Evaluation of the Impact of Population Management on the Genetic Parameters of Selected Spiral-Horned Antelopes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA 20233104
Czech University of Life Sciences Prague
IGA 20233103
Czech University of Life Sciences Prague
PubMed
38392322
PubMed Central
PMC10886411
DOI
10.3390/biology13020104
PII: biology13020104
Knihovny.cz E-zdroje
- Klíčová slova
- Tragelaphini, ex situ management, genetic diversity, zoo populations,
- Publikační typ
- časopisecké články MeSH
The rapid loss of biodiversity and the associated reduction and fragmentation of habitats means that ex situ populations have become an important part of species conservation. These populations, which are often established from a small number of founders, require careful management to avoid the negative effects of genetic drift and inbreeding. Although the inclusion of molecular data is recommended, their availability for captive breeding management remains limited. The aim of this study was to evaluate the relationship between the levels of genetic diversity in six spiral-horned antelope taxa bred under human care and their respective management strategies, conservation status, demography, and geographic origin, using 10 nuclear DNA microsatellite loci and mitochondrial control region DNA sequences. Our findings include associations between genetic diversity and management intensity but also with the diversity and contribution of wild populations to captive founders, with some populations apparently composed of animals from divergent wild lineages elevating captive genetic diversity. When population sizes are large, the potential advantages of maximizing genetic diversity in widely outcrossed populations may need careful consideration with respect to the potential disruption of adaptive diversity. Genetic data serve as a robust tool for managing captive populations, yet their interpretation necessitates a comprehensive understanding of species biology and history.
Zobrazit více v PubMed
IPBES . Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES Secretariat; Bonn, Germany: 2019.
Reed D.H., Frankham R. Correlation between Fitness and Genetic Diversity. Conserv. Biol. 2003;17:230–237. doi: 10.1046/j.1523-1739.2003.01236.x. DOI
Frankham R. Genetics and extinction. Biol. Conserv. 2005;126:131–140. doi: 10.1016/j.biocon.2005.05.002. DOI
Hoffmann A.A., Sgrò C.M. Climate change and evolutionary adaptation. Nature. 2011;470:479–485. doi: 10.1038/nature09670. PubMed DOI
Dirzo R., Raven P.H. Global State of Biodiversity and Loss. Annu. Rev. Environ. Resour. 2003;28:137–167. doi: 10.1146/annurev.energy.28.050302.105532. DOI
Laikre L., Allendorf F.W., Aroner L.C., Baker C.S., Gregovich D.P., Hansen M.M., Jackson J.A., Kendall K.C., McKelvey K., Neel M.C., et al. Neglect of Genetic Diversity in Implementation of the Convention on Biological Diversity. Conserv. Biol. 2010;24:86–88. doi: 10.1111/j.1523-1739.2009.01425.x. PubMed DOI
Cook C.N., Sgrò C.M. Aligning science and policy to achieve evolutionarily enlightened conservation. Conserv. Biol. 2017;31:501–512. doi: 10.1111/cobi.12863. PubMed DOI
Mcowen C.J., Ivory S., Dixon M.J.R., Regan E.C., Obrecht A., Tittensor D.P., Teller A., Chenery A.M. Sufficiency and Suitability of Global Biodiversity Indicators for Monitoring Progress to 2020 Targets. Conserv. Lett. 2016;9:489–494. doi: 10.1111/conl.12329. DOI
Laikre L., Hoban S., Bruford M.W., Segelbacher G., Allendorf F.W., Gajardo G., González Rodríguez A., Hedrick P.W., Heuertz M., Hohenlohe P.A., et al. Post-2020 goals overlook genetic diversity. Science. 2020;367:1083–1085. doi: 10.1126/science.abb2748. PubMed DOI
Ette J., Geburek T. Why European biodiversity reporting is not reliable. Ambio. 2021;50:929–941. doi: 10.1007/s13280-020-01415-8. PubMed DOI PMC
Hoban S., Campbell C.D., da Silva J.M., Ekblom R., Funk W.C., Garner B.A., Godoy J.A., Kershaw F., MacDonald A.J., Mergeay J., et al. Genetic diversity is considered important but interpreted narrowly in country reports to the Convention on Biological Diversity: Current actions and indicators are insufficient. Biol. Conserv. 2021;261:109233. doi: 10.1016/j.biocon.2021.109233. DOI
Hoban S., Bruford M.W., Funk W.C., Galbusera P., Griffith M.P., Grueber C.E., Heuertz M., Hunter M.E., Hvilsom C., Kalamujic Stroil B., et al. Global Commitments to Conserving and Monitoring Genetic Diversity Are Now Necessary and Feasible. Bioscience. 2021;71:964–976. doi: 10.1093/biosci/biab054. PubMed DOI PMC
Pflüger F.J., Signer J., Balkenhol N. Habitat loss causes non-linear genetic erosion in specialist species. Glob. Ecol. Conserv. 2018;17:e00507. doi: 10.1016/j.gecco.2018.e00507. DOI
Convention on Biological Diversity. Decision adopted by the Conference of the Parties to the Convention on Biological Diversity [CBD/COP/DEC/15/4]. Kunming-Montreal Global Biodiversity Framework. 2022. [(accessed on 25 December 2023)]. Available online: https://www.cbd.int/doc/decisions/cop-15/cop-15-dec-04-en.pdf.
Montgomery M.E., Woodworth L.M., Nurthen R.K., Gilligan D.M., Briscoe D.A., Frankham R. Relationships between population size and loss of genetic diversity: Comparisons of experimental results with theoretical predictions. Conserv. Genet. 2000;1:33–43. doi: 10.1023/A:1010173401557. DOI
Frankham R., Ballou J.D., Briscoe D.A. Introduction to Conservation Genetics. 1st ed. Cambridge University Press; Cambridge, UK: 2002.
WWF Living Planet Report 2022—Building a Nature-Positive Society. WWF Living Planet Report. 2022. [(accessed on 9 December 2023)]. Available online: https://wwflpr.awsassets.panda.org/downloads/lpr_2022_full_report.pdf.
Leigh D.M., Hendry A.P., Vázquez-Domínguez E., Friesen V.L. Estimated six per cent loss of genetic variation in wild populations since the industrial revolution. Evol. Appl. 2019;12:1505–1512. doi: 10.1111/eva.12810. PubMed DOI PMC
Farhadinia M.S., Johnson P.J., Zimmermann A., McGowan P.J.K., Meijaard E., Stanley-Price M., Macdonald D.W. Ex situ management as insurance against extinction of mammalian megafauna in an uncertain world. Conserv. Biol. 2020;34:988–996. doi: 10.1111/cobi.13496. PubMed DOI
Keulartz J. Towards a Futureproof Zoo. Animals. 2023;13:998. doi: 10.3390/ani13060998. PubMed DOI PMC
Pizzutto C.S., Colbachini H., Jorge-Neto P.N. One Conservation: The integrated view of biodiversity conservation. Anim. Reprod. 2021;18:e20210024. doi: 10.1590/1984-3143-ar2021-0024. PubMed DOI PMC
Willoughby J.R., Fernandez N.B., Lamb M.C., Ivy J.A., Lacy R.C., DeWoody J.A. The impacts of inbreeding, drift and selection on genetic diversity in captive breeding populations. Mol. Ecol. 2015;24:98–110. doi: 10.1111/mec.13020. PubMed DOI
Witzenberger K.A., Hochkirch A. Ex situ conservation genetics: A review of molecular studies on the genetic consequences of captive breeding programmes for endangered animal species. Biodivers. Conserv. 2011;20:1843–1861. doi: 10.1007/s10531-011-0074-4. DOI
Gooley R.M., Tamazian G., Castañeda-Rico S., Murphy K.R., Dobrynin P., Ferrie G.M., Haefele H., Maldonado J.E., Wildt D.E., Pukazhenthi B.S., et al. Comparison of genomic diversity and structure of sable antelope (Hippotragus niger) in zoos, conservations centers, and private ranches in North America. Evol. Appl. 2020;13:2143–2154. doi: 10.1111/eva.12976. PubMed DOI PMC
Kubátová A., Štochlová K., Brandlová K., Jůnková Vymyslická P., Černá Bolfíková B. Comparison of divergent breeding management strategies in two species of semi-captive eland in Senegal. Sci. Rep. 2020;10:8841. doi: 10.1038/s41598-020-65598-6. PubMed DOI PMC
Ogden R., Chuven J., Gilbert T., Hosking C., Gharbi K., Craig M., Al Dhaheri S.S., Senn H. Benefits and pitfalls of captive conservation genetic management: Evaluating diversity in scimitar-horned oryx to support reintroduction planning. Biol. Conserv. 2020;241:108244. doi: 10.1016/j.biocon.2019.108244. DOI
Alvarez-Estape M., Fontsere C., Serres-Armero A., Kuderna L.F.K., Dobrynin P., Guidara H., Pukazhenthi B.S., Koepfli K., Marques-Bonet T., Moreno E., et al. Insights from the rescue and breeding management of Cuvier’s gazelle (Gazella cuvieri) through whole-genome sequencing. Evol. Appl. 2022;15:351–364. doi: 10.1111/eva.13336. PubMed DOI PMC
Klimova A., Gutiérrez-Rivera J.N., Sánchez-Sotomayor V., Hoffman J.I. The genetic consequences of captive breeding, environmental change and human exploitation in the endangered peninsular pronghorn. Sci. Rep. 2022;12:11253. doi: 10.1038/s41598-022-14468-4. PubMed DOI PMC
Ivy J.A., Lacy R.C. Using molecular methods to improve the genetic management of captive breeding programs for threatened species. In: DeWoody J.A., Bickham J.W., Michler C.H., Nichols K.M., Rhodes G.E., Woeste K.E., editors. Molecular Approaches in Natural Resource Conservation and Management. 1st ed. Cambridge University Press; Cambridge, UK: 2010. pp. 267–295.
Norman A.J., Putnam A.S., Ivy J.A. Use of molecular data in zoo and aquarium collection management: Benefits, challenges, and best practices. Zoo Biol. 2019;38:106–118. doi: 10.1002/zoo.21451. PubMed DOI
Zemanová H., Černá Bolfíková B., Brandlová K., Hejcmanová P., Hulva P. Conservation genetics of the Western Derby eland (Taurotragus derbianus derbianus) in Senegal: Integration of pedigree and microsatellite data. Mamm. Biol. 2015;80:328–332. doi: 10.1016/j.mambio.2015.02.002. DOI
Hogg C.J., Wright B., Morris K.M., Lee A.V., Ivy J.A., Grueber C.E., Belov K. Founder relationships and conservation management: Empirical kinships reveal the effect on breeding programmes when founders are assumed to be unrelated. Anim. Conserv. 2019;22:348–361. doi: 10.1111/acv.12463. DOI
Ito H., Ogden R., Langenhorst T., Inoue-Murayama M. Contrasting Results from Molecular and Pedigree-Based Population Diversity Measures in Captive Zebra Highlight Challenges Facing Genetic Management of Zoo Populations. Zoo Biol. 2017;36:87–94. doi: 10.1002/zoo.21342. PubMed DOI
Oliehoek P.A., Bijma P. Effects of pedigree errors on the efficiency of conservation decisions. Genet. Sel. Evol. 2009;41:9. doi: 10.1186/1297-9686-41-9. PubMed DOI PMC
Fienieg E.S., Galbusera P. The use and integration of molecular DNA information in conservation breeding programmes: A review. J. Zoo Aquar. Res. 2013;1:44–51. doi: 10.19227/jzar.v1i2.31. DOI
Miller-Butterworth C.M., Vacco K., Russell A.L., Gaspard J.C., III. Genetic Diversity and Relatedness among Captive African Painted Dogs in North America. Genes. 2021;12:1463. doi: 10.3390/genes12101463. PubMed DOI PMC
IUCN SSC Antelope Specialist Group Tragelaphus imberbis. The IUCN Red List of Threatened Species. 2016. [(accessed on 9 December 2023)]. Available online: https://www.iucnredlist.org/species/22053/115165887.
IUCN SSC Antelope Specialist Group Tragelaphus eurycerus ssp. isaaci. The IUCN Red List of Threatened Species. 2017. [(accessed on 9 December 2023)]. Available online: https://www.iucnredlist.org/species/22057/50197212.
Davis N., Humphreys A. European/Mountain Bongo EEP (Tragelaphus eurycerus isaaci) Annual Studbook Report 2021. Chester Zoo; Chester, UK: 2022.
Steck B. Lesser Kudu Tragelaphus imberbis (Blyth, 1869) European Studbook 2021. Zoo Basel; Basel, Switzerland: 2022.
Zoological Information Management Software. Species360. [(accessed on 31 December 2022)]. Available online: https://zims.species360.org.
IUCN SSC Antelope Specialist Group Tragelaphus spekii. The IUCN Red List of Threatened Species. 2016. [(accessed on 9 December 2023)]. Available online: https://www.iucnredlist.org/species/22050/115164901.
IUCN SSC Antelope Specialist Group Tragelaphus oryx. The IUCN Red List of Threatened Species. 2016. [(accessed on 9 December 2023)]. Available online: https://www.iucnredlist.org/species/22055/115166135.
IUCN SSC Antelope Specialist Group Tragelaphus angasii. The IUCN Red List of Threatened Species. 2016. [(accessed on 9 December 2023)]. Available online: https://www.iucnredlist.org/species/22052/115165681.
IUCN SSC Antelope Specialist Group Tragelaphus strepsiceros. The IUCN Red List of Threatened Species. 2020. [(accessed on 9 December 2023)]. Available online: https://www.iucnredlist.org/species/22054/166487759.
Jebram J. European Studbook for the Greater Kudu (Tragelaphus strepsiceros) ZOOM Erlebniswelt Gelsenkirchen; Gelsenkirchen, Germany: 2012.
Nolasco S. European Studbook for the Lowland Nyala Tragelaphus angasii (Gray, 1849) Lisbon Zoo; Lisbon, Portugal: 2019.
Zwanzger P. Identification of the Founders of the Present European Population of Western Sitatunga (Tragelaphus spekii gratus) 2003. unpublished manuscript .
Zwanzger P. ((Cologne Zoo, Cologne, Germany)). Personal communication. 2023.
Árnason Ú., Gullberg A., Johnsson E., Ledje C. The nucleotide sequence of the mitochondrial DNA molecule of the grey seal, Halichoerus grypus, and a comparison with mitochondrial sequences of other true seals. J. Mol. Evol. 1993;37:323–330. doi: 10.1007/BF00178862. PubMed DOI
Simonsen B.T., Siegismund H.R., Arctander P. Population structure of African buffalo inferred from mtDNA sequences and microsatellite loci: High variation but low differentiation. Mol. Ecol. 1998;7:225–237. doi: 10.1046/j.1365-294x.1998.00343.x. PubMed DOI
Peakall R., Smouse P.E. GenAlEx 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes. 2006;6:288–295. doi: 10.1111/j.1471-8286.2005.01155.x. PubMed DOI PMC
Peakall R., Smouse P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics. 2012;28:2537–2539. doi: 10.1093/bioinformatics/bts460. PubMed DOI PMC
Belkhir K., Borsa P., Chikhi L., Raufaste N., Bonhomme F. GENETIX 4.05, Logiciel sous Windows TM pour la Génétique des Populations. Laboratoire Génome, Populations, Interactions, Université de Montpellier II; Montpellier, France: [(accessed on 29 January 2024)]. 1994–2006. Available online: https://kimura.univ-montp2.fr/genetix/
Raymond M., Rousset F. GENEPOP (Version 1.2): Population Genetics Software for Exact Tests and Ecumenicism. J. Hered. 1995;86:248–249. doi: 10.1093/oxfordjournals.jhered.a111573. DOI
Rousset F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 2008;8:103–106. doi: 10.1111/j.1471-8286.2007.01931.x. PubMed DOI
Thompson J.D., Higgins D.G., Gibson T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–4680. doi: 10.1093/nar/22.22.4673. PubMed DOI PMC
Hall T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999;41:95–98.
Rozas J., Ferrer-Mata A., Sánchez-DelBarrio J.C., Guirao-Rico S., Librado P., Ramos-Onsins S.E., Sánchez-Gracia A. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol. Biol. Evol. 2017;34:3299–3302. doi: 10.1093/molbev/msx248. PubMed DOI
Tamura K., Stecher G., Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021;38:3022–3027. doi: 10.1093/molbev/msab120. PubMed DOI PMC
Templeton A.R., Crandall K.A., Sing C.F. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics. 1992;132:619–633. doi: 10.1093/genetics/132.2.619. PubMed DOI PMC
Leigh J.W., Bryant D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015;6:1110–1116. doi: 10.1111/2041-210X.12410. DOI
O’Donoghue P., Gruber K., Bingaman Lackey L., Kitchener A.C., O’Donoghue E., Moodley Y. Saving the mountain bongo (Tragelaphus eurycerus isaaci): Assessment of the genetic status of captive bongos as a source for genetic reinforcement of wild populations. J. Zoo Aquar. Res. 2017;5:123–130. doi: 10.19227/jzar.v5i3.247. DOI
Sandri T. Ph.D. Thesis. Manchester Metropolitan University; Manchester, UK: 2020. Ecology and Conservation Genetics of the Endangered Mountain Bongo.
Bock F., Gallus S., Janke A., Hailer F., Steck B.L., Kumar V., Nilsson M.A. Genomic Resources and Genetic Diversity of Captive Lesser Kudu (Tragelaphus imberbis) Zoo Biol. 2014;33:440–445. doi: 10.1002/zoo.21146. PubMed DOI
Ogden R., Ghazali M., Hopper J., Čulík L., King T. Genetic assessments for antelope reintroduction planning in four European breeding programmes. J. Zoo Aquar. Res. 2018;6:79–84. doi: 10.19227/jzar.v6i3.359. DOI
Combe F.J., Taylor-Cox E., Fox G., Sandri T., Davis N., Jones M.J., Cain B., Mallon D., Harris W.E. Rapid isolation and characterization of microsatellites in the critically endangered mountain bongo (Tragelaphus eurycerus isaaci) J. Genet. 2018;97:549–553. doi: 10.1007/s12041-018-0922-z. PubMed DOI
Faria P.J., Kavembe G.D., Jung’a J.O., Kimwele C.N., Estes L.D., Reillo P.R., Mwangi A.G., Bruford M.W. The use of non-invasive molecular techniques to confirm the presence of mountain bongo Tragelaphus eurycerus isaaci populations in Kenya and preliminary inference of their mitochondrial genetic variation. Conserv. Genet. 2011;12:745–751. doi: 10.1007/s10592-011-0181-5. DOI
Pastor T., Garza J.C., Aguilar A., Tounta E., Androukaki E. Genetic diversity and differentiation between the two remaining populations of the critically endangered Mediterranean monk seal. Anim. Conserv. 2007;10:461–469. doi: 10.1111/j.1469-1795.2007.00137.x. DOI
Johnson J.A., Tingay R.E., Culver M., Hailer F., Clarke M.L., Mindell D.P. Long-term survival despite low genetic diversity in the critically endangered Madagascar fish-eagle. Mol. Ecol. 2009;18:54–63. doi: 10.1111/j.1365-294X.2008.04012.x. PubMed DOI
Chaves P.B., Alvarenga C.S., Possamai C.B., Dias L.G., Boubli J.P., Strier K.B., Mendes S.L., Fagundes V. Genetic Diversity and Population History of a Critically Endangered Primate, the Northern Muriqui (Brachyteles hypoxanthus) PLoS ONE. 2011;6:e20722. doi: 10.1371/annotation/1bdb2ee6-ceb8-4b3a-9773-e9a82cf22688. PubMed DOI PMC
Dunn J.C., Shedden-González A., Cristóbal-Azkarate J., Cortés-Ortiz L., Rodríguez-Luna E., Knapp L.A. Limited genetic diversity in the critically endangered Mexican howler monkey (Alouatta palliata mexicana) in the Selva Zoque, Mexico. Primates. 2014;55:155–160. doi: 10.1007/s10329-013-0399-6. PubMed DOI
Wang W., Qiao Y., Li S., Pan W., Yao M. Low genetic diversity and strong population structure shaped by anthropogenic habitat fragmentation in a critically endangered primate, Trachypithecus leucocephalus. Heredity. 2017;118:542–553. doi: 10.1038/hdy.2017.2. PubMed DOI PMC
Wang W., Zheng Y., Zhao J., Yao M. Low genetic diversity in a critically endangered primate: Shallow evolutionary history or recent population bottleneck? BMC Evol. Biol. 2019;19:134. doi: 10.1186/s12862-019-1451-y. PubMed DOI PMC
Melo-Carrillo A., Dunn J.C., Cortés-Ortiz L. Low genetic diversity and limited genetic structure across the range of the critically endangered Mexican howler monkey (Alouatta palliata mexicana) Am. J. Primatol. 2020;82:e23160. doi: 10.1002/ajp.23160. PubMed DOI
Sharma S.P., Ghazi M.G., Katdare S., Dasgupta N., Mondol S., Gupta S.K., Hussain S.A. Microsatellite analysis reveals low genetic diversity in managed populations of the critically endangered gharial (Gavialis gangeticus) in India. Sci. Rep. 2021;11:5627. doi: 10.1038/s41598-021-85201-w. PubMed DOI PMC
Bishop R.P., Odongo D.O., Dolan T.T., Dolan R.B., Skilton R.A., Sayer P.D. Theilerosis in Mountain Bongo Repatriated to Kenya: A Clinical and Molecular Investigation. J. Zoo Wildl. Med. 2019;50:342–349. doi: 10.1638/2018-0110. PubMed DOI
Willis K., Willis R.E. How Many Founders, How Large a Population? Zoo Biol. 2010;29:638–646. doi: 10.1002/zoo.20310. PubMed DOI
Ralls K., Ballou J.D. Captive Breeding and Reintroduction. In: Levin S.A., editor. Encyclopedia of Biodiversity. 2nd ed. Volume 1. Elsevier Academic Press; Amsterdam, The Netherlands: 2013. pp. 662–667.
Lees C.M., Wilcken J. Sustaining the Ark: The challenges faced by zoos in maintaining viable populations. Int. Zoo Yearb. 2009;43:6–18. doi: 10.1111/j.1748-1090.2008.00066.x. DOI
Hvilsom C., Frandsen P., Børsting C., Carlsen F., Sallé B., Simonsen B.T., Siegismund H.R. Understanding geographic origins and history of admixture among chimpanzees in European zoos, with implications for future breeding programmes. Heredity. 2013;110:586–593. doi: 10.1038/hdy.2013.9. PubMed DOI PMC
Schmidt F., Franke F.A., Shirley M.H., Vliet K.A., Villanova V.L. The importance of genetic research in zoo breeding programmes for threatened species: The African dwarf crocodiles (genus Osteolaemus) as a case study. Int. Zoo Yearb. 2015;49:125–136. doi: 10.1111/izy.12082. DOI
Banes G.L., Galdikas B.M.F., Vigilant L. Reintroduction of confiscated and displaced mammals risks outbreeding and introgression in natural populations, as evidenced by orang-utans of divergent subspecies. Sci. Rep. 2016;6:22026. doi: 10.1038/srep22026. PubMed DOI PMC
Vilà C., Sundqvist A., Flagstad Ø., Seddon J., Björnerfeldt S., Kojola I., Casulli A., Sand H., Wabakken P., Ellegren H. Rescue of a severely bottlenecked wolf (Canis lupus) population by a single immigrant. Proc. R. Soc. Lond. B. 2003;270:91–97. doi: 10.1098/rspb.2002.2184. PubMed DOI PMC
Johnson W.E., Onorato D.P., Roelke M.E., Land E.D., Cunningham M., Belden R.C., McBride R., Jansen D., Lotz M., Shindle D., et al. Genetic Restoration of the Florida Panther. Science. 2010;329:1641–1645. doi: 10.1126/science.1192891. PubMed DOI PMC
Biebach I., Keller L.F. Genetic variation depends more on admixture than number of founders in reintroduced Alpine ibex populations. Biol. Conserv. 2012;147:197–203. doi: 10.1016/j.biocon.2011.12.034. DOI
White L.C., Moseby K.E., Thomson V.A., Donnellan S.C., Austin J.J. Long-term genetic consequences of mammal reintroductions into an Australian conservation reserve. Biol. Conserv. 2018;219:1–11. doi: 10.1016/j.biocon.2017.12.038. DOI
McLennan E.A., Grueber C.E., Wise P., Belov K., Hogg C.J. Mixing genetically differentiated populations successfully boosts diversity of an endangered carnivore. Anim. Conserv. 2020;23:700–712. doi: 10.1111/acv.12589. DOI
Zecherle L.J., Nichols H.J., Bar-David S., Brown R.P., Hipperson H., Horsburgh G.J., Templeton A.R. Subspecies hybridization as a potential conservation tool in species reintroductions. Evol. Appl. 2021;14:1216–1224. doi: 10.1111/eva.13191. PubMed DOI PMC
Rick K., Ottewell K., Lohr C., Thavornkanlapachai R., Byrne M., Kennington W.J. Population Genomics of Bettongia lesueur: Admixing Increases Genetic Diversity with no Evidence of Outbreeding Depression. Genes. 2019;10:851. doi: 10.3390/genes10110851. PubMed DOI PMC
Senn H., Banfield L., Wacher T., Newby J., Rabeil T., Kaden J., Kitchener A.C., Abaigar T., Silva T.L., Maunder M., et al. Splitting or Lumping? A Conservation Dilemma Exemplified by the Critically Endangered Dama Gazelle (Nanger dama) PLoS ONE. 2014;9:e98693. doi: 10.1371/journal.pone.0098693. PubMed DOI PMC
Frankham R. Genetic rescue of small inbred populations: Meta-analysis reveals large and consistent benefits of gene flow. Mol. Ecol. 2015;24:2610–2618. doi: 10.1111/mec.13139. PubMed DOI
Waller D.M. Genetic rescue: A safe or risky bet? Mol. Ecol. 2015;24:2595–2597. doi: 10.1111/mec.13220. PubMed DOI
Whiteley A.R., Fitzpatrick S.W., Funk W.C., Tallmon D.A. Genetic rescue to the rescue. Trends Ecol. Evol. 2015;30:42–49. doi: 10.1016/j.tree.2014.10.009. PubMed DOI
Ralls K., Ballou J.D., Dudash M.R., Eldridge M.D.B., Fenster C.B., Lacy R.C., Sunnucks P., Frankham R. Call for a Paradigm Shift in the Genetic Management of Fragmented Populations. Conserv. Lett. 2018;11:e12412. doi: 10.1111/conl.12412. DOI
Bishop M.D., Kappes S.M., Keele J.W., Stone R.T., Sunden S.L.F., Hawkins G.A., Solinas Toldo S., Fries R., Grosz M.D., Yoo J., et al. A Genetic Linkage Map for Cattle. Genetics. 1994;136:619–639. doi: 10.1093/genetics/136.2.619. PubMed DOI PMC
Flynn P. Master’s Thesis. University College Dublin; Dublin, Ireland: 2009. Characterisation of Rare Irish Cattle Breeds by Comparative Molecular Studies using Nuclear and Mitochondrial DNA Markers.
Baylor College of Medicine The Bovine Genome Project. Human Genome Sequencing Centre. 2006. [(accessed on 12 September 2023)]. Available online: https://www.hgsc.bcm.edu/other-mammals/bovine-genome-project.
Solinas Toldo S., Fries R., Steffen P., Neibergs H.L., Barendse W., Womack J.E., Hetzel D.J., Stranzinger G. Physically mapped, cosmid-derived microsatellite markers as anchor loci on bovine chromosomes. Mamm. Genome. 1993;4:720–727. doi: 10.1007/BF00357796. PubMed DOI
Steffen P., Eggen A., Dietz A.B., Womack J.E., Stranzinger G., Fries R. Isolation and mapping of polymorphic microsatellites in cattle. Anim. Genet. 1993;24:121–124. doi: 10.1111/j.1365-2052.1993.tb00252.x. PubMed DOI
Vaiman D., Osta R., Mercier D., Grohs C., Levéziel H. Characterization of five new bovine dinucleotide repeats. Anim. Genet. 1992;23:537–541. doi: 10.1111/j.1365-2052.1992.tb00175.x. PubMed DOI
Moore S.S., Byrne K., Berger K.T., Barendse W., McCarthy F., Womack J.E., Hetzel D.J.S. Characterization of 65 bovine microsatellites. Mamm. Genome. 1994;5:84–90. doi: 10.1007/BF00292333. PubMed DOI
Vaiman D., Imam-Ghali M., Moazami-Goudarzi K., Guérin G., Grohs C., Levéziel H., Saïdi-Mehtar N. Conservation of a syntenic group of microsatellite loci between cattle and sheep. Mamm. Genome. 1994;5:310–314. doi: 10.1007/BF00389547. PubMed DOI
FAO Molecular Genetic Characterization of Animal Genetic Resources. FAO Animal Production and Health Guidelines. 2011. [(accessed on 9 December 2023)]. Available online: https://www.fao.org/3/i2413e/i2413e00.pdf.
Hassanin A., Delsuc F., Ropiquet A., Hammer C., Jansen van Vuuren B., Matthee C., Ruiz-Garcia M., Catzeflis F., Areskoug V., Nguyen T.T., et al. Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. Comptes Rendus Biol. 2012;335:32–50. doi: 10.1016/j.crvi.2011.11.002. PubMed DOI
Grobler J.P., Pretorius D.M., Botha K., Kotze A., Hallerman E.M., Jansen van Vuuren B. An exploratory analysis of geographic genetic variation in southern African nyala (Tragelaphus angasii) Mamm. Biol. 2005;70:291–299. doi: 10.1016/j.mambio.2005.01.001. DOI
Ntie S., Johnston A.R., Mickala P., Bowkett A.E., Jansen van Vuuren B., Colyn M., Telfer P., Maisels F., Hymas O., Rouyer R.L., et al. A molecular diagnostic for identifying central African forest artiodactyls from faecal pellets. Anim. Conserv. 2010;13:80–93. doi: 10.1111/j.1469-1795.2009.00303.x. DOI
Hassanin A., Houck M.L., Tshikung D., Kadjo B., Davis H., Ropiquet A. Multi-locus phylogeny of the tribe Tragelaphini (Mammalia, Bovidae) and species delimitation in bushbuck: Evidence for chromosomal speciation mediated by interspecific hybridization. Mol. Phytogenet. Evol. 2018;129:96–105. doi: 10.1016/j.ympev.2018.08.006. PubMed DOI
Nersting L.G., Arctander P. Phylogeography and conservation of impala and greater kudu. Mol. Ecol. 2001;10:711–719. doi: 10.1046/j.1365-294x.2001.01205.x. PubMed DOI
Jacobs R., Coetzer W.G., Grobler J.P. A phylogeographic assessment of the greater kudu (Tragelaphus strepsiceros) across South Africa. Conserv. Genet. 2022;23:919–933. doi: 10.1007/s10592-022-01464-4. DOI
Lorenzen E.D., Masembe C., Arctander P., Siegismund H.R. A long-standing Pleistocene refugium in southern Africa and a mosaic of refugia in East Africa: Insights from mtDNA and the common eland antelope. J. Biogeogr. 2010;37:571–581. doi: 10.1111/j.1365-2699.2009.02207.x. DOI