrically insulated, from the SS membrane by transient osmotic shock. Our results establish that cardiomyocyte TT can generate AP. These AP show electrical features that differ substantially from those observed in SS, consistent with differences in the density of ion channels and transporters in the two different membrane domains. We propose that TT-generated AP represent a safety mechanism for TT AP propagation and ECC, which may be particularly relevant in pathophysiological settings where morpho-functional changes reduce the electrical connectivity between SS and TT membranes. KEY POINTS: Cardiomyocytes are characterized by a complex network of membrane invaginations (the T-tubular system) that propagate action potentials to the core of the cell, causing uniform excitation-contraction coupling across the cell. In the present study, we investigated whether the T-tubular system is able to generate action potentials autonomously, rather than following depolarization of the outer cell surface sarcolemma. For this purpose, we developed a fully optical platform to probe and manipulate the electrical dynamics of subcellular membrane domains. Our findings demonstrate that T-tubules are intrinsically excitable, revealing distinct characteristics of self-generated T-tubular action potentials. This active electrical capability would protect cells from voltage drops potentially occurring within the T-tubular network.
Center for Cell Analysis and Modeling University of Connecticut Farmington CT USA
Department of Experimental and Clinical Medicine University of Florence Florence Italy
Department of Physiology Faculty of Medicine Masaryk University Brno Czech Republic
DZHK Partner Site Berlin Berlin Germany
European Laboratory for Non Linear Spectroscopy LENS Sesto Fiorentino Italy
Institute of Clinical Physiology National Research Council Florence Italy
Institute of Neuroscience and Department of Biomedical Science University of Padua Padua Italy
Institute of Thermomechanics Czech Academy of Science Prague Czech Republic
Zobrazit více v PubMed
Anumonwo, J. M. B., Tallini, Y. N., Vetter, F. J., & Jalife, J.osé (2001). Action potential characteristics and arrhythmogenic properties of the cardiac conduction system of the murine heart. Circulation Research, 89(4), 329-335.
Berry, R., Despa, S., Fuller, W., Bers, D., & Shattock, M. (2007). Differential distribution and regulation of mouse cardiac Na+/K+-ATPase alpha1 and alpha2 subunits in T-tubule and surface sarcolemmal membranes. Cardiovascular Research, 73(1), 92-100.
Bers, D. M. (2002). Cardiac excitation-contraction coupling. Nature, 415(6868), 198-205.
Bondarenko, V. E., Szigeti, G. P., Bett, G. C. L., Kim, S.-J., & Rasmusson, R. L. (2004). Computer model of action potential of mouse ventricular myocytes. American Journal of Physiology-Heart and Circulatory Physiology, 287(3), H1378-H1403.
Bossuyt, J., Despa, S., Han, F., Hou, Z., Robia, S. L., Lingrel, J. B., & Bers, D. M. (2009). Isoform specificity of the Na/K-ATPase association and regulation by phospholemman. The Journal of Biological Chemistry, 284(39), 26749-26757.
Brandenburg, S., Kohl, T., Williams, G. S. B., Gusev, K., Wagner, E., Rog-Zielinska, E. A., Hebisch, E., Dura, M., Didié, M., Gotthardt, M., Nikolaev, V. O., Hasenfuss, G., Kohl, P., Ward, C. W., Lederer, W. J., & Lehnart, S. E. (2016). Axial tubule junctions control rapid calcium signaling in atria. The Journal of Clinical Investigation, 126(10), 3999-4015.
Brandenburg, S., Pawlowitz, J., Fakuade, F. E., Kownatzki-Danger, D., Kohl, T., Mitronova, G. Y., Scardigli, M., Neef, J., Schmidt, C., Wiedmann, F., Pavone, F. S., Sacconi, L., Kutschka, I., Sossalla, S., Moser, T., Voigt, N., & Lehnart, S. E. (2018). Axial tubule junctions activate atrial Ca(2+) release across species. Frontiers in Physiology, 9, 1227.
Brette, F., & Orchard, C. H. (2006). No apparent requirement for neuronal sodium channels in excitation-contraction coupling in rat ventricular myocytes. Circulation Research, 98(5), 667-674.
Bruegmann, T., Malan, D., Hesse, M., Beiert, T., Fuegemann, C. J., Fleischmann, B. K., & Sasse, P. (2010). Optogenetic control of heart muscle in vitro and in vivo. Nature Methods, 7(11), 897-900.
Clark, R. B., Tremblay, A., Melnyk, P., Allen, B. G., Giles, W. R., & Fiset, C. (2001). T-tubule localization of the inward-rectifier K(+) channel in mouse ventricular myocytes: A role in K(+) accumulation. The Journal of Physiology, 537(3), 979-992.
Crocini, C., Coppini, R., Ferrantini, C., Yan, P., Loew, L. M., Tesi, C., Cerbai, E., Poggesi, C., Pavone, F. S., & Sacconi, L. (2014). Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure. Proceedings of the National Academy of Sciences, 111(42), 15196-15201.
Crocini, C., Ferrantini, C., Scardigli, M., Coppini, R., Mazzoni, L., Lazzeri, E., Pioner, J. M., Scellini, B., Guo, A., Song, L. S., Yan, P., Loew, L. M., Tardiff, J., Tesi, C., Vanzi, F., Cerbai, E., Pavone, F. S., Sacconi, L., & Poggesi, C. (2016). Novel insights on the relationship between T-tubular defects and contractile dysfunction in a mouse model of hypertrophic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 91, 42-51.
Despa, S., & Bers, D. M. (2007). Functional analysis of Na+/K+-ATPase isoform distribution in rat ventricular myocytes. American Journal of Physiology-Cell Physiology, 293(1), C321-C327.
Drobizhev, M., Makarov, N. S., Tillo, S. E., Hughes, T. E., & Rebane, A. (2011). Two-photon absorption properties of fluorescent proteins. Nature Methods, 8(5), 393-399.
Ferrantini, C., Coppini, R., Sacconi, L., Tosi, B., Zhang, M. L., Wang, G. L., De Vries, E., Hoppenbrouwers, E., Pavone, F., Cerbai, E., Tesi, C., Poggesi, C., & Ter Keurs, H. E. D. J. (2014). Impact of detubulation on force and kinetics of cardiac muscle contraction. Journal of General Physiology, 143(6), 783-797.
Forbes, M. S., Hawkey, L. A., & Sperelakis, N. (1984). The transverse-axial tubular system (TATS) of mouse myocardium: Its morphology in the developing and adult animal. American Journal of Anatomy, 170(2), 143-162.
Franzini-Armstrong, C., Venosa, R. A., & Horowicz, P. (1973). Morphology and accessibility of the ‘transverse’ tubular system in frog sartorius muscle after glycerol treatment. The Journal of Membrane Biology, 14(1), 197-212.
Gadeberg, H. C., Kong, C. H. T., Bryant, S. M., James, A. F., & Orchard, C. H. (2017a). Sarcolemmal distribution of I(Ca) and I(NCX) and Ca(2+) autoregulation in mouse ventricular myocytes. American Journal of Physiology-Heart and Circulatory Physiology, 313(1), H190-H199.
Gadeberg, H. C., Kong, C. H. T., Bryant, S. M., James, A. F., & Orchard, C. H. (2017b). Sarcolemmal distribution of ICa and INCX and Ca(2+) autoregulation in mouse ventricular myocytes. American Journal of Physiology-Heart and Circulatory Physiology, 313(1), H190-H199.
Guo, A., & Song, L.-S. (2014). AutoTT: Automated detection and analysis of T-tubule architecture in cardiomyocytes. Biophysical Journal, 106(12), 2729-2736.
Guo, W., Li, H., London, B., & Nerbonne, J. M. (2000). Functional consequences of elimination of i(to,f) and i(to,s): Early afterdepolarizations, atrioventricular block, and ventricular arrhythmias in mice lacking Kv1.4 and expressing a dominant-negative Kv4 alpha subunit. Circulation Research, 87(1), 73-79.
Guo, W., Xu, H., London, B., & Nerbonne, J. M. (1999). Molecular basis of transient outward K+ current diversity in mouse ventricular myocytes. The Journal of Physiology, 521(Pt 3), 587-599.
Hochbaum, D. R., Zhao, Y., Farhi, S. L., Klapoetke, N., Werley, C. A., Kapoor, V., Zou, P., Kralj, J. M., Maclaurin, D., Smedemark-Margulies, N., Saulnier, J. L., Boulting, G. L., Straub, C., Cho, Y. K.u, Melkonian, M., Wong, G. K.a-S., Harrison, D. J., Murthy, V. N., Sabatini, B. L., Boyden, E. S., Campbell, R. E., & Cohen, A. E. (2014). All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nature Methods, 11(8), 825-833.
Ibrahim, M., Gorelik, J., Yacoub, M. H., & Terracciano, C. M. (2011). The structure and function of cardiac t-tubules in health and disease. Proceedings Biological Sciences, 278, 2714-2723.
Ito, K., Yan, X., Tajima, M., Su, Z., Barry, W. H., & Lorell, B. H. (2000). Contractile reserve and intracellular calcium regulation in mouse myocytes from normal and hypertrophied failing hearts. Circulation Research, 87(7), 588-595.
Kawai, M., Hussain, M., & Orchard, C. H. (1999). Excitation-contraction coupling in rat ventricular myocytes after formamide-induced detubulation. The American Journal of Physiology, 277, H603-609.
Kong, C. H. T., Rog-Zielinska, E. A., Kohl, P., Orchard, C. H., & Cannell, M. B. (2018). Solute movement in the t-tubule system of rabbit and mouse cardiomyocytes. Proceedings of the National Academy of Sciences, 115(30), E7073-E7080.
Macdonald, W. A., & Stephenson, D. G. (2004). Effects of ADP on action potential-induced force responses in mechanically skinned rat fast-twitch fibres. The Journal of Physiology, 559(2), 433-447.
Maier, S. K. G., Westenbroek, R. E., Mccormick, K. A., Curtis, R., Scheuer, T., & Catterall, W. A. (2004). Distinct subcellular localization of different sodium channel alpha and beta subunits in single ventricular myocytes from mouse heart. Circulation, 109(11), 1421-1427.
Maier, S. K. G., Westenbroek, R. E., Schenkman, K. A., Feigl, E. O., Scheuer, T., & Catterall, W. A. (2002). An unexpected role for brain-type sodium channels in coupling of cell surface depolarization to contraction in the heart. Proceedings of the National Academy of Sciences of the United States of America, 99(6), 4073-4078.
Moench, I., & Lopatin, A. N. (2014). Ca(2+) homeostasis in sealed t-tubules of mouse ventricular myocytes. Journal of Molecular and Cellular Cardiology, 72, 374-383.
Morotti, S., Edwards, A. G., Mcculloch, A. D., Bers, D. M., & Grandi, E. (2014). A novel computational model of mouse myocyte electrophysiology to assess the synergy between Na+ loading and CaMKII. The Journal of Physiology, 592(6), 1181-1197.
Nyns, E. C. A., Kip, A., Bart, C. I., Plomp, J. J., Zeppenfeld, K., Schalij, M. J., de Vries, A. A. F., & Pijnappels, D. A. (2017). Optogenetic termination of ventricular arrhythmias in the whole heart: Towards biological cardiac rhythm management. European Heart Journal, 38, 2132-2136.
Ortenblad, N., & Stephenson, D. G. (2003). A novel signalling pathway originating in mitochondria modulates rat skeletal muscle membrane excitability. The Journal of Physiology, 548, 139-145.
Pandit, S. V. (2003). Electrical Activity in Murine Ventricular Myocytes: Simulation Studies. Chapter 5: Ionic Basis of Cardiac Repolarization in Mouse: Quantitative Insights.
Pásek, M., Šimurda, J., Bébarová, M., & Christé, G. (2021). Divergent estimates of the ratio between Na+-Ca2+ current densities in t-tubular and surface membranes of rat ventricular cardiomyocytes. Journal of Cell Science, 134(14), jcs258228.
Pasek, M., Simurda, J., & Christe, G. (2006). The functional role of cardiac T-tubules explored in a model of rat ventricular myocytes. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 364, 1187-1206.
Pásek, M., Šimurda, J., & Christé, G. (2017). Different Densities of Na-Ca exchange current in T-Tubular and surface membranes and their impact on cellular activity in a model of rat ventricular cardiomyocyte. BioMed Research International, 2017, 6343821.
Pedersen, T. H., De Paoli, F., & Nielsen, O. B. (2005). Increased excitability of acidified skeletal muscle: Role of chloride conductance. Journal of General Physiology, 125(2), 237-246.
Posterino, G. S., Lamb, G. D., & Stephenson, D. G. (2000). Twitch and tetanic force responses and longitudinal propagation of action potentials in skinned skeletal muscle fibres of the rat. The Journal of Physiology, 527(Pt 1), 131-137.
Pulicherla, N., Shen, S., Yadav, S., Debbink, K., Govindasamy, L., Agbandje-Mckenna, M., & Asokan, A. (2011). Engineering liver-detargeted AAV9 vectors for cardiac and musculoskeletal gene transfer. Molecular Therapy, 19(6), 1070-1078.
Richards, M. A., Clarke, J. D., Saravanan, P., Voigt, N., Dobrev, D., Eisner, D. A., Trafford, A. W., & Dibb, K. M. (2011). Transverse tubules are a common feature in large mammalian atrial myocytes including human. American Journal of Physiology-Heart and Circulatory Physiology, 301(5), H1996-H2005.
Sacconi, L., Ferrantini, C., Lotti, J., Coppini, R., Yan, P., Loew, L. M., Tesi, C., Cerbai, E., Poggesi, C., & Pavone, F. S. (2012). Action potential propagation in transverse-axial tubular system is impaired in heart failure. Proceedings of the National Academy of Sciences, 109(15), 5815-5819.
Scardigli, M., Crocini, C., Ferrantini, C., Gabbrielli, T., Silvestri, L., Coppini, R., Tesi, C., Rog-Zielinska, E. A., Kohl, P., Cerbai, E., Poggesi, C., Pavone, F. S., & Sacconi, L. (2017). Quantitative assessment of passive electrical properties of the cardiac T-tubular system by FRAP microscopy. Proceedings of the National Academy of Sciences, 114(22), 5737-5742.
Swift, F., Tovsrud, N., Enger, U., Sjaastad, I., & Sejersted, O. (2007). The Na+/K+-ATPase alpha2-isoform regulates cardiac contractility in rat cardiomyocytes. Cardiovascular Research, 75(1), 109-117.
Thomas, M. (2003). Localization and function of the Na+/Ca2+-exchanger in normal and detubulated rat cardiomyocytes. Journal of Molecular and Cellular Cardiology, 35(11), 1325-1337.
Tidball, J. G., Cederdahl, J. E., & Bers, D. M. (1991). Quantitative analysis of regional variability in the distribution of transverse tubules in rabbit myocardium. Cell and Tissue Research, 264(2), 293-298.
Vermij, S. H., Abriel, H., & Kucera, J. P. (2020). A fundamental evaluation of the electrical properties and function of cardiac transverse tubules. Biochimica et biophysica acta Molecular Cell Research, 1867(3), 118502.
Yan, P., Acker, C. D., Zhou, W.-L., Lee, P., Bollensdorff, C., Negrean, A., Lotti, J., Sacconi, L., Antic, S. D., Kohl, P., Mansvelder, H. D., Pavone, F. S., & Loew, L. M. (2012). Palette of fluorinated voltage-sensitive hemicyanine dyes. Proceedings of the National Academy of Sciences of the United States of America, 109(50), 20443-20448.
Zaglia, T., Pianca, N., Borile, G., Da Broi, F., Richter, C., Campione, M., Lehnart, S. E., Luther, S., Corrado, D., Miquerol, L., & Mongillo, M. (2015). Optogenetic determination of the myocardial requirements for extrasystoles by cell type-specific targeting of ChannelRhodopsin-2. Proceedings of the National Academy of Sciences of the United States of America, 112, E4495-4504.