The Gaze of Schizophrenia Patients Captured by Bottom-up Saliency
Status PubMed-not-MEDLINE Language English Country Germany Media electronic
Document type Journal Article
Grant support
1313820
Grantová Agentura, Univerzita Karlova (Charles University Grant Agency)
1070119
Grantová Agentura, Univerzita Karlova (Charles University Grant Agency)
NU21-04-00405
Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
PubMed
38378724
PubMed Central
PMC10879495
DOI
10.1038/s41537-024-00438-4
PII: 10.1038/s41537-024-00438-4
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Schizophrenia (SCHZ) notably impacts various human perceptual modalities, including vision. Prior research has identified marked abnormalities in perceptual organization in SCHZ, predominantly attributed to deficits in bottom-up processing. Our study introduces a novel paradigm to differentiate the roles of top-down and bottom-up processes in visual perception in SCHZ. We analysed eye-tracking fixation ground truth maps from 28 SCHZ patients and 25 healthy controls (HC), comparing these with two mathematical models of visual saliency: one bottom-up, based on the physical attributes of images, and the other top-down, incorporating machine learning. While the bottom-up (GBVS) model revealed no significant overall differences between groups (beta = 0.01, p = 0.281, with a marginal increase in SCHZ patients), it did show enhanced performance by SCHZ patients with highly salient images. Conversely, the top-down (EML-Net) model indicated no general group difference (beta = -0.03, p = 0.206, lower in SCHZ patients) but highlighted significantly reduced performance in SCHZ patients for images depicting social interactions (beta = -0.06, p < 0.001). Over time, the disparity between the groups diminished for both models. The previously reported bottom-up bias in SCHZ patients was apparent only during the initial stages of visual exploration and corresponded with progressively shorter fixation durations in this group. Our research proposes an innovative approach to understanding early visual information processing in SCHZ patients, shedding light on the interplay between bottom-up perception and top-down cognition.
1st Faculty of Medicine Charles University Prague Czech Republic
3rd Faculty of Medicine Charles University Prague Czech Republic
Department of Art History Masaryk University Brno Czech Republic
Early Episodes of SMI Research Center National Institute of Mental Health Klecany Czech Republic
Faculty of Electrical Engineering Czech Technical University Prague Prague Czech Republic
Faculty of Humanities Charles University Prague Czech Republic
Institute of Computer Science of the Czech Academy of Sciences Prague Czech Republic
See more in PubMed
Kalkstein, S., Hurford, I. & Gur, R. C. Neurocognition in schizophrenia. Behavioral neurobiology of schizophrenia and its treatment. (ed. Swerdlow, N.) Current Topics in Behavioral Neurosciences, Vol. 4 (Springer, Berlin, Heidelberg, 2010). 10.1007/7854_2010_42. PubMed
Yan Y, Zhaoping L, Li W. Bottom-up saliency and top-down learning in the primary visual cortex of monkeys. Proc. Natl Acad. Sci. 2018;115:10499–10504. doi: 10.1073/pnas.1803854115. PubMed DOI PMC
Melloni L, van Leeuwen S, Alink A, Müller NG. Interaction between bottom-up saliency and top-down control: how saliency maps are created in the human brain. Cerebral cortex. 2012;22:2943–2952. doi: 10.1093/cercor/bhr384. PubMed DOI
Chun CA, Brugger P, Kwapil TR. Aberrant salience across levels of processing in positive and negative schizotypy. Front. Psychol. 2019;10:2073. doi: 10.3389/fpsyg.2019.02073. PubMed DOI PMC
Kapur S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am. J. Psychiatry. 2003;160:13–23. doi: 10.1176/appi.ajp.160.1.13. PubMed DOI
Adámek P, Langová V, Horáček J. Early-stage visual perception impairment in schizophrenia, bottom-up and back again. Schizophrenia. 2022;8:1–12. doi: 10.1038/s41537-022-00237-9. PubMed DOI PMC
Stokes, D. & Biggs, S. The dominance of the visual. Perception and its Modalities, 350–378 (2014).
Hirst RJ, Cragg L, Allen HA. Vision dominates audition in adults but not children: A meta-analysis of the Colavita effect. Neurosci. Biobehav. Rev. 2018;94:286–301. doi: 10.1016/j.neubiorev.2018.07.012. PubMed DOI
Levin, L. A. et al. Adler’s Physiology of the Eye E-Book: Expert Consult-Online and Print. (Elsevier Health Sciences, 2011).
Sziklai G. Some studies in the speed of visual perception. IRE Trans. Inf. Theory. 1956;2:125–128. doi: 10.1109/TIT.1956.1056814. DOI
Carrasco M. Visual attention: The past 25 years. Vis. Res. 2011;51:1484–1525. doi: 10.1016/j.visres.2011.04.012. PubMed DOI PMC
Wässle H. Parallel processing in the mammalian retina. Nat. Rev. Neurosci. 2004;5:747–757. doi: 10.1038/nrn1497. PubMed DOI
Kamkar S, Moghaddam HA, Lashgari R. Early visual processing of feature saliency tasks: a review of psychophysical experiments. Front. Syst. Neurosci. 2018;12:54. doi: 10.3389/fnsys.2018.00054. PubMed DOI PMC
Ungerleider SK, G L. Mechanisms of visual attention in the human cortex. Ann. Re. Neurosci. 2000;23:315–341. doi: 10.1146/annurev.neuro.23.1.315. PubMed DOI
Rauss K, Schwartz S, Pourtois G. Top-down effects on early visual processing in humans: A predictive coding framework. Neurosci. Biobehav. Rev. 2011;35:1237–1253. doi: 10.1016/j.neubiorev.2010.12.011. PubMed DOI
Panichello MF, Cheung OS, Bar M. Predictive feedback and conscious visual experience. Front. Psychol. 2013;3:620. doi: 10.3389/fpsyg.2012.00620. PubMed DOI PMC
Bar M, et al. Top-down facilitation of visual recognition. Proc. Natl Acad. Sci. 2006;103:449–454. doi: 10.1073/pnas.0507062103. PubMed DOI PMC
Gordon N, Tsuchiya N, Koenig-Robert R, Hohwy J. Expectation and attention increase the integration of top-down and bottom-up signals in perception through different pathways. PLoS Biol. 2019;17:e3000233. doi: 10.1371/journal.pbio.3000233. PubMed DOI PMC
Kauffmann L, Ramanoël S, Peyrin C. The neural bases of spatial frequency processing during scene perception. Frontiers in Integr. Neurosci. 2014;8:37. doi: 10.3389/fnint.2014.00037. PubMed DOI PMC
Parr T, Friston KJ. Attention or salience? Curr. Opin. Psychol. 2019;29:1–5. doi: 10.1016/j.copsyc.2018.10.006. PubMed DOI
Roiser J, et al. Do patients with schizophrenia exhibit aberrant salience? Psychol. Med. 2009;39:199–209. doi: 10.1017/S0033291708003863. PubMed DOI PMC
Butler PD, et al. Dysfunction of early-stage visual processing in schizophrenia. Am. J. Psychiatry. 2001;158:1126–1133. doi: 10.1176/appi.ajp.158.7.1126. PubMed DOI
Butler PD, et al. Early-stage visual processing and cortical amplification deficits in schizophrenia. Archives Gen. Psychiatry. 2005;62:495–504. doi: 10.1001/archpsyc.62.5.495. PubMed DOI PMC
Martínez A, et al. Magnocellular pathway impairment in schizophrenia: evidence from functional magnetic resonance imaging. J. Neurosci. 2008;28:7492–7500. doi: 10.1523/JNEUROSCI.1852-08.2008. PubMed DOI PMC
Silverstein SM, et al. An fMRI examination of visual integration in schizophrenia. J. Integr. Neurosci. 2009;8:175–202. doi: 10.1142/S0219635209002113. PubMed DOI
Butler PD, Silverstein SM, Dakin SC. Visual perception and its impairment in schizophrenia. Biol. Psychiatry. 2008;64:40–47. doi: 10.1016/j.biopsych.2008.03.023. PubMed DOI PMC
Clark CM, Gosselin F, Goghari VM. Aberrant patterns of visual facial information usage in schizophrenia. Ann. Rev. Clin. Psychol. 2013;122:513. PubMed
Sehatpour P, et al. Impaired visual object processing across an occipital-frontal-hippocampal brain network in schizophrenia: an integrated neuroimaging study. Archives Gen. Psychiatry. 2010;67:772–782. doi: 10.1001/archgenpsychiatry.2010.85. PubMed DOI PMC
Silverstein S, et al. Reduced top-down influences in contour detection in schizophrenia. Cogn. Neuropsychiatry. 2006;11:112–132. doi: 10.1080/13546800444000209. PubMed DOI
Uhlhaas PJ, Phillips WA, Mitchell G, Silverstein SM. Perceptual grouping in disorganized schizophrenia. Psychiatry Res. 2006;145:105–117. doi: 10.1016/j.psychres.2005.10.016. PubMed DOI
Dima D, Dietrich DE, Dillo W, Emrich HM. Impaired top-down processes in schizophrenia: a DCM study of ERPs. Neuroimage. 2010;52:824–832. doi: 10.1016/j.neuroimage.2009.12.086. PubMed DOI
King DJ, Hodgekins J, Chouinard PA, Chouinard V-A, Sperandio I. A review of abnormalities in the perception of visual illusions in schizophrenia. Psychonomic Bull. Rev. 2017;24:734–751. doi: 10.3758/s13423-016-1168-5. PubMed DOI PMC
Notredame C-E, Pins D, Deneve S, Jardri R. What visual illusions teach us about schizophrenia. Front. Integr. Neurosci. 2014;8:63. doi: 10.3389/fnint.2014.00063. PubMed DOI PMC
Yang E, et al. Visual context processing in schizophrenia. Clin. Psychol. Sci. 2013;1:5–15. doi: 10.1177/2167702612464618. PubMed DOI PMC
Doniger GM, Silipo G, Rabinowicz EF, Snodgrass JG, Javitt DC. Impaired sensory processing as a basis for object-recognition deficits in schizophrenia. Am. J. Psychiatry. 2001;158:1818–1826. doi: 10.1176/appi.ajp.158.11.1818. PubMed DOI
Butler PD, et al. An event-related potential examination of contour integration deficits in schizophrenia. Front. Psychol. 2013;4:132. doi: 10.3389/fpsyg.2013.00132. PubMed DOI PMC
Luck SJ, Leonard CJ, Hahn B, Gold JM. Is attentional filtering impaired in schizophrenia? Schizophr. Bull. 2019;45:1001–1011. doi: 10.1093/schbul/sbz045. PubMed DOI PMC
Wichowicz HM, Ciszewski S, Żuk K, Rybak-Korneluk A. Hollow mask illusion–is it really a test for schizophrenia. Psychiatr. Pol. 2016;50:741–745. doi: 10.12740/PP/60150. PubMed DOI
Christensen BK, Spencer JM, King JP, Sekuler AB, Bennett PJ. Noise as a mechanism of anomalous face processing among persons with Schizophrenia. Front. Psychol. 2013;4:401. doi: 10.3389/fpsyg.2013.00401. PubMed DOI PMC
Bylinskii, Z. et al. Mit saliency benchmark, 13 (2015).
Hayes TR, Henderson JM. Deep saliency models learn low-, mid-, and high-level features to predict scene attention. Sci. Rep. 2021;11:1–13. doi: 10.1038/s41598-021-97879-z. PubMed DOI PMC
Itti L, Koch C. Computational modelling of visual attention. Nat. Rev. Neurosci. 2001;2:194–203. doi: 10.1038/35058500. PubMed DOI
Koch C, Ullman S. Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Neurobiol. 1985;4:219–227. PubMed
Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 1998;20:1254–1259. doi: 10.1109/34.730558. DOI
Veale R, Hafed ZM, Yoshida M. How is visual salience computed in the brain? Insights from behaviour, neurobiology and modelling. Philos. Trans. Royal Soc. B: Biol. Sci. 2017;372:20160113. doi: 10.1098/rstb.2016.0113. PubMed DOI PMC
Torralba A, Oliva A, Castelhano MS, Henderson JM. Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. Psychol. Rev. 2006;113:766. doi: 10.1037/0033-295X.113.4.766. PubMed DOI
Bogler C, Bode S, Haynes J-D. Decoding successive computational stages of saliency processing. Curr. Biol. 2011;21:1667–1671. doi: 10.1016/j.cub.2011.08.039. PubMed DOI
Chen T, Lin L, Liu L, Luo X, Li X. DISC: Deep image saliency computing via progressive representation learning. IEEE Trans. Neural Netw. Learn. Syst. 2016;27:1135–1149. doi: 10.1109/TNNLS.2015.2506664. PubMed DOI
Murabito F, et al. Top-down saliency detection driven by visual classification. Comput. Vis. Image Understand. 2018;172:67–76. doi: 10.1016/j.cviu.2018.03.005. DOI
Pan, J., Sayrol, E., Giro-i-Nieto, X., McGuinness, K. & O’Connor, N. E. in Proceedings of the IEEE Conference On Computer Vision And Pattern Recognition. 598–606.
Zhu G, Wang Q, Yuan Y. Tag-saliency: Combining bottom-up and top-down information for saliency detection. Comput. Vis. Image Understand. 2014;118:40–49. doi: 10.1016/j.cviu.2013.07.011. DOI
Borji, A. In ieee conference on computer vision and pattern recognition. 438-445 (IEEE) (2012).
Mahdi A, Qin J, Crosby G. DeepFeat: A bottom-up and top-down saliency model based on deep features of convolutional neural networks. IEEE Trans. Cogn. Dev. Syst. 2019;12:54–63. doi: 10.1109/TCDS.2019.2894561. DOI
Bansal S, et al. Failures in top-down control in schizophrenia revealed by patterns of saccadic eye movements. Ann. Rev. Clin. Psychol. 2019;128:415. PubMed PMC
Silverstein, S. M. Visual Perception Disturbances in Schizophrenia: A Unified Model. In: The Neuropsychopathology of Schizophrenia. Nebraska Symposium on Motivation, Vol. 63 (eds Li, M, & Spaulding, W.) (Springer, Cham, 2016). 10.1007/978-3-319-30596-7_4. PubMed
Javitt DC. When doors of perception close: bottom-up models of disrupted cognition in schizophrenia. Ann. Rev. Clin. Psychol. 2009;5:249–275. doi: 10.1146/annurev.clinpsy.032408.153502. PubMed DOI PMC
Born RT, Bencomo GM. Illusions, delusions, and your backwards Bayesian brain: A biased visual perspective. Brain Behav. Evol. 2020;95:272–285. doi: 10.1159/000514859. PubMed DOI PMC
Gao W-J, Yang S-S, Mack NR, Chamberlin LA. Aberrant maturation and connectivity of prefrontal cortex in schizophrenia—contribution of NMDA receptor development and hypofunction. Mol. Psychiatry. 2022;27:731–743. doi: 10.1038/s41380-021-01196-w. PubMed DOI PMC
Li S, et al. Dysconnectivity of multiple brain networks in schizophrenia: a meta-analysis of resting-state functional connectivity. Front. Psychiatry. 2019;10:482. doi: 10.3389/fpsyt.2019.00482. PubMed DOI PMC
Wheeler AL, Voineskos AN. A review of structural neuroimaging in schizophrenia: from connectivity to connectomics. Front. Hum. Neurosci. 2014;8:653. doi: 10.3389/fnhum.2014.00653. PubMed DOI PMC
Laprevote V, et al. Low spatial frequency bias in schizophrenia is not face specific: when the integration of coarse and fine information fails. Front. Psychol. 2013;4:248. doi: 10.3389/fpsyg.2013.00248. PubMed DOI PMC
Schütt HH, Rothkegel LO, Trukenbrod HA, Engbert R, Wichmann FA. Disentangling bottom-up versus top-down and low-level versus high-level influences on eye movements over time. Journal of vision. 2019;19:1–1. doi: 10.1167/19.3.1. PubMed DOI
Tschacher W, Genner R, Bryjová J, Schaller E, Samson AC. Investigating vision in schizophrenia through responses to humorous stimuli. Schizophr. Res.: Cogn. 2015;2:84–88. PubMed PMC
Li X-B, et al. The attenuated visual scanpaths of patients with schizophrenia whilst recognizing emotional facial expressions are worsened in natural social scenes. Schizophr. Res. 2020;220:155–163. doi: 10.1016/j.schres.2020.03.040. PubMed DOI
Matsumoto Y, Takahashi H, Murai T, Takahashi H. Visual processing and social cognition in schizophrenia: relationships among eye movements, biological motion perception, and empathy. Neurosci. Res. 2015;90:95–100. doi: 10.1016/j.neures.2014.10.011. PubMed DOI
Asgharpour M, Tehrani-Doost M, Ahmadi M, Moshki H. Visual attention to emotional face in schizophrenia: an eye tracking study. Iran. J. Psychiatry. 2015;10:13. PubMed PMC
Gao Z, et al. Facial emotion recognition in schizophrenia. Front. Psychiatry. 2021;12:633717. doi: 10.3389/fpsyt.2021.633717. PubMed DOI PMC
Marosi C, Fodor Z, Csukly G. From basic perception deficits to facial affect recognition impairments in schizophrenia. Sci. Rep. 2019;9:8958. doi: 10.1038/s41598-019-45231-x. PubMed DOI PMC
Obayashi C, et al. Decreased spatial frequency sensitivities for processing faces in male patients with chronic schizophrenia. Clin. Neurophysiol. 2009;120:1525–1533. doi: 10.1016/j.clinph.2009.06.016. PubMed DOI
Zhang D, Zakir A. Top–down saliency detection based on deep-learned features. Int. J. Comput. Intell. Appl. 2019;18:1950009. doi: 10.1142/S1469026819500093. DOI
Krasovskaya S, MacInnes WJ. Salience models: A computational cognitive neuroscience review. Vision. 2019;3:56. doi: 10.3390/vision3040056. PubMed DOI PMC
Hahn B, et al. Failure of schizophrenia patients to overcome salient distractors during working memory encoding. Biol. Psychiatry. 2010;68:603–609. doi: 10.1016/j.biopsych.2010.04.014. PubMed DOI PMC
Kornmayer L, Leicht G, Mulert C. Attentional capture by physically salient stimuli in the gamma frequency is associated with schizophrenia symptoms. World J. Biol. Psychiatry. 2018;19:S52–S62. doi: 10.1080/15622975.2016.1258491. PubMed DOI
Sklar AL, et al. Inefficient visual search strategies in the first-episode schizophrenia spectrum. Schizophr. Res. 2020;224:126–132. doi: 10.1016/j.schres.2020.09.015. PubMed DOI PMC
Trapp S, Bar M. Prediction, context, and competition in visual recognition. Ann. New York Acad. Sci. 2015;1339:190–198. doi: 10.1111/nyas.12680. PubMed DOI
De Lange FP, Heilbron M, Kok P. How do expectations shape perception? Trends Cogn. Sci. 2018;22:764–779. doi: 10.1016/j.tics.2018.06.002. PubMed DOI
Theeuwes J. Top–down and bottom–up control of visual selection. Acta Psychol. 2010;135:77–99. doi: 10.1016/j.actpsy.2010.02.006. PubMed DOI
Calderone DJ, et al. Contributions of low and high spatial frequency processing to impaired object recognition circuitry in schizophrenia. Cerebr. Cortex. 2013;23:1849–1858. doi: 10.1093/cercor/bhs169. PubMed DOI PMC
Shoshina I, Shelepin Y, Vershinina E, Novikova K. The spatial-frequency characteristics of the visual system in schizophrenia. Hum. Physiol. 2015;41:251–260. doi: 10.1134/S0362119715030159. PubMed DOI
Zemon V, et al. Contrast sensitivity deficits in schizophrenia: A psychophysical investigation. Euro. J. Neurosci. 2021;53:1155–1170. doi: 10.1111/ejn.15026. PubMed DOI
Masri RA, Grünert U, Martin PR. Analysis of parvocellular and magnocellular visual pathways in human retina. J. Neurosci. 2020;40:8132–8148. doi: 10.1523/JNEUROSCI.1671-20.2020. PubMed DOI PMC
Solomon, S. G. In Handbook of clinical neurology 178 31–50 (Elsevier, 2021). PubMed
Lee WW, Tajunisah I, Sharmilla K, Peyman M, Subrayan V. Retinal nerve fiber layer structure abnormalities in schizophrenia and its relationship to disease state: evidence from optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 2013;54:7785–7792. doi: 10.1167/iovs.13-12534. PubMed DOI
Gracitelli CP, et al. Ophthalmology issues in schizophrenia. Curr. Psychiatry Rep. 2015;17:1–11. doi: 10.1007/s11920-015-0569-x. PubMed DOI PMC
Jurišić D, et al. New insights into schizophrenia: a look at the eye and related structures. Psychiatria Danubina. 2020;32:60–69. doi: 10.24869/psyd.2020.60. PubMed DOI
Jurišić D, Ćavar I, Sesar A, Sesar I, Vukojević J, Ćurković M. New Insights into Schizophrenia: a Look at the Eye and Related Structures. Psychiatr Danub. 2020;32:60–69. doi: 10.24869/psyd.2020.60. PubMed DOI
Hanson DR, Gottesman II. Theories of schizophrenia: a genetic-inflammatory-vascular synthesis. BMC Med. Genet. 2005;6:1–17. doi: 10.1186/1471-2350-6-7. PubMed DOI PMC
de Lecea L, Carter ME, Adamantidis A. Shining light on wakefulness and arousal. Biol. Psychiatry. 2012;71:1046–1052. doi: 10.1016/j.biopsych.2012.01.032. PubMed DOI PMC
Shoshina I, et al. The internal noise of the visual system and cognitive functions in schizophrenia. Procedia Comput. Sci. 2020;169:813–820. doi: 10.1016/j.procs.2020.02.158. DOI
Skottun BC, Skoyles JR. Contrast sensitivity and magnocellular functioning in schizophrenia. Vis. Res. 2007;47:2923–2933. doi: 10.1016/j.visres.2007.07.016. PubMed DOI
Born RT, Bencomo GM. Illusions, delusions, and your backwards bayesian brain: a biased visual perspective. Brain Behav. Evol. 2021;95:272–285. doi: 10.1159/000514859. PubMed DOI PMC
Scheir G, Hanselaer P, Ryckaert W. Pupillary light reflex, receptive field mechanism and correction for retinal position for the assessment of visual discomfort. Lighting Res. Technol. 2019;51:291–303. doi: 10.1177/1477153517737346. DOI
Zhang AJ, Jacoby R, Wu SM. Light‐and dopamine‐regulated receptive field plasticity in primate horizontal cells. J. Compar. Neurol. 2011;519:2125–2134. doi: 10.1002/cne.22604. PubMed DOI PMC
K. Y. Wong et al.) 26, 808 (Elsevier Health Science, 2011).
Bestelmeyer PEG, et al. Global visual scanning abnormalities in schizophrenia and bipolar disorder. Schizophr. Res. 2006;87:212–222. doi: 10.1016/j.schres.2006.06.015. PubMed DOI
Takahashi S, et al. Impairment of exploratory eye movement in schizophrenia patients and their siblings. Psychiat. Clin. Neurosci. 2008;62:487–493. doi: 10.1111/j.1440-1819.2008.01840.x. PubMed DOI
Loughland CM, Williams LM, Harris AW. Visual scanpath dysfunction in first-degree relatives of schizophrenia probands: evidence for a vulnerability marker? Schizophr Res. 2004;67:11–21. doi: 10.1016/S0920-9964(03)00094-X. PubMed DOI
Beedie SA, Clair DMS, Benson PJ. Atypical scanpaths in schizophrenia: evidence of a trait-or state-dependent phenomenon? J. Psychiatry Neurosci. 2011;36:150–164. doi: 10.1503/jpn.090169. PubMed DOI PMC
Dowiasch S, et al. Eye movements of patients with schizophrenia in a natural environment. Eur. Arch. Psychiatry Clin. Neurosci. 2016;266:43–54. doi: 10.1007/s00406-014-0567-8. PubMed DOI PMC
Polec, J. et al. In 2017IEEE 11th International Conference on Application of Information and Communication Technologies (AICT). 1-5 (IEEE).
Yoshida, M. et al. Aberrant visual salience in participants with schizophrenia during free-viewing of natural images. medRxiv, 2022.2011.2021.22282553 (2022). 10.1101/2022.11.21.22282553
Barnes C, et al. F78. Overcoming a bottom-up attentional bias by providing top-down information during working memory encoding in schizophrenia. Schizophr. Bull. 2018;44:S250. doi: 10.1093/schbul/sby017.609. DOI
Dima D, et al. Understanding why patients with schizophrenia do not perceive the hollow-mask illusion using dynamic causal modelling. Neuroimage. 2009;46:1180–1186. doi: 10.1016/j.neuroimage.2009.03.033. PubMed DOI
Morita K, et al. Eye movement abnormalities and their association with cognitive impairments in schizophrenia. Schizophr. Res. 2019;209:255–262. doi: 10.1016/j.schres.2018.12.051. PubMed DOI
Beedie SA, Benson PJ, Giegling I, Rujescu D, St Clair DM. Smooth pursuit and visual scanpaths: independence of two candidate oculomotor risk markers for schizophrenia. World J. Biol. Psychiatry. 2012;13:200–210. doi: 10.3109/15622975.2011.566628. PubMed DOI
Hori Y, Fukuzako H, Sugimoto Y, Takigawa M. Eye movements during the Rorschach test in schizophrenia. Psychiat Clin. Neurosci. 2002;56:409–418. doi: 10.1046/j.1440-1819.2002.01030.x. PubMed DOI
McWhinney S, et al. Obesity as a risk factor for accelerated brain ageing in first-episode psychosis—a longitudinal study. Schizophr. Bull. 2021;47:1772–1781. doi: 10.1093/schbul/sbab064. PubMed DOI PMC
Melicher T, et al. White matter changes in first episode psychosis and their relation to the size of sample studied: a DTI study. Schizophr. Res. 2015;162:22–28. doi: 10.1016/j.schres.2015.01.029. PubMed DOI
Mikolas P, et al. Connectivity of the anterior insula differentiates participants with first-episode schizophrenia spectrum disorders from controls: a machine-learning study. Psychol. Med. 2016;46:2695–2704. doi: 10.1017/S0033291716000878. PubMed DOI
Sheehan DV, et al. The Mini-International Neuropsychiatric Interview (MINI): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry. 1998;59:22–33. PubMed
Organization, W. H. ICD-10. International Statistical Classification of Diseases and Related Health Problems: Tenth Revision 1992, Volume 1= CIM-10. Classification statistique internationale des maladies et des problèmes de santé connexes: Dixième Révision 1992, 1, 32–6 (1992).
Clark, J. H. The Ishihara test for color blindness. Am. J. Physiol. Opt.5, 269–276 (1924).
SHINE_color and Lum_fun: A set of tools to control luminance of colorful images v. 0.3 (2021).
S. R. Research Experiment Builder v. 2.3.1 (SR Research Ltd., Mississauga, Ontario, Canada, 2020).
Crovitz HF, Zener K. A group-test for assessing hand-and eye-dominance. Am. J. Psychol. 1962;75:271–276. doi: 10.2307/1419611. PubMed DOI
Kay SR, Opler LA, Lindenmayer J-P. The positive and negative syndrome scale (PANSS): rationale and standardisation. Br. J. Psychiatry. 1989;155:59–65. doi: 10.1192/S0007125000291514. PubMed DOI
Conners, K. C. & Staff, M. Conners’ Continuous Performance Test II. CPT II. (Multi-Health Systems North Tonawanda, NY, 2004).
R: A language and environment for statistical computing. R Found. Stat. Comput. v. 4.2.1 (2020).
Wickham, H. et al. Welcome to the Tidyverse. J.Open Source Softw. 4, 1686 (2019).
Roeddiger, T. GazePointHeatMap. Retrieved from https://github.com/TobiasRoeddiger/GazePointHeatMap (2018).
Shreenath, S. Implementation of Graph Based Visual Saliency algorithm, https://github.com/shreelock/gbvs (2019).
Jia, S. EML-NET-Saliency, https://github.com/SenJia/EML-NET-Saliency/ (2020).
Lewin-Koh, J. N. & Bivand, R. Package ‘Maptools’: Tools for Reading and Handling Spatial Objects, R Package Version 0.8–10, (2011).
Obyedkov I, et al. Saccadic eye movements in different dimensions of schizophrenia and in clinical high-risk state for psychosis. BMC Psychiatry. 2019;19:1–10. doi: 10.1186/s12888-019-2093-8. PubMed DOI PMC
Wolf A, Ueda K, Hirano Y. Recent updates of eye movement abnormalities in patients with schizophrenia: A scoping review. Psychiat. Clin. Neurosci. 2021;75:82–100. doi: 10.1111/pcn.13188. PubMed DOI PMC
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models Using lme4. arXiv preprint arXiv:1406.5823 (2014).
Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 2017;82:1–26. doi: 10.18637/jss.v082.i13. DOI
Marcus R, Eric P, Gabriel KR. On closed testing procedures with special reference to ordered analysis of variance. Biometrika. 1976;63:655–660. doi: 10.1093/biomet/63.3.655. DOI
Bylinskii Z, Judd T, Oliva A, Torralba A, Durand F. What do different evaluation metrics tell us about saliency models? IEEE Trans. Pattern Anal. Mach. Intell. 2018;41:740–757. doi: 10.1109/TPAMI.2018.2815601. PubMed DOI
Judd, T., Ehinger, K., Durand, F. & Torralba, A. Learning to predict where humans look. In 2009 IEEE 12th international conference on computer vision 2106–2113 (IEEE, 2009).
Judd, T, Durand, F. & Torralba, A. A benchmark of computational models of saliency to predict human fixations. (2012).
Kümmerer M, Wallis TS, Bethge M. Information-theoretic model comparison unifies saliency metrics. Proc. Natl Acad. Sci. 2015;112:16054–16059. doi: 10.1073/pnas.1510393112. PubMed DOI PMC
Borji, A. & Itti, L. A large-scale fixation dataset for boosting saliency research. arXiv preprint arXiv:1505.03581 (2015).
Harel J, Koch C, Perona P. Graph-based visual saliency. Adv. Neural Inf. Process Sys. 2006;19:545–552.
Liu Q, Zhuang J, Ma J. Robust and fast pedestrian detection method for far-infrared automotive driving assistance systems. Infrared Phys. Technol. 2013;60:288–299. doi: 10.1016/j.infrared.2013.06.003. DOI
Jia S, Bruce ND. Eml-net: An expandable multi-layer network for saliency prediction. Image Vis. Comput. 2020;95:103887. doi: 10.1016/j.imavis.2020.103887. DOI
Peters RJ, Iyer A, Itti L, Koch C. Components of bottom-up gaze allocation in natural images. Vis. Res. 2005;45:2397–2416. doi: 10.1016/j.visres.2005.03.019. PubMed DOI