The interacting effect of climate change and herbivory can trigger large-scale transformations of European temperate forests
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
Reg. No A_11_22/43960/1312/3166
Fakulta lesnická a dřevařská, Česká Zemědělská Univerzita v Praze
101000574
HORIZON EUROPE Framework Programme
QK23020039
Národní agentura pro zemědělský výzkum
CZ.02.1.01/0.0/0.0/16_019/0000803
Ministerstvo Školství, Mládeže a Tělovýchovy
APVV-19-0319
Ministerstva školstva, výskumu, vývoja a mládeže SROV
VEGA 1/0624/21
Ministerstva školstva, výskumu, vývoja a mládeže SROV
PubMed
38385958
DOI
10.1111/gcb.17194
Knihovny.cz E-zdroje
- Klíčová slova
- European temperate forests, ecological resilience, ecosystem modelling, forest dynamics, large wildlife herbivores, natural disturbances,
- MeSH
- býložravci * MeSH
- ekosystém * MeSH
- klimatické změny MeSH
- lesy MeSH
- uhlík MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- uhlík MeSH
In many regions of Europe, large wild herbivores alter forest community composition through their foraging preferences, hinder the forest's natural adaptive responses to climate change, and reduce ecosystem resilience. We investigated a widespread European forest type, a mixed forest dominated by Picea abies, which has recently experienced an unprecedented level of disturbance across the continent. Using the forest landscape model iLand, we investigated the combined effect of climate change and herbivory on forest structure, composition, and carbon and identified conditions leading to ecosystem transitions on a 300-year timescale. Eight climate change scenarios, driven by Representative Concentration Pathways 4.5 and 8.5, combined with three levels of regeneration browsing, were tested. We found that the persistence of the current level of browsing pressure impedes adaptive changes in community composition and sustains the presence of the vulnerable yet less palatable P. abies. These development trajectories were tortuous, characterized by a high disturbance intensity. On the contrary, reduced herbivory initiated a transformation towards the naturally dominant broadleaved species that was associated with an increased forest carbon and a considerably reduced disturbance. The conditions of RCP4.5 combined with high and moderate browsing levels preserved the forest within its reference range of variability, defining the actual boundaries of resilience. The remaining combinations of browsing and climate change led to ecosystem transitions. Under RCP4.5 with browsing effects excluded, the new equilibrium conditions were achieved within 120 years, whereas the stabilization was delayed by 50-100 years under RCP8.5 with higher browsing intensities. We conclude that forests dominated by P. abies are prone to transitions driven by climate change. However, reducing herbivory can set the forest on a stable and predictable trajectory, whereas sustaining the current browsing levels can lead to heightened disturbance activity, extended transition times, and high variability in the target conditions.
Faculty of Forestry Technical University Zvolen Zvolen Slovakia
Global Change Research Institute Czech Academy of Sciences Prague Czech Republic
National Forest Centre Forest Research Institute Zvolen Zvolen Slovakia
Zobrazit více v PubMed
Albrich, K., Rammer, W., & Seidl, R. (2020). Climate change causes critical transitions and irreversible alterations of mountain forests. Global Change Biology, 26(7), 4013-4027. https://doi.org/10.1111/gcb.15118
Albrich, K., Rammer, W., Thom, D., & Seidl, R. (2018). Trade-offs between temporal stability and level of forest ecosystem services provisioning under climate change. Ecological Applications, 28(7), 1884-1896. https://doi.org/10.1002/eap.1785
Albrich, K., Rammer, W., Turner, M. G., Ratajczak, Z., Braziunas, K. H., Hansen, W. D., & Seidl, R. (2020). Simulating forest resilience: A review. Global Ecology and Biogeography, 29(12), 2082-2096. https://doi.org/10.1111/geb.13197
Albrich, K., Seidl, R., Rammer, W., & Thom, D. (2023). From sink to source: Changing climate and disturbance regimes could tip the 21st century carbon balance of an unmanaged mountain forest landscape. Forestry, 96(3), 399-409. https://doi.org/10.1093/forestry/cpac022
Anderegg, W. R. L. (2015). Spatial and temporal variation in plant hydraulic traits and their relevance for climate change impacts on vegetation. New Phytologist, 205(3), 1008-1014. https://doi.org/10.1111/nph.12907
Apollonio, M., Belkin, V. V., Borkowski, J., Borodin, O. I., Borowik, T., Cagnacci, F., Danilkin, A. A., Danilov, P. I., Faybich, A., Ferretti, F., Gaillard, J. M., Hayward, M., Heshtaut, P., Heurich, M., Hurynovich, A., Kashtalyan, A., Kerley, G. I. H., Kjellander, P., Kowalczyk, R., … Yanuta, G. (2017). Challenges and science-based implications for modern management and conservation of European ungulate populations. Mammal Research, 62(3), 209-217. https://doi.org/10.1007/s13364-017-0321-5
Beguin, J., Tremblay, J. P., Thiffault, N., Pothier, D., & Côté, S. D. (2016). Management of forest regeneration in boreal and temperate deer-forest systems: Challenges, guidelines, and research gaps. Ecosphere, 7(10), e01488. https://doi.org/10.1002/ecs2.1488
Behr, D. M., Ozgul, A., & Cozzi, G. (2017). Combining human acceptance and habitat suitability in a unified socio-ecological suitability model: A case study of the wolf in Switzerland. Journal of Applied Ecology, 54(6), 1919-1929. https://doi.org/10.1111/1365-2664.12880
Benhamou, S. (2004). How to reliably estimate the tortuosity of an animal's path: Straightness, sinuosity, or fractal dimension? Journal of Theoretical Biology, 229(2), 209-220. https://doi.org/10.1016/j.jtbi.2004.03.016
Bergqvist, G., Wallgren, M., Jernelid, H., & Bergström, R. (2018). Forage availability and moose winter browsing in forest landscapes. Forest Ecology and Management, 419, 170-178. https://doi.org/10.1016/j.foreco.2018.03.049
Bernard, M., Boulanger, V., Dupouey, J.-L., Laurent, L., Montpied, P., Morin, X., Picard, J.-F., & Saïd, S. (2017). Deer browsing promotes Norway spruce at the expense of silver fir in the forest regeneration phase. Forest Ecology and Management, 400, 269-277. https://doi.org/10.1016/j.foreco.2017.05.040
Bernes, C., Macura, B., Jonsson, B. G., Junninen, K., Müller, J., Sandström, J., Lõhmus, A., & Macdonald, E. (2018). Manipulating ungulate herbivory in temperate and boreal forests: Effects on vegetation and invertebrates. A systematic review. Environmental Evidence, 7(1), 13. https://doi.org/10.1186/s13750-018-0125-3
Blennow, K., & Sallnäs, O. (2004). WINDA-A system of models for assessing the probability of wind damage to forest stands within a landscape. Ecological Modelling, 175(1), 87-99. https://doi.org/10.1016/j.ecolmodel.2003.10.009
Bonan, G. B., & Doney, S. C. (2018). Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models, 359, eaam8328. https://doi.org/10.1126/science.aam8328
Brèteau-Amores, S., Yousefpour, R., Hanewinkel, M., & Fortin, M. (2023). Forest adaptation strategies to reconcile timber production and carbon sequestration objectives under multiple risks of extreme drought and windstorm events. Ecological Economics, 212, 107903. https://doi.org/10.1016/j.ecolecon.2023.107903
Brodribb, T. J., Powers, J., Cochard, H., & Choat, B. (2020). Hanging by a thread? Forests and drought. Science, 368(6488), 261-266. https://doi.org/10.1126/science.aat7631
Čada, V., Svoboda, M., & Janda, P. (2013). Dendrochronological reconstruction of the disturbance history and past development of the mountain Norway spruce in the Bohemian Forest, central Europe. Forest Ecology and Management, 295, 59-68. https://doi.org/10.1016/j.foreco.2012.12.037
Čada, V., Trotsiuk, V., Janda, P., Mikoláš, M., Bače, R., Nagel, T. A., Morrissey, R. C., Tepley, A. J., Vostarek, O., Begović, K., Chaskovskyy, O., Dušátko, M., Kameniar, O., Kozák, D., Lábusová, J., Málek, J., Meyer, P., Pettit, J. L., Schurman, J. S., … Svoboda, M. (2020). Quantifying natural disturbances using a large-scale dendrochronological reconstruction to guide forest management. Ecological Applications, 30(8), e02189. https://doi.org/10.1002/eap.2189
Cailleret, M., Heurich, M., & Bugmann, H. (2014). Reduction in browsing intensity may not compensate climate change effects on tree species composition in the Bavarian Forest National Park. Forest Ecology and Management, 328, 179-192. https://doi.org/10.1016/j.foreco.2014.05.030
Carpenter, S., Walker, B., Anderies, J. M., & Abel, N. (2001). From metaphor to measurement: Resilience of what to what? Ecosystems, 4(8), 765-781. https://doi.org/10.1007/s10021-001-0045-9
Carpio, A. J., Apollonio, M., & Acevedo, P. (2021). Wild ungulate overabundance in Europe: Contexts, causes, monitoring and management recommendations. Mammal Review, 51(1), 95-108. https://doi.org/10.1111/mam.12221
Champagne, E., Raymond, P., Royo, A. A., Speed, J. D., Tremblay, J. P., & Côté, S. D. (2021). A review of ungulate impacts on the success of climate-adapted Forest management strategies. Current Forestry Reports, 7, 305-320. https://doi.org/10.1007/s40725-021-00148-5
Côté, S. D., Rooney, T. P., Tremblay, J. P., Dussault, C., & Waller, D. M. (2004). Ecological impacts of deer overabundance. Annual Review of Ecology, Evolution and Systematics, 35, 113-147. https://doi.org/10.1146/annurev.ecolsys.35.021103.105725
Cushman, S. A., & McGarigal, K. (2019). Metrics and models for quantifying ecological resilience at landscape scales. Frontiers in Ecology and Evolution, 7, 440. https://doi.org/10.3389/fevo.2019.00440
Czech Hydrometeorological Institute. https://www.chmi.cz/
Czech Statistical Office. (2021). https://www.czso.cz/csu/czso/zakladni-udaje-o-honitbach-stavu-a-lovu-zvere-od-1-4-2022-do-31-3-2023
Dawe, K. L., & Boutin, S. (2016). Climate change is the primary driver of white-tailed deer (Odocoileus virginianus) range expansion at the northern extent of its range; land use is secondary. Ecology and Evolution, 6(18), 6435-6451. https://doi.org/10.1002/ece3.2316
Dobor, L., Hlásny, T., Rammer, W., Barka, I., Trombik, J., Pavlenda, P., Šebeň, V., Štěpánek, P., & Seidl, R. (2018). Post-disturbance recovery of forest carbon in a temperate forest landscape under climate change. Agricultural and Forest Meteorology, 263, 308-322. https://doi.org/10.1016/j.agrformet.2018.08.028
Dyderski, M. K., Paź, S., Frelich, L. E., & Jagodziński, A. M. (2018). How much does climate change threaten European forest tree species distributions? Global Change Biology, 24(3), 1150-1163. https://doi.org/10.1111/gcb.13925
EEA. (2018). Corine Land Cover 2018, European Commission. https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=download%20(CLC)
Egli, L., Weise, H., Radchuk, V., Seppelt, R., & Grimm, V. (2019). Exploring resilience with agent-based models: State of the art, knowledge gaps and recommendations for coping with multidimensionality. Ecological Complexity, 40, 100718. https://doi.org/10.1016/j.ecocom.2018.06.008
Ellenberg, H., Weber, H. E., Düll, R., Wirth, V., Werner, W., & Paulissen, D. (1992). Zeigerwerte von Pflanzen in Mitteleuropa (2nd ed.). Goltze. https://doi.org/10.1002/fedr.19931040323
Enright, N. J., Fontaine, J. B., Bowman, D. M., Bradstock, R. A., & Williams, R. J. (2015). Interval squeeze: Altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Frontiers in Ecology and the Environment, 13(5), 265-272. https://doi.org/10.1890/140231
Etzold, S., Ferretti, M., Reinds, G. J., Solberg, S., Gessler, A., Waldner, P., Schaub, M., Simpson, D., Benham, S., Hansen, K., Ingerslev, M., Jonard, M., Karlsson, P. E., Lindroos, A.-J., Marchetto, A., Manninger, M., Meesenburg, H., Merilä, P., Nöjd, P., … De Vries, W. (2020). Nitrogen deposition is the most important environmental driver of growth of pure, even-aged and managed European forests. Forest Ecology and Management, 458, 117762. https://doi.org/10.1016/j.foreco.2019.117762
European Commission, New EU Forest Strategy for 2030. (2021). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Brussels COM (2021), 572 Final. https://environment.ec.europa.eu/strategy/biodiversity-strategy-2030_en
Felton, A., Gustafsson, L., Roberge, J.-M., Ranius, T., Hjältén, J., Rudolphi, J., Lindbladh, M., Weslien, J., Rist, L., Brunet, J., & Felton, A. M. (2016). How climate change adaptation and mitigation strategies can threaten or enhance the biodiversity of production forests: Insights from Sweden. Biological Conservation, 194, 11-20. https://doi.org/10.1016/j.biocon.2015.11.030
FORESEE Open Database FOR ClimatE Change-Related Impact Studies in CEntral Europe. https://nimbus.elte.hu/FORESEE/
Forest Management Institute of Czech Republic. https://www.uhul.cz
Forzieri, G., Dakos, V., McDowell, N. G., Ramdane, A., & Cescatti, A. (2022). Emerging signals of declining forest resilience under climate change. Nature, 608(7923), 534-539. https://doi.org/10.1038/s41586-022-04959-9
Forzieri, G., Girardello, M., Ceccherini, G., Spinoni, J., Feyen, L., Hartmann, H., Beck, P. S. A., Camps-Valls, G., Chirici, G., Mauri, A., & Cescatti, A. (2021). Emergent vulnerability to climate-driven disturbances in European forests. Nature Communications, 12(1), 1081. https://doi.org/10.1038/s41467-021-21399-7
Foster, C. N., Barton, P. S., & Lindenmayer, D. B. (2014). Effects of large native herbivores on other animals. Journal of Applied Ecology, 51(4), 929-938. https://doi.org/10.1111/1365-2664.12268
Friedlingstein, P., Fung, I., Holland, E., John, J., Brasseur, G., Erickson, D., & Schimel, D. (1995). On the contribution of CO2 fertilization to the missing biospheric sink. Global Biogeochemical Cycles, 9(4), 541-556. https://doi.org/10.1029/95GB02381
Fuchs, Z., Vacek, Z., Vacek, S., & Gallo, J. (2021). Effect of game browsing on natural regeneration of European beech (Fagus sylvatica L.) forests in the Krušné hory Mts (Czech Republic and Germany). Central European Forestry Journal, 67(3), 166-180. https://doi.org/10.2478/forj-2021-0008
Gardiner, B., Peltola, H., & Kellomäki, S. (2000). Comparison of two models for predicting the critical wind speeds required to damage coniferous trees. Ecological Modelling, 129(1), 1-23. https://doi.org/10.1016/S0304-3800(00)00220-9
Gömöry, D., Longauer, R., Hlásny, T., Pacalaj, M., Strmeň, S., & Krajmerová, D. (2012). Adaptation to common optimum in different populations of Norway spruce (Picea abies Karst.). European Journal of Forest Research, 131(2), 401-411. https://doi.org/10.1007/s10342-011-0512-6
Güneralp, B., & Gertner, G. (2007). Feedback loop dominance analysis of two tree mortality models: Relationship between structure and behavior. Tree Physiology, 27(2), 269-280. https://doi.org/10.1093/treephys/27.2.269
Hanewinkel, M., Cullmann, D. A., Schelhaas, M.-J., Nabuurs, G.-J., & Zimmermann, N. E. (2013). Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change, 3(3), 203-207. https://doi.org/10.1038/nclimate1687
Hansen, W. D., Braziunas, K. H., Rammer, W., Seidl, R., & Turner, M. G. (2018). It takes a few to tango: Changing climate and fire regimes can cause regeneration failure of two subalpine conifers. Ecology, 99(4), 966-977. https://doi.org/10.1002/ecy.2181
Hartmann, H., Bastos, A., Das, A. J., Esquivel-Muelbert, A., Hammond, W. M., Martínez-Vilalta, J., McDowell, N. G., Powers, J. S., Pugh, T. A. M., Ruthrof, K. X., & Allen, C. D. (2022). Climate change risks to global forest health: Emergence of unexpected events of elevated tree mortality worldwide. Annual Review of Plant Biology, 73(1), 673-702. https://doi.org/10.1146/annurev-arplant-102820-012804
Heuzé, P., Schnitzler, A., & Klein, F. (2005). Consequences of increased deer browsing winter on silver fir and spruce regeneration in the Southern Vosges mountains: Implications for forest management. Annals of Forest Science, 62(2), 175-181. https://doi.org/10.1051/forest:2005009
Hlásny, T., Augustynczik, A. L. D., & Dobor, L. (2021). Time matters: Resilience of a post-disturbance forest landscape. Science of the Total Environment, 799, 149377. https://doi.org/10.1016/j.scitotenv.2021.149377
Hlásny, T., König, L., Krokene, P., Lindner, M., Montagné-Huck, C., Müller, J., Qin, H., Raffa, K. F., Schelhaas, M.-J., Svoboda, M., Viiri, H., & Seidl, R. (2021). Bark beetle outbreaks in Europe: State of knowledge and ways forward for management. Current Forestry Reports, 7(3), 138-165. https://doi.org/10.1007/s40725-021-00142-x
Hlásny, T., Mátyás, C., Seidl, R., Kulla, L., Merganičová, K., Trombik, J., Dobor, L., Barcza, Z., & Konôpka, B. (2014). Climate change increases the drought risk in Central European forests: What are the options for adaptation? Central European Forestry Journal, 60(1), 5-18. https://doi.org/10.2478/forj-2014-0001
Hlásny, T., Zimová, S., Merganičová, K., Štěpánek, P., Modlinger, R., & Turčáni, M. (2021). Devastating outbreak of bark beetles in The Czech Republic: Drivers, impacts, and management implications. Forest Ecology and Management, 490, 119075. https://doi.org/10.1016/j.foreco.2021.119075
Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4(1), 1-23. https://doi.org/10.1146/annurev.es.04.110173.000245
Honkaniemi, J., Rammer, W., & Seidl, R. (2020). Norway spruce at the trailing edge: The effect of landscape configuration and composition on climate resilience. Landscape Ecology, 35, 591-606. https://doi.org/10.1007/s10980-019-00964-y
Hothorn, T., & Müller, J. (2010). Large-scale reduction of ungulate browsing by managed sport hunting. Forest Ecology and Management, 260(9), 1416-1423. https://doi.org/10.1016/j.foreco.2010.07.019
Huang, J., Kautz, M., Trowbridge, A. M., Hammerbacher, A., Raffa, K. F., Adams, H. D., Goodsman, D. W., Xu, C., Meddens, A. J. H., Kandasamy, D., Gershenzon, J., Seidl, R., & Hartmann, H. (2020). Tree defence and bark beetles in a drying world: Carbon partitioning, functioning and modelling. New Phytologist, 225(1), 26-36. https://doi.org/10.1111/nph.16173
Hungerford, R. D., Nemani, R. R., Running, S. W., & Coughlan, J. C. (1989). MTCLIM: A Mountain Microclimate Simulation Model. Res. Pap. INT-414. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station, 52. https://doi.org/10.2737/INT-RP-414
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., … Yiou, P. (2014). EURO-CORDEX: New high-resolution climate change projections for European impact research. Regional Environmental Change, 14(2), 563-578. https://doi.org/10.1007/s10113-013-0499-2
Johann, E., Agnoletti, M., Axelsson, A. L., Bürgi, M., Östlund, L., Rochel, X., Schmidt, U. E., Schuler, A., Skovsgaard, J. P., & Winiwater, V. (2004). History of secondary Norway spruce forests in Europe. In H. Spiecker, J. Hansen, E. Klimo, J. P. Skovsgaard, H. Sterba, & K. von Teufel (Eds.), European forest institute research report: Vol. 18. Norway spruce conversion-Options and consequences (pp. 25-62). Brill https://www.dora.lib4ri.ch/wsl/islandora/object/wsl:11697
Katona, K., Kiss, M., Bleier, N., Székely, J., Nyeste, M., Kovács, V., Terhes, A., Fodor, Á., Olajos, T., Rasztovits, E., & Szemethy, L. (2013). Ungulate browsing shapes climate change impacts on forest biodiversity in Hungary. Biodiversity and Conservation, 22(5), 1167-1180. https://doi.org/10.1007/s10531-013-0490-8
Kausrud, K., Økland, B., Skarpaas, O., Grégoire, C., Erbilgin, N., & Stenseth, N. C. (2012). Population dynamics in changing environments: The case of an eruptive forest pest species. Biological Reviews, 87(1), 34-51. https://doi.org/10.1111/j.1469-185X.2011.00183.x
Keane, R. E., Hessburg, P. F., Landres, P. B., & Swanson, F. J. (2009). The use of historical range and variability (HRV) in landscape management. Forest Ecology and Management, 258(7), 1025-1037. https://doi.org/10.1016/j.foreco.2009.05.035
Keenan, T. F., Prentice, I. C., Canadell, J. G., Williams, C. A., Wang, H., Raupach, M., & Collatz, G. J. (2016). Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nature Communications, 7(1), 13428. https://doi.org/10.1038/ncomms13428
Kern, A., Dobor, L., Hollós, R., Marjanović, H., Torma, C. Z., Kis, A., Fodor, N., & Barcza, Z. (2024). Seamlessly combined historical and projected daily meteorological datasets for impact studies in Central Europe: The FORESEE v4.0 and the FORESEE-HUN v1.0. Climate Services, 33, 100443. https://doi.org/10.1016/j.cliser.2023.100443
Klopčič, M., Jerina, K., & Bončina, A. (2010). Long-term changes of structure and tree species composition in Dinaric uneven-aged forests: Are red deer an important factor? European Journal of Forest Research, 129, 277-288. https://doi.org/10.1007/s10342-009-0325-z
Kreyling, J., Jentsch, A., & Beierkuhnlein, C. (2011). Stochastic trajectories of succession initiated by extreme climatic events: Stochastic succession caused by drought. Ecology Letters, 14(8), 758-764. https://doi.org/10.1111/j.1461-0248.2011.01637.x
Kuijper, D. P. J. (2011). Lack of natural control mechanisms increases wildlife-forestry conflict in managed temperate European forest systems. European Journal of Forest Research, 130, 895-909. https://doi.org/10.1007/s10342-011-0523-3
Lamothe, K. A., Somers, K. M., & Jackson, D. A. (2019). Linking the ball-and-cup analogy and ordination trajectories to describe ecosystem stability, resistance, and resilience. Ecosphere, 10(3), e02629. https://doi.org/10.1002/ecs2.2629
Landsberg, J. J., & Waring, R. H. (1997). A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. Forest Ecology and Management, 95(3), 209-228. https://doi.org/10.1016/S0378-1127(97)00026-1
Leroux, S. J., Wiersma, Y. F., & Vander Wal, E. (2020). Herbivore impacts on carbon cycling in boreal forests. Trends in Ecology & Evolution, 35(11), 1001-1010. https://doi.org/10.1016/j.tree.2020.07.009
Lexer, M. J., & Hönninger, K. (2001). A modified 3D-patch model for spatially explicit simulation of vegetation composition in heterogeneous landscapes. Forest Ecology and Management, 144(1-3), 43-65. https://doi.org/10.1016/S0378-1127(00)00386-8
Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., Seidl, R., Delzon, S., Corona, P., Kolström, M., Lexer, M. J., & Marchetti, M. (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management, 259(4), 698-709. https://doi.org/10.1016/j.foreco.2009.09.023
Lindroth, A., Holst, J., Linderson, M.-L., Aurela, M., Biermann, T., Heliasz, M., Chi, J., Ibrom, A., Kolari, P., Klemedtsson, L., Krasnova, A., Laurila, T., Lehner, I., Lohila, A., Mammarella, I., Mölder, M., Löfvenius, M. O., Peichl, M., Pilegaard, K., … Nilsson, M. (2020). Effects of drought and meteorological forcing on carbon and water fluxes in Nordic forests during the dry summer of 2018. Philosophical Transactions of the Royal Society, B: Biological Sciences, 375(1810), 20190516. https://doi.org/10.1098/rstb.2019.0516
Linnell, J. D. C., Cretois, B., Nilsen, E. B., Rolandsen, C. M., Solberg, E. J., Veiberg, V., Kaczensky, P., Moorter, B. V., Panzacchi, M., Rauset, G. R., & Kaltenborn, B. (2020). The challenges and opportunities of coexisting with wild ungulates in the human-dominated landscapes of Europe's Anthropocene. Biological Conservation, 244, 108500. https://doi.org/10.1016/j.biocon.2020.108500
Maes, S. L., Perring, M. P., Vanhellemont, M., Depauw, L., Van den Bulcke, J., Brūmelis, G., Brunet, J., Decocq, G., den Ouden, J., Härdtle, W., Hédl, R., Heinken, T., Heinrichs, S., Jaroszewicz, B., Kopecký, M., Máliš, F., Wulf, M., & Verheyen, K. (2019). Environmental drivers interactively affect individual tree growth across temperate European forests. Global Change Biology, 25(1), 201-217. https://doi.org/10.1111/gcb.14493
Malhi, Y., Franklin, J., Seddon, N., Solan, M., Turner, M. G., Field, C. B., & Knowlton, N. (2020). Climate change and ecosystems: Threats, opportunities and solutions. Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1794), 20190104. https://doi.org/10.1098/rstb.2019.0104
Marini, L., Ayres, M. P., Battisti, A., & Faccoli, M. (2012). Climate affects severity and altitudinal distribution of outbreaks in an eruptive bark beetle. Climatic Change, 115, 327-341. https://doi.org/10.1007/s10584-012-0463-z
Marini, L., Økland, B., Jönsson, A. M., Bentz, B., Carroll, A., Forster, B., Grégoire, J.-C., Hurling, R., Nageleisen, L. M., Netherer, S., Ravn, H. P., Weed, A., & Schroeder, M. (2017). Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography, 40(12), 1426-1435. https://doi.org/10.1111/ecog.02769
Mason, T. H., Stephens, P. A., Apollonio, M., & Willis, S. G. (2014). Predicting potential responses to future climate in an alpine ungulate: Interspecific interactions exceed climate effects. Global Change Biology, 20(12), 3872-3882. https://doi.org/10.1111/gcb.12641
Mason, W. L., Diaci, J., Carvalho, J., & Valkonen, S. (2022). Continuous cover forestry in Europe: Usage and the knowledge gaps and challenges to wider adoption. Forestry: An International Journal of Forest Research, 95(1), 1-12. https://doi.org/10.1093/forestry/cpac008
McDowell, N. G., Allen, C. D., Anderson-Teixeira, K., Aukema, B. H., Bond-Lamberty, B., Chini, L., Clark, J. S., Dietze, M., Grossiord, C., Hanbury-Brown, A., Hurtt, G. C., Jackson, R. B., Johnson, D. J., Kueppers, L., Lichstein, J. W., Ogle, K., Poulter, B., Pugh, T. A. M., Seidl, R., … Xu, C. (2020). Pervasive shifts in forest dynamics in a changing world. Science, 368(6494), eaaz9463. https://doi.org/10.1126/science.aaz9463
McLean, D. J., & Skowron Volponi, M. A. (2018). trajr: An R package for characterisation of animal trajectories. Ethology, 124(6), 440-448. https://doi.org/10.1111/eth.12739
Medlyn, B. E., Zaehle, S., De Kauwe, M. G., Walker, A. P., Dietze, M. C., Hanson, P. J., Hickler, T., Jain, A. K., Luo, Y., Parton, W., Prentice, I. C., Thornton, P. E., Wang, S., Wang, Y.-P., Weng, E., Iversen, C. M., McCarthy, H. R., Warren, J. M., Oren, R., & Norby, R. J. (2015). Using ecosystem experiments to improve vegetation models. Nature Climate Change, 5(6), 528-534. https://doi.org/10.1038/nclimate2621
Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J.-F., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K., Thomson, A., Velders, G. J. M., & van Vuuren, D. P. P. (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109(1), 213-241. https://doi.org/10.1007/s10584-011-0156-z
Messier, C., Bauhus, J., Doyon, F., Maure, F., Sousa-Silva, R., Nolet, P., Mina, M., Aquilué, N., Fortin, M.-J., & Puettmann, K. (2019). The functional complex network approach to foster forest resilience to global changes. Forest Ecosystems, 6(1), 21. https://doi.org/10.1186/s40663-019-0166-2
Messier, C., Puettmann, K. J., & Coates, K. D. (Eds.). (2013). Managing forests as complex adaptive systems: Building resilience to the challenge of global change. Routledge.
Mette, T., Dolos, K., Meinardus, C., Bräuning, A., Reineking, B., Blaschke, M., Pretzsch, H., Beierkuhnlein, C., Gohlke, A., & Wellstein, C. (2013). Climatic turning point for beech and oak under climate change in Central Europe. Ecosphere, 4(12), art145. https://doi.org/10.1890/ES13-00115.1
Millar, C. I., Stephenson, N. L., & Stephens, S. L. (2007). Climate change and forests of the future: Managing in the face of uncertainty. Ecological Applications, 17(8), 2145-2151. https://doi.org/10.1890/06-1715.1
Morales-Castilla, I., Pappalardo, P., Farrell, M. J., Aguirre, A. A., Huang, S., Gehman, A.-L. M., Dallas, T., Gravel, D., & Davies, T. J. (2021). Forecasting parasite sharing under climate change. Philosophical Transactions of the Royal Society, B: Biological Sciences, 376(1837), 20200360. https://doi.org/10.1098/rstb.2020.0360
Morecroft, M. D., Duffield, S., Harley, M., Pearce-Higgins, J. W., Stevens, N., Watts, O., & Whitaker, J. (2019). Measuring the success of climate change adaptation and mitigation in terrestrial ecosystems. Science, 366(6471), eaaw9256. https://doi.org/10.1126/science.aaw9256
Morellet, N., Van Moorter, B., Cargnelutti, B., Angibault, J.-M., Lourtet, B., Merlet, J., Ladet, S., & Hewison, A. J. M. (2011). Landscape composition influences roe deer habitat selection at both home range and landscape scales. Landscape Ecology, 26(7), 999-1010. https://doi.org/10.1007/s10980-011-9624-0
Morin, X., Fahse, L., Jactel, H., Scherer-Lorenzen, M., García-Valdés, R., & Bugmann, H. (2018). Long-term response of forest productivity to climate change is mostly driven by change in tree species composition. Scientific Reports, 8(1), 5627. https://doi.org/10.1038/s41598-018-23763-y
Morland, C., Schier, F., Janzen, N., & Weimar, H. (2018). Supply and demand functions for global wood markets: Specification and plausibility testing of econometric models within the global forest sector. Forest Policy and Economics, 92, 92-105. https://doi.org/10.1016/j.forpol.2018.04.003
Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., & Wilbanks, T. J. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747-756. https://doi.org/10.1038/nature08823
Möst, L., Hothorn, T., Müller, J., & Heurich, M. (2015). Creating a landscape of management: Unintended effects on the variation of browsing pressure in a national park. Forest Ecology and Management, 338, 46-56. https://doi.org/10.1016/j.foreco.2014.11.015
Murray, F. W. (1967). On the computation of saturation vapor pressure. Journal of Applied Meteorology and Climatology, 6(1), 203-204. https://doi.org/10.1175/1520-0450(1967)006<0203:OTCOSV>2.0.CO;2
Nabuurs, G.-J., Lindner, M., Verkerk, P. J., Gunia, K., Deda, P., Michalak, R., & Grassi, G. (2013). First signs of carbon sink saturation in European forest biomass. Nature Climate Change, 3(9), 792-796. https://doi.org/10.1038/nclimate1853
Nagel, T. A., Svoboda, M., & Kobal, M. (2014). Disturbance, life history traits, and dynamics in an old-growth forest landscape of southeastern Europe. Ecological Applications, 24(4), 663-679. https://doi.org/10.1890/13-0632.1
Netherer, S., Kandasamy, D., Jirosová, A., Kalinová, B., Schebeck, M., & Schlyter, F. (2021). Interactions among Norway spruce, the bark beetle Ips typographus and its fungal symbionts in times of drought. Journal of Pest Science, 94(3), 591-614. https://doi.org/10.1007/s10340-021-01341-y
Newton, A. C. (2016). Biodiversity risks of adopting resilience as a policy goal. Conservation Letters, 9(5), 369-376. https://doi.org/10.1111/conl.12227
Nikinmaa, L., Lindner, M., Cantarello, E., Gardiner, B., Jacobsen, J. B., Jump, A. S., Parra, C., Plieninger, T., Schuck, A., Seidl, R., Timberlake, T., Waring, K., Winkel, G., & Muys, B. (2023). A balancing act: Principles, criteria and indicator framework to operationalize social-ecological resilience of forests. Journal of Environmental Management, 331, 117039. https://doi.org/10.1016/j.jenvman.2022.117039
Nikinmaa, L., Lindner, M., Cantarello, E., Jump, A. S., Seidl, R., Winkel, G., & Muys, B. (2020). Reviewing the use of resilience concepts in forest sciences. Current Forestry Reports, 6(2), 61-80. https://doi.org/10.1007/s40725-020-00110-x
Norby, R. J., DeLucia, E. H., Gielen, B., Calfapietra, C., Giardina, C. P., King, J. S., Ledford, J., McCarthy, H. R., Moore, D. J. P., Ceulemans, R., Angelis, P. D., Finzi, A. C., Karnosky, D. F., Kubiske, M. E., Lukac, M., Pregitzer, K. S., Scarascia-Mugnozza, G. E., Schlesinger, W. H., & Oren, R. (2005). Forest response to elevated CO2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences of the United States of America, 102(50), 18052-18056. https://doi.org/10.1073/pnas.0509478102
Ohse, B., Seele, C., Holzwarth, F., & Wirth, C. (2017). Different facets of tree sapling diversity influence browsing intensity by deer dependent on spatial scale. Ecology and Evolution, 7(17), 6779-6789. https://doi.org/10.1002/ece3.3217
Owen-Smith, N. (2009). Dynamics of large herbivore populations in changing environments: Towards appropriate models. John Wiley & Sons. https://doi.org/10.1002/9781444318593
Patacca, M., Lindner, M., Lucas-Borja, M. E., Cordonnier, T., Fidej, G., Gardiner, B., Hauf, Y., Jasinevičius, G., Labonne, S., Linkevičius, E., Mahnken, M., Milanovic, S., Nabuurs, G., Nagel, T. A., Nikinmaa, L., Panyatov, M., Bercak, R., Seidl, R., Ostrogović Sever, M. Z., … Schelhaas, M. (2023). Significant increase in natural disturbance impacts on European forests since 1950. Global Change Biology, 29(5), 1359-1376. https://doi.org/10.1111/gcb.16531
Pauli, H., Gottfried, M., Dullinger, S., Abdaladze, O., Akhalkatsi, M., Alonso, J. L. B., Coldea, G., Dick, J., Erschbamer, B., Calzado, R. F., Ghosn, D., Holten, J. I., Kanka, R., Kazakis, G., Kollár, J., Larsson, P., Moiseev, P., Moiseev, D., Molau, U., … Grabherr, G. (2012). Recent plant diversity changes on Europe's mountain summits. Science, 336(6079), 353-355. https://doi.org/10.1126/science.1219033
Peñuelas, J., Ciais, P., Canadell, J. G., Janssens, I. A., Fernández-Martínez, M., Carnicer, J., Obersteiner, M., Piao, S., Vautard, R., & Sardans, J. (2017). Shifting from a fertilization-dominated to a warming-dominated period. Nature Ecology & Evolution, 1(10), 1438-1445. https://doi.org/10.1038/s41559-017-0274-8
Pereira, H. M., Navarro, L. M., & Martins, I. S. (2012). Global biodiversity change: The bad, the good, and the unknown. Annual Review of Environment and Resources, 37(1), 25-50. https://doi.org/10.1146/annurev-environ-042911-093511
Perring, M. P., De Frenne, P., Baeten, L., Maes, S. L., Depauw, L., Blondeel, H., Carón, M. M., & Verheyen, K. (2016). Global environmental change effects on ecosystems: The importance of land-use legacies. Global Change Biology, 22(4), 1361-1371. https://doi.org/10.1111/gcb.13146
Petersson, L. K., Milberg, P., Bergstedt, J., Dahlgren, J., Felton, A. M., Götmark, F., Salk, C., & Löf, M. (2019). Changing land use and increasing abundance of deer cause natural regeneration failure of oaks: Six decades of landscape-scale evidence. Forest Ecology and Management, 444, 299-307. https://doi.org/10.1016/j.foreco.2019.04.037
Piao, S., Sitch, S., Ciais, P., Friedlingstein, P., Peylin, P., Wang, X., Ahlström, A., Anav, A., Canadell, J. G., Cong, N., Huntingford, C., Jung, M., Levis, S., Levy, P. E., Li, J., Lin, X., Lomas, M. R., Lu, M., Luo, Y., … Zeng, N. (2013). Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Global Change Biology, 19(7), 2117-2132. https://doi.org/10.1111/gcb.12187
Pretzsch, H., Biber, P., Schütze, G., Uhl, E., & Rötzer, T. (2014). Forest stand growth dynamics in Central Europe have accelerated since 1870. Nature Communications, 5(1), 4967. https://doi.org/10.1038/ncomms5967
Pretzsch, H., & Dieler, J. (2011). The dependency of the size-growth relationship of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) in forest stands on long-term site conditions, drought events, and ozone stress. Trees, 25(3), 355-369. https://doi.org/10.1007/s00468-010-0510-1
Pretzsch, H., Grams, T., Häberle, K. H., Pritsch, K., Bauerle, T., & Rötzer, T. (2020). Growth and mortality of Norway spruce and European beech in monospecific and mixed-species stands under natural episodic and experimentally extended drought. results of the KROOF throughfall exclusion experiment. Trees, 34, 957-970. https://doi.org/10.1007/s00468-020-01973-0
Puchałka, R., Dyderski, M. K., Vítková, M., Sádlo, J., Klisz, M., Netsvetov, M., Prokopuk, Y., Matisons, R., Mionskowski, M., Wojda, T., Koprowski, M., & Jagodziński, A. M. (2021). Black locust (Robinia pseudoacacia L.) range contraction and expansion in Europe under changing climate. Global Change Biology, 27(8), 1587-1600. https://doi.org/10.1111/gcb.15486
Radtke, A., Ambraß, S., Zerbe, S., Tonon, G., Fontana, V., & Ammer, C. (2013). Traditional coppice forest management drives the invasion of Ailanthus altissima and Robinia pseudoacacia into deciduous forests. Forest Ecology and Management, 291, 308-317. https://doi.org/10.1016/j.foreco.2012.11.022
Rammer, W., Braziunas, K. H., Hansen, W. D., Ratajczak, Z., Westerling, A. L., Turner, M. G., & Seidl, R. (2021). Widespread regeneration failure in forests of Greater Yellowstone under scenarios of future climate and fire. Global Change Biology, 27(18), 4339-4351. https://doi.org/10.1111/gcb.15726
Rammer, W., & Seidl, R. (2015). Coupling human and natural systems: Simulating adaptive management agents in dynamically changing forest landscapes. Global Environmental Change, 35, 475-485. https://doi.org/10.1016/j.gloenvcha.2015.10.003
Redick, C. H., & Jacobs, D. F. (2020). Mitigation of deer herbivory in temperate hardwood forest regeneration: A meta-analysis of research literature. Forests, 11(11), 1220. https://www.mdpi.com/1999-4907/11/11/1220
Reineke, L. H. (1933). Perfecting a stand-density index for even-aged forests. Journal of Agricultural Research, 46(7), 627-638.
Rhodes, A. C., Wan, H. Y., & St. Clair, S. B. (2017). Herbivory impacts of elk, deer and cattle on aspen forest recruitment along gradients of stand composition, topography and climate. Forest Ecology and Management, 397, 39-47. https://doi.org/10.1016/j.foreco.2017.04.014
Rivrud, I. M., Meisingset, E. L., Loe, L. E., & Mysterud, A. (2019). Future suitability of habitat in a migratory ungulate under climate change. Proceedings of the Royal Society B: Biological Sciences, 286(1899), 20190442. https://doi.org/10.1098/rspb.2019.0442
Schimel, D., Stephens, B. B., & Fisher, J. B. (2015). Effect of increasing CO2 on the terrestrial carbon cycle. Proceedings of the National Academy of Sciences of the United States of America, 112(2), 436-441. https://doi.org/10.1073/pnas.1407302112
Schuldt, B., Buras, A., Arend, M., Vitasse, Y., Beierkuhnlein, C., Damm, A., Gharun, M., Grams, T. E. E., Hauck, M., Hajek, P., Hartmann, H., Hiltbrunner, E., Hoch, G., Holloway-Phillips, M., Körner, C., Larysch, E., Lübbe, T., Nelson, D. B., Rammig, A., … Kahmen, A. (2020). A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic and Applied Ecology, 45, 86-103. https://doi.org/10.1016/j.baae.2020.04.003
Schuurman, G. W., Cole, D. N., Cravens, A. E., Covington, S., Crausbay, S. D., Hoffman, C. H., Lawrence, D. J., Magness, D. R., Morton, J. M., Nelson, E. A., & O'Malley, R. (2022). Navigating ecological transformation: Resist-accept-direct as a path to a new resource management paradigm. Bioscience, 72(1), 16-29. https://doi.org/10.1093/biosci/biab067
Seidl, R., Klonner, G., Rammer, W., Essl, F., Moreno, A., Neumann, M., & Dullinger, S. (2018). Invasive alien pests threaten the carbon stored in Europe's forests. Nature Communications, 9(1), 1626. https://doi.org/10.1038/s41467-018-04096-w
Seidl, R., & Rammer, W. (2017). Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes. Landscape Ecology, 32, 1485-1498. https://doi.org/10.1007/s10980-016-0396-4
Seidl, R., Rammer, W., Scheller, R. M., & Spies, T. A. (2012). An individual-based process model to simulate landscape-scale forest ecosystem dynamics. Ecological Modelling, 231, 87-100. https://doi.org/10.1016/j.ecolmodel.2012.02.015
Seidl, R., Schelhaas, M.-J., Rammer, W., & Verkerk, P. J. (2014). Increasing forest disturbances in Europe and their impact on carbon storage. Nature Climate Change, 4(9), 806-810. https://doi.org/10.1038/nclimate2318
Seidl, R., Spies, T. A., Rammer, W., Steel, E. A., Pabst, R. J., & Olsen, K. (2012). Multi-scale drivers of spatial variation in old-growth forest carbon density disentangled with lidar and an individual-based landscape model. Ecosystems, 15(8), 1321-1335. https://doi.org/10.1007/s10021-012-9587-2
Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., Ascoli, D., Petr, M., Honkaniemi, J., Lexer, M. J., Trotsiuk, V., Mairota, P., Svoboda, M., Fabrika, M., Nagel, T. A., & Reyer, C. P. O. (2017). Forest disturbances under climate change. Nature Climate Change, 7(6), 395-402. https://doi.org/10.1038/nclimate3303
Seidl, R., & Turner, M. G. (2022). Post-disturbance reorganization of forest ecosystems in a changing world. Proceedings of the National Academy of Sciences, 119(28), e2202190119. https://doi.org/10.1073/pnas.2202190119
Seidl, R., Vigl, F., Rössler, G., Neumann, M., & Rammer, W. (2017). Assessing the resilience of Norway spruce forests through a model-based reanalysis of thinning trials. Forest Ecology and Management, 388, 3-12. https://doi.org/10.1016/j.foreco.2016.11.030
Senf, C., & Seidl, R. (2021). Mapping the forest disturbance regimes of Europe. Nature Sustainability, 4(1), 63-70. https://doi.org/10.1038/s41893-020-00609-y
Silva Pedro, M., Rammer, W., & Seidl, R. (2015). Tree species diversity mitigates disturbance impacts on the forest carbon cycle. Oecologia, 177, 619-630. https://doi.org/10.1007/s00442-014-3150-0
Smith, K. W., Reed, S. C., Cleveland, C. C., Ballantyne, A. P., Anderegg, W. R. L., Wieder, W. R., Liu, Y. Y., & Running, S. W. (2016). Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nature Climate Change, 6(3), 306-310. https://doi.org/10.1038/nclimate2879
Sommerfeld, A., Rammer, W., Heurich, M., Hilmers, T., Müller, J., & Seidl, R. (2021). Do bark beetle outbreaks amplify or dampen future bark beetle disturbances in Central Europe? Journal of Ecology, 109(2), 737-749. https://doi.org/10.1111/1365-2745.13502
Spitzer, R., Felton, A., Landman, M., Singh, N. J., Widemo, F., & Cromsigt, J. P. G. M. (2020). Fifty years of European ungulate dietary studies: A synthesis. Oikos, 129, 1668-1680. https://doi.org/10.1111/oik.07435
Staude, I. R., Waller, D. M., Bernhardt-Römermann, M., Bjorkman, A. D., Brunet, J., De Frenne, P., Hédl, R., Jandt, U., Lenoir, J., Máliš, F., Verheyen, K., Wulf, M., Pereira, H. M., Vangansbeke, P., Ortmann-Ajkai, A., Pielech, R., Berki, I., Chudomelová, M., Decocq, G., … Baeten, L. (2020). Replacements of small- by large-ranged species scale up to diversity loss in Europe's temperate forest biome. Nature Ecology & Evolution, 4(6), 802-808. https://doi.org/10.1038/s41559-020-1176-8
Stovall, A. E. L., Shugart, H., & Yang, X. (2019). Tree height explains mortality risk during an intense drought. Nature Communications, 10(1), 4385. https://doi.org/10.1038/s41467-019-12380-6
Terrer, C., Jackson, R. B., Prentice, I. C., Keenan, T. F., Kaiser, C., Vicca, S., Fisher, J. B., Reich, P. B., Stocker, B. D., Hungate, B. A., Peñuelas, J., McCallum, I., Soudzilovskaia, N. A., Cernusak, L. A., Talhelm, A. F., Van Sundert, K., Piao, S., Newton, P. C. D., Hovenden, M. J., … Franklin, O. (2019). Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nature Climate Change, 9(9), 684-689. https://doi.org/10.1038/s41558-019-0545-2
Thom, D., Rammer, W., Dirnböck, T., Müller, J., Kobler, J., Katzensteiner, K., Helm, N., & Seidl, R. (2017). The impacts of climate change and disturbance on spatio-temporal trajectories of biodiversity in a temperate forest landscape. Journal of Applied Ecology, 54(1), 28-38. https://doi.org/10.1111/1365-2664.12644
Thom, D., Rammer, W., Garstenauer, R., & Seidl, R. (2018). Legacies of past land use have a stronger effect on forest carbon exchange than future climate change in a temperate forest landscape. Biogeosciences, 15(18), 5699-5713. https://doi.org/10.5194/bg-15-5699-2018
Thom, D., Rammer, W., & Seidl, R. (2017). Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions. Global Change Biology, 23, 269-282. https://doi.org/10.1111/gcb.13506
Tian, D., Wang, H., Sun, J., & Niu, S. (2016). Global evidence on nitrogen saturation of terrestrial ecosystem net primary productivity. Environmental Research Letters, 11(2), 024012. https://doi.org/10.1088/1748-9326/11/2/024012
Tremblay, J. P., Huot, J., & Potvin, F. (2007). Density-related effects of deer browsing on the regeneration dynamics of boreal forests. Journal of Applied Ecology, 44(3), 552-562. https://doi.org/10.1111/j.1365-2664.2007.01290.x
UN FCCC, Paris Agreement. (2015). Document FCCC/CP/2015/10/Add.1. https://unfccc.int/files/meetings/paris_nov_2015/application/pdf/paris_agreement_english_.pdf
Vacek, Z. (2017). Structure and dynamics of spruce-beech-fir forests in Nature Reserves of the Orlické hory Mts. in relation to ungulate game. Central European Forestry Journal, 63(1), 23-34. https://doi.org/10.1515/forj-2017-0006
Valente, A. M., Acevedo, P., Figueiredo, A. M., Fonseca, C., & Torres, R. T. (2020). Overabundant wild ungulate populations in Europe: Management with consideration of socio-ecological consequences. Mammal Review, 50(4), 353-366. https://doi.org/10.1111/mam.12202
Vuorinen, K. E., Rao, S. J., Hester, A. J., & Speed, J. D. (2020). Herbivory and climate as drivers of woody plant growth: Do deer decrease the impacts of warming? Ecological Applications, 30(6), e02119. https://doi.org/10.1002/eap.2119
Walker, B., Gunderson, L., Kinzig, A., Folke, C., Carpenter, S., & Schultz, L. (2006). A handful of heuristics and some propositions for understanding resilience in social-ecological systems. Ecology and Society, 11(1), 1-15. https://www.jstor.org/stable/26267801
Wallentin, C., & Nilsson, U. (2014). Storm and snow damage in a Norway spruce thinning experiment in southern Sweden. Forestry, 87(2), 229-238. https://doi.org/10.1093/forestry/cpt046
Wang, R., Goll, D., Balkanski, Y., Hauglustaine, D., Boucher, O., Ciais, P., Janssens, I., Penuelas, J., Guenet, B., Sardans, J., Bopp, L., Vuichard, N., Zhou, F., Li, B., Piao, S., Peng, S., Huang, Y., & Tao, S. (2017). Global forest carbon uptake due to nitrogen and phosphorus deposition from 1850 to 2100. Global Change Biology, 23(11), 4854-4872. https://doi.org/10.1111/gcb.13766
Weiskopf, S. R., Ledee, O. E., & Thompson, L. M. (2019). Climate change effects on deer and moose in the Midwest. The Journal of Wildlife Management, 83(4), 769-781. https://doi.org/10.1002/jwmg.21649
Wermelinger, B. (2004). Ecology and management of the spruce bark beetle Ips typographus-A review of recent research. Forest Ecology and Management, 202(1-3), 67-82. https://doi.org/10.1016/j.foreco.2004.07.018
Wullschleger, S. D., & Hanson, P. J. (2003). Sensitivity of sapling and mature-tree water use to altered precipitation regimes. In P. J. Hanson & S. D. Wullschleger (Eds.), North American temperate deciduous forest responses to changing precipitation regimes. Ecological Studies (Vol. 166, pp. 87-99). Springer. https://doi.org/10.1007/978-1-4613-0021-2_6
Yoda, K. (1963). Self-thinning in overcrowded pure stands under cultivated and natural conditions (Intraspecific competition among higher plants XI). Journal of Biology, Osaka City University. Series D, 14, 107-129.
Yuan, W., Zheng, Y., Piao, S., Ciais, P., Lombardozzi, D., Wang, Y., Ryu, Y., Chen, G., Dong, W., Hu, Z., Jain, A. K., Jiang, C., Kato, E., Li, S., Lienert, S., Liu, S., Nabel, J. E. M. S., Qin, Z., Quine, T., … Yang, S. (2019). Increased atmospheric vapor pressure deficit reduces global vegetation growth. Science Advances, 5(8), eaax1396. https://doi.org/10.1126/sciadv.aax1396
Zang, C., Hartl-Meier, C., Dittmar, C., Rothe, A., & Menzel, A. (2014). Patterns of drought tolerance in major European temperate forest trees: Climatic drivers and levels of variability. Global Change Biology, 20(12), 3767-3779. https://doi.org/10.1111/gcb.12637