'Intracytoplasmic sperm injection (ICSI) paradox' and 'andrological ignorance': AI in the era of fourth industrial revolution to navigate the blind spots
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu dopisy
PubMed
38350931
PubMed Central
PMC10863146
DOI
10.1186/s12958-024-01193-y
PII: 10.1186/s12958-024-01193-y
Knihovny.cz E-zdroje
- Klíčová slova
- Andrology, Artificial intelligence, Assisted reproductive technology, Industrial revolution 4.0, Intracytoplasmic sperm injection, Male infertility,
- MeSH
- asistovaná reprodukce MeSH
- intracytoplazmatické injekce spermie * MeSH
- lidé MeSH
- mužská infertilita * diagnóza genetika terapie MeSH
- sperma MeSH
- umělá inteligence MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- dopisy MeSH
The quandary known as the Intracytoplasmic Sperm Injection (ICSI) paradox is found at the juncture of Assisted Reproductive Technology (ART) and 'andrological ignorance' - a term coined to denote the undervalued treatment and comprehension of male infertility. The prevalent use of ICSI as a solution for severe male infertility, despite its potential to propagate genetically defective sperm, consequently posing a threat to progeny health, illuminates this paradox. We posit that the meteoric rise in Industrial Revolution 4.0 (IR 4.0) and Artificial Intelligence (AI) technologies holds the potential for a transformative shift in addressing male infertility, specifically by mitigating the limitations engendered by 'andrological ignorance.' We advocate for the urgent need to transcend andrological ignorance, envisaging AI as a cornerstone in the precise diagnosis and treatment of the root causes of male infertility. This approach also incorporates the identification of potential genetic defects in descendants, the establishment of knowledge platforms dedicated to male reproductive health, and the optimization of therapeutic outcomes. Our hypothesis suggests that the assimilation of AI could streamline ICSI implementation, leading to an overall enhancement in the realm of male fertility treatments. However, it is essential to conduct further investigations to substantiate the efficacy of AI applications in a clinical setting. This article emphasizes the significance of harnessing AI technologies to optimize patient outcomes in the fast-paced domain of reproductive medicine, thereby fostering the well-being of upcoming generations.
Basic Medical Sciences Department College of Medicine Ajman University Ajman UAE
Department of Biomedical Sciences College of Medicine Gulf Medical University Ajman UAE
Department of Life Science and Bioinformatics Assam University Silchar India
Faculty of Medicine Bioscience and Nursing MAHSA University Kuala Lumpur Malaysia
S H Ho Urology Centre Department of Surgery The Chinese University of Hong Kong Hong Kong China
Zobrazit více v PubMed
White SV. Interview with a Quality Leader: Kent bottles, MD, President of ICSI, on transforming care for the future. J Healthc Qual. 2010;32(4):31–8. doi: 10.1111/j.1945-1474.2010.00103.x. PubMed DOI
Varghese AC, Goldberg E, Agarwal A. Current and future perspectives on intracytoplasmic sperm injection: a critical commentary. Reprod Biomed Online. 2007;15(6):719–27. doi: 10.1016/S1472-6483(10)60540-8. PubMed DOI
Palermo GD, Neri QV, Schlegel PN, Rosenwaks Z. Intracytoplasmic sperm injection (ICSI) in extreme cases of male infertility. PLoS ONE. 2014;9(12):e113671. doi: 10.1371/journal.pone.0113671. PubMed DOI PMC
Stephens SM, Arnett DM, Meacham RB. The use of in vitro fertilization in the management of male infertility: what the urologist needs to know. Rev Urol. 2013;15(4):154. PubMed PMC
Group CCW. The current status and future of andrology: a consensus report from the Cairo workshop group. Andrology. 2020;8(1):27–52. doi: 10.1111/andr.12720. PubMed DOI
Davies MJ, Rumbold AR, Marino JL, Willson K, Giles L, Whitrow MJ, et al. Maternal factors and the risk of birth defects after IVF and ICSI: a whole of population cohort study. BJOG: Int J Obstet Gynecol. 2017;124(10):1537–44. doi: 10.1111/1471-0528.14365. PubMed DOI
Bhattacharya S, Hamilton M, Shaaban M, Khalaf Y, Seddler M, Ghobara T, et al. Conventional in-vitro fertilisation versus intracytoplasmic sperm injection for the treatment of non-male-factor infertility: a randomised controlled trial. Lancet. 2001;357(9274):2075–9. doi: 10.1016/S0140-6736(00)05179-5. PubMed DOI
Foong SC, Fleetham JA, O’Keane JA, Scott SG, Tough SC, Greene CA. A prospective randomized trial of conventional in vitro fertilization versus intracytoplasmic sperm injection in unexplained infertility. J Assist Reprod Genet. 2006;23:137–40. doi: 10.1007/s10815-005-9008-y. PubMed DOI PMC
Keating D, Cheung S, Parrella A, Xie P, Rosenwaks Z, Palermo GD. ICSI from the beginning to where we are today: are we abusing ICSI? Global Reproductive Health. 2019;4(3):e35. doi: 10.1097/GRH.0000000000000035. DOI
Glenn TL, Kotlyar AM, Seifer DB. The impact of intracytoplasmic sperm injection in non-male factor infertility—a critical review. J Clin Med. 2021;10(12):2616. doi: 10.3390/jcm10122616. PubMed DOI PMC
Li Z, Wang A, Bowman M, Hammarberg K, Farquhar C, Johnson L, et al. ICSI does not increase the cumulative live birth rate in non-male factor infertility. Hum Reprod. 2018;33(7):1322–30. doi: 10.1093/humrep/dey118. PubMed DOI
Feldman B, Aizer A, Brengauz M, Dotan K, Levron J, Schiff E, et al. Pre-implantation genetic diagnosis—should we use ICSI for all? J Assist Reprod Genet. 2017;34:1179–83. doi: 10.1007/s10815-017-0966-7. PubMed DOI PMC
Franco JG., Jr Seven reasons to be concerned about the use of the new preimplantation genetic screening (PGS) JBRA Assist Reprod. 2015;19(4):189–91. doi: 10.5935/1518-0557.20150037. PubMed DOI
Hameed BZ, Dhavileswarapu S, Raza AV, Karimi SZ, Khanuja H, Shetty HS. Artificial intelligence and its impact on urological diseases and management: a comprehensive review of the literature. J Clin Med. 2021;10(9):1864. doi: 10.3390/jcm10091864. PubMed DOI PMC
Pedrosa ML, Furtado MH, Ferreira MCF, Carneiro MM. Sperm selection in IVF: the long and winding road from bench to bedside. JBRA Assist Reprod. 2020;24(3):332. PubMed PMC
Sengupta P, Cho C-L. The pathophysiology of male infertility. Male infertility in Reproductive Medicine. CRC; 2019. pp. 1–9.
Dada R, Kumar M, Jesudasan R, Fernández JL, Gosálvez J, Agarwal A. Epigenetics and its role in male infertility. J Assist Reprod Genet. 2012;29:213–23. doi: 10.1007/s10815-012-9715-0. PubMed DOI PMC
Sengupta P, Dutta S, Karkada IR, Chinni SV. Endocrinopathies and male infertility. Life. 2021;12(1):10. doi: 10.3390/life12010010. PubMed DOI PMC
Sengupta P, Dutta S, Alahmar AT. Reproductive tract infection, inflammation and male infertility. Chem Biology Lett. 2020;7(2):75–84.
Sengupta P, Banerjee R. Environmental toxins: alarming impacts of pesticides on male fertility. Hum Exp Toxicol. 2014;33(10):1017–39. doi: 10.1177/0960327113515504. PubMed DOI
Ilacqua A, Izzo G, Emerenziani GP, Baldari C, Aversa A. Lifestyle and fertility: the influence of stress and quality of life on male fertility. Reproductive Biology Endocrinol. 2018;16:1–11. doi: 10.1186/s12958-018-0436-9. PubMed DOI PMC
Javaid M, Haleem A. Industry 4.0 applications in medical field: a brief review. Curr Med Res Pract. 2019;9(3):102–9. doi: 10.1016/j.cmrp.2019.04.001. DOI
de Brás B, Martins L, Metello JL, Ferreira FL, Ferreira P, Fonseca JM. Application of artificial intelligence algorithms to estimate the success rate in medically assisted procreation. Reproductive Med. 2020;1(3):181–94. doi: 10.3390/reprodmed1030014. DOI
Dimitriadis I, Zaninovic N, Badiola AC, Bormann CL. Artificial intelligence in the embryology laboratory: a review. Reprod Biomed Online. 2022;44(3):435–48. doi: 10.1016/j.rbmo.2021.11.003. PubMed DOI
Zaninovic N, Rosenwaks Z. Artificial intelligence in human in vitro fertilization and embryology. Fertil Steril. 2020;114(5):914–20. doi: 10.1016/j.fertnstert.2020.09.157. PubMed DOI
Monteiro M, Thomas D, Maillot R, Simon Z, Björndahl L, Flanagan J, et al. P–105 clinical validation of mojo AISA, an artificial intelligence robotic CASA system. Hum Reprod. 2021;36(Supplement1):deab130.
Parrella A, Ortega-López L, Briones YG, Amorós IV, Aizpurua J. Enhancing the accuracy of semen analysis with artificial intelligence-based technology. Fertil Steril. 2021;116(3):e189–e90. doi: 10.1016/j.fertnstert.2021.07.518. DOI
Riordon J, McCallum C, Sinton D. Deep learning for the classification of human sperm. Comput Biol Med. 2019;111:103342. doi: 10.1016/j.compbiomed.2019.103342. PubMed DOI