Silver-Sulfamethazine-Conjugated β-Cyclodextrin/Dextran-Coated Magnetic Nanoparticles for Pathogen Inhibition
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LX22NPO5102
National Institute for Cancer Research (Programme EXCELES) funded by the European Union - Next Generation EU
PubMed
38392744
PubMed Central
PMC10892808
DOI
10.3390/nano14040371
PII: nano14040371
Knihovny.cz E-zdroje
- Klíčová slova
- antimicrobial activity, silver-sulfamethazine, superparamagnetic iron oxide nanoparticles, β-cyclodextrin,
- Publikační typ
- časopisecké články MeSH
In the fight against antibiotic resistance, which is rising to dangerously high levels worldwide, new strategies based on antibiotic-conjugated biocompatible polymers bound to magnetic nanoparticles that allow the drug to be manipulated and delivered to a specific target are being proposed. Here, we report the direct surface engineering of nontoxic iron oxide nanoparticles (IONs) using biocompatible dextran (Dex) covalently linked to β-cyclodextrin (β-CD) with the ability to form non-covalent complexes with silver-sulfamethazine (SMT-Ag). To achieve a good interaction of β-CD-modified dextran with the surface of the nanoparticles, it was functionalized with diphosphonic acid (DPA) that provides strong binding to Fe atoms. The synthesized polymers and nanoparticles were characterized by various methods, such as nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) and ultraviolet-visible (UV-Vis) spectroscopies, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), atomic absorption spectroscopy (AAS), dynamic light scattering (DLS), etc. The resulting magnetic ION@DPA-Dex-β-CD-SMT-Ag nanoparticles were colloidally stable in water and contained 24 μg of antibiotic per mg of the particles. When tested for in vitro antimicrobial activity on Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and fungi (yeast Candida albicans and mold Aspergillus niger), the particles showed promising potential.
Zobrazit více v PubMed
Aslam B., Wang W., Arshad M.I., Khurshid M., Muzammil S., Rasool M.H., Nisar M.A., Alvi R.F., Aslam M.A., Qamar M.U., et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 2018;11:1645–1658. doi: 10.2147/IDR.S173867. PubMed DOI PMC
Ovung A., Bhattacharyya J. Sulfonamide drugs: Structure, antibacterial property, toxicity, and biophysical interactions. Biophys. Rev. 2021;13:259–272. doi: 10.1007/s12551-021-00795-9. PubMed DOI PMC
Niu Z., Liu Y., Li X., Zhu H., Zhang M., Yan K., Chen H. Colorimetric detection of sulfamethazine based on target resolved calixarene derivative stabilized gold nanoparticles aggregation. Microchim. Acta. 2022;189:71. doi: 10.1007/s00604-022-05176-x. PubMed DOI
Tailor S.M., Patel U.H. Synthesis, spectroscopic characterization, antimicrobial activity and crystal structure of silver and copper complexes of sulfamethazine. J. Coord. Chem. 2015;68:2192–2207. doi: 10.1080/00958972.2015.1055258. DOI
Eleraky N.E., Allam A., Hassan S.B., Omar M.M. Nanomedicine fight against antibacterial resistance: An overview of the recent pharmaceutical innovations. Pharmaceutics. 2020;12:142. doi: 10.3390/pharmaceutics12020142. PubMed DOI PMC
Wahajuddin, Arora S. Superparamagnetic iron oxide nanoparticles: Magnetic nanoplatforms as drug carriers. Int. J. Nanomed. 2012;7:3445–3471. doi: 10.2147/IJN.S30320. PubMed DOI PMC
Chang Y.-L., Liao P.-B., Wu P.-H., Chang W.-J., Lee S.-Y., Huang W.-M. Cancer cytotoxicity of a hybrid hyaluronan-superparamagnetic iron oxide nanoparticle material: An in-vitro evaluation. Nanomaterials. 2022;12:496. doi: 10.3390/nano12030496. PubMed DOI PMC
Mylkie K., Nowak P., Rybczynski P., Ziegler-Borowska M. Polymer-coated magnetite nanoparticles for protein immobilization. Materials. 2021;14:248. doi: 10.3390/ma14020248. PubMed DOI PMC
Tassa C., Shaw S.Y., Weissleder R. Dextran-coated iron oxide nanoparticles: A versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc. Chem. Res. 2011;18:842–852. doi: 10.1021/ar200084x. PubMed DOI PMC
Lemechko P., Renard E., Guezennec J., Guezennec C., Langlois V. Synthesis of dextran-graft-PHBHV amphiphilic copolymer using click chemistry approach. Reac. Funct. Polym. 2012;72:487–494. doi: 10.1016/j.reactfunctpolym.2012.04.008. DOI
Yang J., Liu Y., Wang H., Liu L., Wang W., Wang C., Wang Q., Liu W. The biocompatibility of fatty acid modified dextran-agmatine bioconjugate gene delivery vector. Biomaterials. 2012;33:604–613. doi: 10.1016/j.biomaterials.2011.09.067. PubMed DOI
Heinze T., Michealis N., Hornig S. Reactive polymeric nanoparticles based on unconventional dextran derivatives. Eur. Polym. J. 2007;43:697–703. doi: 10.1016/j.eurpolymj.2006.12.009. DOI
Xu J., Tian Y., Li Z., Tan B.H., Tang K.Y., Tam K.C. β-Cyclodextrin functionalized magnetic nanoparticles for the removal of pharmaceutical residues in drinking water. J. Ind. Eng. Chem. 2022;109:461–474. doi: 10.1016/j.jiec.2022.02.032. DOI
Ahmed G.H.G., Laíño R.B., Calzón J.A.G., García M.E.D. Magnetic nanoparticles grafted with β-cyclodextrin for solid-phase extraction of 5-hydroxy-3-indole acetic acid. Microchim Acta. 2014;181:941–948. doi: 10.1007/s00604-014-1192-y. DOI
Banerjee S.S., Chen D.-H. Magnetic nanoparticles grafted with cyclodextrin for hydrophobic drug delivery. Chem. Mater. 2007;19:6345–6349. doi: 10.1021/cm702278u. DOI
Tang X., Wen Y., Zhang Z., Zhu J., Song X., Li J. Rationally designed multifunctional nanoparticles as GSH-responsive anticancer drug delivery systems based on host-guest polymers derived from dextran and β-cyclodextrin. Carbohydrate Polym. 2023;320:121207. doi: 10.1016/j.carbpol.2023.121207. PubMed DOI
Zhang Y., Jiang F., Huang D., Hou S., Wang H., Wang M., Chi Y., Zhao Z. A facile route to magnetic mesoporous core–shell structured silicas containing covalently bound cyclodextrins for the removal of the antibiotic doxycycline from water. RSC Adv. 2018;8:31348–31357. doi: 10.1039/C8RA05781H. PubMed DOI PMC
Zhang Y., Li J., Wang F.F., Wu G., Qv X., Hong H., Liu C. Recovery and separation of erythromycin from industrial wastewater by imprinted magnetic nanoparticles that exploit β-cyclodextrin as the functional monomer. J. Sep. Sci. 2016;39:450–459. doi: 10.1002/jssc.201500927. PubMed DOI
Zoppi A., Delrivo A., Aiassa V., Longhi M.R. Binding of sulfamethazine to β-cyclodextrin and methyl-β-cyclodextrin. AAPS PharmSciTech. 2013;14:727–735. doi: 10.1208/s12249-013-9958-9. PubMed DOI PMC
Abou-El-Sherbini K.S., Amer M.H.A., Abdel-Aziz M.S., Hamzawy E.M.A., Sharmoukh W., Elnagar M.M. Encapsulation of biosynthesized nanosilver in silica composites for sustainable antimicrobial functionality. Glob. Chall. 2018;2:1800048. doi: 10.1002/gch2.201800048. PubMed DOI PMC
Wang Q., Zhang Y., Li Q., Chen L., Liu H., Ding M., Dong H., Mou Y. Therapeutic applications of antimicrobial silver-based biomaterials in dentistry. Int. J. Nanomed. 2022;17:443–462. doi: 10.2147/IJN.S349238. PubMed DOI PMC
Zhang J., Xu Q., Li H., Zhang S., Hong A., Jiang Y., Hu N., Chen G., Fu H., Yuan M., et al. Self-powered electrodeposition system for sub-10-nm silver nanoparticles with high-efficiency antibacterial activity. J. Phys. Chem. Lett. 2022;13:6721–6730. doi: 10.1021/acs.jpclett.2c01737. PubMed DOI
Degenhardt C.R., Burdsall D.C. Synthesis of ethenylidenebis(phosphonic acid) and its tetraalkyl esters. J. Org. Chem. 1986;51:3488–3490. doi: 10.1021/jo00368a017. DOI
Zhong N., Byun H.-S., Bittrnan R. An improved synthesis of 6-O-monotosyl-6-deoxy-β-cyclodextrin. Tetrahedron Lett. 1998;39:2919–2920. doi: 10.1016/S0040-4039(98)00417-1. DOI
del Castillo T., Marales-Sanfrutos J., Santoyo-González F., Magez S., Lopez-Jaramillo F.J., Garcia-Salcedo J.A. Monovinyl sulfone β-cyclodextrin. A flexible drug carrier systém. ChemMedChem. 2014;9:383–389. doi: 10.1002/cmdc.201300385. PubMed DOI
Zasońska B.A., Boiko N., Klyuchivska O., Trchová M., Petrovský E., Stoika R., Horák D. Silica-coated γ-Fe2O3 nanoparticles: Preparation and engulfment by mammalian macrophages. J. Nanopharm. Drug Deliv. 2013;1:182–192. doi: 10.1166/jnd.2013.1020. DOI
Stejskal E.O., Tanner J.E. Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 1965;42:288–292. doi: 10.1063/1.1695690. DOI
EUCAST Disk Diffusion Method for Antimicrobial Susceptibility Testing, Version 11.0. [(accessed on 1 January 2023)]. Available online: www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/2023_manuals/Manual_v_11.0_EUCAST_Disk_Test_2023.pdf.
Nweze E.I., Mukherjee P.K., Ghannoum M.A. Agar-based disk diffusion assay for susceptibility testing of dermatophytes. J. Clin. Microbiol. 2010;48:3750–3752. doi: 10.1128/JCM.01357-10. PubMed DOI PMC
Laurent S., Forge D., Port M., Roch A., Robic C., Vander Elst L., Muller R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008;108:2064–2110. doi: 10.1021/cr068445e. PubMed DOI
Zasońska B.A., Bober P., Jošt P., Petrovský E., Boštík P., Horák D. Magnetoconductive maghemite core/polyaniline shell nanoparticles as promising tools for biomedical applications. Colloids Surf. B. 2016;141:382–389. doi: 10.1016/j.colsurfb.2016.01.059. PubMed DOI
Winkler R., Ciria M., Ahmad M., Plank H., Marcuello C. A review of the current state of magnetic force microscopy to unravel the magnetic properties of nanomaterials applied in biological systems and future directions for quantum technologies. Nanomaterials. 2023;13:2585. doi: 10.3390/nano13182585. PubMed DOI PMC
Babič M., Horák D., Jendelová P., Glogarová K., Herynek V., Trchová M., Likavčanová K., Hájek M., Syková E. Poly(N,N-dimethylacrylamide)-coated maghemite nanoparticles for stem cell labeling. Bioconjugate Chem. 2009;20:283–294. doi: 10.1021/bc800373x. PubMed DOI
Carone A., Emilsson S., Mariani P., Désert A., Parola S. Gold nanoparticle shape dependence of colloidal stability domains. Nanoscale Adv. 2023;5:2017–2026. doi: 10.1039/D2NA00809B. PubMed DOI PMC
Hu Q., Lu Y., Luo Y. Recent advances in dextran-based drug delivery systems: From fabrication strategies to applications. Carbohydr. Polym. 2021;264:117999. doi: 10.1016/j.carbpol.2021.117999. PubMed DOI
Schneider H.J., Hacket F., Rüdiger V., Ikeda H. NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev. 1998;98:1755–1785. doi: 10.1021/cr970019t. PubMed DOI
Purama R.K., Goswami P., Khan A.T., Goyal A. Structural analysis and properties of dextran produced by Leuconostoc mesenteroides NRRL B-640. Carbohydr. Polym. 2009;76:30–35. doi: 10.1016/j.carbpol.2008.09.018. DOI
Kuniaki F. The infrared spectrum of dimethyl sulfone. Bull. Chem. Soc. Jpn. 1959;32:1374–1376. doi: 10.1246/bcsj.32.1374. DOI
Gong W. A real-time in-situ ATR-FITIR spectroscopic study of linear phosphate on titania surfaces. Int. J. Miner. Process. 2001;63:147–165. doi: 10.1016/S0301-7516(01)00045-X. DOI
Horwitz E.P., Gatrone R.C., Nash K.L. Membrane Extraction with Thermodynamically Unstable Diphosphonic Acid Derivatives. US Patent 5,678,242. [(accessed on 14 October 1997)];1997 Available online: https://www.osti.gov/biblio/541723.
Sandmann B.J., Nesbitt R.U., Sandmann R.A. Characterization of silver sulfadiazine and related compounds. J. Pharm. Sci. 1974;63:948–951. doi: 10.1002/jps.2600630634. PubMed DOI
Guo L., Ping J., Qin J., Yang M., Wu X., You M., You F., Peng H.A. Comprehensive study of drug loading in hollow mesoporous silica nanoparticles: Impacting factors and loading efficiency. Nanomaterials. 2021;11:1293. doi: 10.3390/nano11051293. PubMed DOI PMC
Wu T., Wang L., Gong M., Lin Y., Xu Y., Ye L., Yu X., Liu J., Liu J., He S., et al. Synergistic effects of nanoparticle heating and amoxicillin on H. pylori inhibition. J. Magn. Magn. Mater. 2019;485:95–104. doi: 10.1016/j.jmmm.2019.04.076. DOI
Bohara R.A., Thorat N., editors. Hybrid Nanostructures for Cancer Theranostics. Elsevier; Oxford, UK: 2019. DOI
Mutlu-Ağardan N.B., Tort S., Aydoğduoğlu Ş., Kıymacı M.E. A new insight to silver sulfadiazine antibacterial dressings: Nanoparticle-loaded nanofibers for controlled drug delivery. AAPS PharmSciTech. 2023;24:8. doi: 10.1208/s12249-022-02465-9. PubMed DOI
Parzymies M., Pudelska K., Poniewozik M. The use of nano-silver for disinfection of Pennisetum alopecuroides plant material for tissue culture. Acta Sci. Pol. Hortorum Cultus. 2019;18:127–135. doi: 10.24326/asphc.2019.3.12. DOI
Sarmast M.K., Salehi H., Khosh-Khui M. Nano silver treatment is effective in reducing bacterial contaminations of Araucaria excelsa R. Br. var. glauca explants. Acta Biol. Hung. 2011;62:477–484. doi: 10.1556/ABiol.62.2011.4.12. PubMed DOI
Dibrov P., Dzioba J., Gosink K.K., Häse C.C. Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrob. Agents Chemother. 2002;46:2668–2670. doi: 10.1128/AAC.46.8.2668-2670.2002. PubMed DOI PMC