Stereoselective Reduction of Steroidal 4-Ene-3-ketones in the Presence of Biomass-Derived Ionic Liquids Leading to Biologically Important 5β-Steroids
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38371788
PubMed Central
PMC10870401
DOI
10.1021/acsomega.3c08963
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The stereoselective reduction of the steroidal 4-ene-3-ketone moiety (enone) affords the 5β-steroid backbone that is a key structural element of biologically important neuroactive steroids. Neurosteroids have been currently studied as novel and potent central nervous system drug-like compounds for the treatment of, e.g., postpartum depression. As a green methodology, we studied the palladium-catalyzed hydrogenation of steroidal 4-ene-3-ketones in the presence of ionic liquids derived from natural carboxylic acids. The hydrogenation proceeds with improved 5β-selectivity in the presence of tetrabutylammonium carboxylates as additives compared to the exclusive use of an organic solvent. Under optimal conditions, using tetrabutylammonium d-mandelate, the reduction of testosterone led to 5β-dihydrotestosterone in high yield and stereoselectivity and no byproduct formation was observed. Moreover, the catalyst could be recycled. The presence of additional substituents on the steroid backbone showed a significant effect on the 5β-selectivity.
Zobrazit více v PubMed
Hallett J. P.; Welton T. Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis. 2. Chem. Rev. 2011, 111 (5), 3508–3576. 10.1021/cr1003248. PubMed DOI
Plechkova N. V.; Seddon K. R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 2008, 37 (1), 123–150. 10.1039/B006677J. PubMed DOI
Greer A. J.; Jacquemin J.; Hardacre C. Industrial Applications of Ionic Liquids. Molecules 2020, 25 (21), 5207.10.3390/molecules25215207. PubMed DOI PMC
Docherty K. M.; Kulpa J. C. F. Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem. 2005, 7 (4), 185–189. 10.1039/B419172B. DOI
Stolte S.; Arning J.; Bottin-Weber U.; Matzke M.; Stock F.; Thiele K.; Uerdingen M.; Welz-Biermann U.; Jastorff B.; Ranke J. Anion effects on the cytotoxicity of ionic liquids. Green Chem. 2006, 8 (7), 621–629. 10.1039/b602161a. DOI
Hulsbosch J.; De Vos D. E.; Binnemans K.; Ameloot R. Biobased Ionic Liquids: Solvents for a Green Processing Industry?. ACS Sustainable Chem. Eng. 2016, 4 (6), 2917–2931. 10.1021/acssuschemeng.6b00553. DOI
Kirchhecker S.; Esposito D. Amino acid based ionic liquids: A green and sustainable perspective. Curr. Opin. Green Sustainable Chem. 2016, 2, 28–33. 10.1016/j.cogsc.2016.09.001. DOI
Abedi E.; Hashemi S. M. B. Lactic acid production - producing microorganisms and substrates sources-state of art. Heliyon 2020, 6 (10), e0497410.1016/j.heliyon.2020.e04974. PubMed DOI PMC
Ferlin N.; Courty M.; Gatard S.; Spulak M.; Quilty B.; Beadham I.; Ghavre M.; Haiß A.; Kümmerer K.; Gathergood N.; Bouquillon S. Biomass derived ionic liquids: synthesis from natural organic acids, characterization, toxicity, biodegradation and use as solvents for catalytic hydrogenation processes. Tetrahedron 2013, 69 (30), 6150–6161. 10.1016/j.tet.2013.05.054. DOI
Hayouni S.; Robert A.; Ferlin N.; Amri H.; Bouquillon S. New biobased tetrabutylphosphonium ionic liquids: synthesis, characterization and use as a solvent or co-solvent for mild and greener Pd-catalyzed hydrogenation processes. RSC Adv. 2016, 6 (114), 113583–113595. 10.1039/C6RA23056C. DOI
Yarolimek M. R.; Kennemur J. G. Exploration of mandelic acid-based polymethacrylates: Synthesis, properties, and stereochemical effects. J. Polym. Sci. 2020, 58 (23), 3349–3357. 10.1002/pol.20200638. DOI
Prechtl M. H. G.; Scholten J. D.; Neto B. A. D.; Dupont J. Application of Chiral Ionic Liquids for Asymmetric Induction in Catalysis. Curr. Org. Chem. 2009, 13 (13), 1259–1277. 10.2174/138527209789055153. DOI
Dupont J.; de Souza R. F.; Suarez P. A. Z. Ionic Liquid (Molten Salt) Phase Organometallic Catalysis. Chem. Rev. 2002, 102 (10), 3667–3692. 10.1021/cr010338r. PubMed DOI
Migowski P.; Dupont J. Catalytic Applications of Metal Nanoparticles in Imidazolium Ionic Liquids. Chem. - Eur. J. 2007, 13 (1), 32–39. 10.1002/chem.200601438. PubMed DOI
Baulieu E. E.Steroid Hormones in the Brain: Several Mechanisms?. In Steroid Hormone Regulation of the Brain; Fuxe K.; Gustafsson J.-Å.; Wetterberg L., Eds.; Elsevier: Pergamon, 1981; pp 3–14.
Baulieu E. E. Neurosteroids: a novel function of the brain. Psychoneuroendocrinology 1998, 23 (8), 963–987. 10.1016/S0306-4530(98)00071-7. PubMed DOI
Celotti F.; Negri-Cesi P.; Poletti A. Steroid Metabolism in the Mammalian Brain: 5Alpha-Reduction and Aromatization. Brain Res. Bull. 1997, 44 (4), 365–375. 10.1016/S0361-9230(97)00216-5. PubMed DOI
MacNevin C. J.; Atif F.; Sayeed I.; Stein D. G.; Liotta D. C. Development and Screening of Water-Soluble Analogues of Progesterone and Allopregnanolone in Models of Brain Injury. J. Med. Chem. 2009, 52 (19), 6012–6023. 10.1021/jm900712n. PubMed DOI
Nishimura S.; Shimahara M.; Shiota M. Stereochemistry of the Palladium-Catalyzed Hydrogenation of 3-Oxo-4-ene Steroids. J. Org. Chem. 1966, 31 (7), 2394–2395. 10.1021/jo01345a507. PubMed DOI
Pataki J.; Rosenkranz G.; Djerassi C. Steroids: XXX. Partial Synthesis of Allopregnane-3β,11β,21-TRIOL-20-One and Allopregnane-3β,11β,17α,21-Tetrol-20-One. J. Biol. Chem. 1952, 195 (2), 751–754. 10.1016/S0021-9258(18)55785-9. PubMed DOI
Parr M. K.; Zapp J.; Becker M.; Opfermann G.; Bartz U.; Schänzer W. Steroidal isomers with uniform mass spectra of their per-TMS derivatives: Synthesis of 17-hydroxyandrostan-3-ones, androst-1-, and −4-ene-3,17-diols. Steroids 2007, 72 (6), 545–551. 10.1016/j.steroids.2007.03.006. PubMed DOI
Caspi E. Degradation of Corticosteroids. III.1,2 Catalytic Hydrogenation of Cortisol. J. Org. Chem. 1959, 24 (5), 669–673. 10.1021/jo01087a027. DOI
Meshkat S.; Teopiz K. M.; Di Vincenzo J. D.; Bailey J. B. B.; Rosenblat J. D.; Ho R. C.; Rhee T. G.; Ceban F.; Kwan A. T. H.; Cao B.; McIntyre R. S. Clinical efficacy and safety of Zuranolone (SAGE-217) in individuals with major depressive disorder. J. Affective Disord. 2023, 340, 893.10.1016/j.jad.2023.08.027. PubMed DOI
Pinna G.; Almeida F. B.; Davis J. M. Allopregnanolone in Postpartum Depression. Front. Glob. Womens Health 2022, 3, 82361610.3389/fgwh.2022.823616. PubMed DOI PMC
Cornett E. M.; Rando L.; Labbé A. M.; Perkins W.; Kaye A. M.; Kaye A. D.; Viswanath O.; Urits I. Brexanolone to Treat Postpartum Depression in Adult Women. Psychopharmacol Bull. 2021, 51 (2), 115–130. PubMed PMC
Lamb Y. N. Ganaxolone: First Approval. Drugs 2022, 82 (8), 933–940. 10.1007/s40265-022-01724-0. PubMed DOI
Ferlin N.; Courty M.; Van Nhien A. N.; Gatard S.; Pour M.; Quilty B.; Ghavre M.; Haiß A.; Kümmerer K.; Gathergood N.; Bouquillon S. Tetrabutylammonium prolinate-based ionic liquids: a combined asymmetric catalysis, antimicrobial toxicity and biodegradation assessment. RSC Adv. 2013, 3 (48), 26241–26251. 10.1039/c3ra43785j. DOI
Kudova E.; Chodounska H.; Slavikova B.; Budesinsky M.; Nekardova M.; Vyklicky V.; Krausova B.; Svehla P.; Vyklicky L. A New Class of Potent N-Methyl-D-Aspartate Receptor Inhibitors: Sulfated Neuroactive Steroids with Lipophilic D-Ring Modifications. J. Med. Chem. 2015, 58 (15), 5950–5966. 10.1021/acs.jmedchem.5b00570. PubMed DOI
Tungler A.; Máthé T.; Petró J.; Tarnai T. Enantioselective hydrogenation of isophorone. J. Mol. Catal. 1990, 61 (3), 259–267. 10.1016/0304-5102(90)80001-Y. DOI
Tzani A.; Karadendrou M.-A.; Kalafateli S.; Kakokefalou V.; Detsi A. Current Trends in Green Solvents: Biocompatible Ionic Liquids. Crystals 2022, 12 (12), 1776.10.3390/cryst12121776. DOI
Mori K.; Abe K.; Washida M.; Nishimura S.; Shiota M. Stereochemistry of the palladium-catalyzed hydrogenation of 3-oxo-4-ene steroids. III. Effects of the functional groups at C-11, C-17, and C-20 on the hydrogenation. J. Org. Chem. 1971, 36 (1), 231–233. 10.1021/jo00800a059. PubMed DOI
Tsuji N.; Suzuki J.; Shiota M.; Takahashi I.; Nishimura S. Highly stereoselective hydrogenation of 3-oxo-4-ene and −1,4-diene steroids to 5β compounds with palladium catalyst. J. Org. Chem. 1980, 45 (13), 2729–2731. 10.1021/jo01301a043. DOI
Sidova R.; Stransky K.; Kasal A.; Slavikova B.; Kohout L. On steroids - Part CCCXCVII - Long-range effect of 17-substituents in 3-oxo steroids on 4,5-double bond hydrogenation. Collect. Czech. Chem. Commun. 1998, 63 (10), 1528–1542. 10.1135/cccc19981528. DOI
Ballesteros-Soberanas J.; Carrasco J. A.; Leyva-Pérez A. Parts-Per-Million of Soluble Pd0 Catalyze the Semi-Hydrogenation Reaction of Alkynes to Alkenes. J. Org. Chem. 2023, 88 (1), 18–26. 10.1021/acs.joc.2c00616. PubMed DOI PMC
Le Bras J.; Mukherjee D. K.; González S.; Tristany M.; Ganchegui B.; Moreno-Mañas M.; Pleixats R.; Hénin F.; Muzart J. Palladium nanoparticles obtained from palladium salts and tributylamine in molten tetrabutylammonium bromide: their use for hydrogenolysis-free hydrogenation of olefins. New J. Chem. 2004, 28 (12), 1550–1553. 10.1039/B409604E. DOI
Mukherjee D. Potential application of palladium nanoparticles as selective recyclable hydrogenation catalysts. J. Nanopart. Res. 2008, 10 (3), 429–436. 10.1007/s11051-007-9270-2. DOI
Umpierre A. P.; Machado G.; Fecher G. H.; Morais J.; Dupont J. Selective Hydrogenation of 1,3-Butadiene to 1-Butene by Pd(0) Nanoparticles Embedded in Imidazolium Ionic Liquids. Adv. Synth. Catal. 2005, 347 (10), 1404–1412. 10.1002/adsc.200404313. DOI
Migowski P.; Lozano P.; Dupont J. Imidazolium based ionic liquid-phase green catalytic reactions. Green Chem. 2023, 25 (4), 1237–1260. 10.1039/D2GC04749G. DOI
Ramachary D. B.; Sakthidevi R.; Reddy P. S. Direct organocatalytic stereoselective transfer hydrogenation of conjugated olefins of steroids. RSC Adv. 2013, 3 (32), 13497–13506. 10.1039/c3ra41519h. DOI
Song T.; Ma Z.; Yang Y. Chemoselective Hydrogenation of α,β-Unsaturated Carbonyls Catalyzed by Biomass-Derived Cobalt Nanoparticles in Water. ChemCatChem 2019, 11 (4), 1313–1319. 10.1002/cctc.201801987. DOI
Singh C.; Hassam M.; Verma V. P.; Singh A. S.; Naikade N. K.; Puri S. K.; Maulik P. R.; Kant R. Bile acid-based 1,2,4-trioxanes: synthesis and antimalarial assessment. J. Med. Chem. 2012, 55 (23), 10662–10673. 10.1021/jm301323k. PubMed DOI
Trafalis D.; Geromichalou E.; Dalezis P.; Nikoleousakos N.; Sarli V. Synthesis and evaluation of new steroidal lactam conjugates with aniline mustards as potential antileukemic therapeutics. Steroids 2016, 115, 1–8. 10.1016/j.steroids.2016.07.009. PubMed DOI
Allen C. R.; Richard P. L.; Ward A. J.; van de Water L. G. A.; Masters A. F.; Maschmeyer T. Facile synthesis of ionic liquids possessing chiral carboxylates. Tetrahedron Lett. 2006, 47 (41), 7367–7370. 10.1016/j.tetlet.2006.08.007. DOI
Zhang S.; Huang Y.; Jing H.; Yao W.; Yan P. Chiral ionic liquids improved the asymmetric cycloaddition of CO2 to epoxides. Green Chem. 2009, 11 (7), 935–938. 10.1039/b821513h. DOI
Chodounská H.; Buděšínský M.; Šídová R.; Sisa M.; Kasal A.; Kohout L. J. Simple NMR Determination of 5α/5β Configuration of 3-Oxosteroids. Collect. Czech. Chem. Commun. 2001, 66, 1529–1544. 10.1135/cccc20011529. DOI
Cristofoli W. A.; Benn M. Synthesis of samanine. J. Chem. Soc., Perkin Trans. 1 1991, (8), 1825–1831. 10.1039/p19910001825. DOI
Slavikova B.; Kasal A.; Budesinsky M. Autoxidation vs hydrolysis in 16 alpha-acyloxy steroids. Collect. Czech. Chem. Commun. 1999, 64 (7), 1125–1134. 10.1135/cccc19991125. DOI