Risk Factors for Non-Healing Wounds-A Single-Centre Study
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
RVO 61989592
Palacký University Fund
IGA_LF_UP_2023_024
Palacký University Fund
PubMed
38398316
PubMed Central
PMC10889692
DOI
10.3390/jcm13041003
PII: jcm13041003
Knihovny.cz E-resources
- Keywords
- diabetic ulcer, healing process, pressure ulcer, risk factor, vascular ulcer, wound,
- Publication type
- Journal Article MeSH
Background: Chronic wounds present a significant clinical, social, and economic challenge. This study aimed to objectify the risk factors of healing outcomes and the duration of chronic wounds from various etiologies. Methods: Patients treated for non-healing wounds at the surgical outpatient clinic of the Olomouc Military Hospital were involved. Data from patients treated between 8/2021 and 9/2023 were selected. Patients were mostly treated as outpatients, with microbiological follow-up indicated in cases of advanced signs of inflammation. Results: There were 149 patients who met our selection criteria (the mean age was 64.4 years). Predominant causes of wounds involved diabetes (30.9%), post-trauma (25.5%), pressure ulcers (14.8%), surgical site infections (14.8%), and vascular ulcers (14.1%). Patient outcomes included wound resolution in 77.2% of patients (with a mean healing time of 110.9 days), amputation in 14.1%, and wound-related death in 8.7% of patients. Non-healing cases (amputation/death) were predicted by several local factors including an initial depth greater than 1 cm, wound secretion, inflammatory base, and a maximum wound size. Systemic factors included most strongly clinically manifested atherosclerosis and its risk factors. Of the 110 swabs performed, 103 identified at least 1 bacterial genus. The dominant risk factor for a prolonged healing duration was bacterial infection. Wounds contaminated by Proteus or Pseudomonas had prolonged healing times of 87 days (p = 0.02) and 72 days (p = 0.045), respectively. Conclusions: The early identification of local and systemic risk factors contributes to the successful resolution of chronic wounds and a reduced duration of healing.
See more in PubMed
International Diabetes Federation IDF Diabetes Atlas 2021. [(accessed on 9 December 2023)]. Available online: https://diabetesatlas.org/atlas/tenth-edition/
Williams M. Wound Infections: An overview. Br. J. Community Nurs. 2021;1:22–25. doi: 10.12968/bjcn.2021.26.Sup6.S22. PubMed DOI
Sen C.K. Human Wound and Its Burden: Updated 2020 Compendium of Estimates. Adv. Wound Care. 2021;10:281–292. doi: 10.1089/wound.2021.0026. PubMed DOI PMC
William W., Li W.W., Carter M.J., Mashiach E., Guthrie S.D. Vascular assessment of wound healing: A clinical review. Int. Wound J. 2017;14:460–469. PubMed PMC
Bowers S., Franco E. Chronic Wounds: Evaluation and Management. Am. Fam. Physician. 2020;101:159–166. PubMed
Mensikova A., Klugarova J., Klugar M., Mensik I., Soukupova Z., Pokorna A. Perioperative management of pressure injury: A best practice implementation project. JBI Evid. Implement. 2022;8:59–66. doi: 10.1097/XEB.0000000000000327. PubMed DOI
Raeder K., Jachan D.E., Müller-Werdan U., Lahmann N.A. Prevalence and risk factors of chronic wounds in nursing homes in Germany: A Cross-Sectional Study. Int. Wound J. 2020;17:1128–1134. doi: 10.1111/iwj.13486. PubMed DOI PMC
Edward R., Harding K.G. Bacteria and wound healing. Curr. Opin. Infect. Dis. 2004;17:91–96. doi: 10.1097/00001432-200404000-00004. PubMed DOI
Yao Z., Niu J., Cheng B. Prevalence of Chronic Skin Wounds and Their Risk Factors in an Inpatient Hospital Setting in Northern China. Adv. Skin Wound Care. 2020;3:1–10. doi: 10.1097/01.ASW.0000694164.34068.82. PubMed DOI
Lindholm C., Searle R. Wound management for the 21st century: Combining effectiveness and efficiency. Int. Wound J. 2016;13:5–15. doi: 10.1111/iwj.12623. PubMed DOI PMC
Nuutila K., Eriksson E. Moist Wound Healing with Commonly Available Dressing. Adv. Wound Care. 2021;10:685–698. doi: 10.1089/wound.2020.1232. PubMed DOI PMC
Levine N.S., Lindberg R.B., Mason A.D., Pruitt B.A., Jr. The quantitative swab culture and smear: A quick, simple method for determining the number of viable aerobic bacteria on open wounds. J. Trauma. 1976;16:89–94. doi: 10.1097/00005373-197602000-00002. PubMed DOI
Jeyaraman K., Berhane T., Hamilton M., Chandra A.P., Falhammar H. Mortality in patients with diabetic foot ulcer: A retrospective study of 513 cases from a single Centre in the Northern Territory of Australia. BMC Endocr. Disord. 2019;3:19. doi: 10.1186/s12902-018-0327-2. PubMed DOI PMC
Everett E., Mathioudakis N. Update on management of diabetic foot ulcers. Ann. N. Y. Acad. Sci. 2018;1411:153–165. doi: 10.1111/nyas.13569. PubMed DOI PMC
Schneider C., Stratman S., Kirsner R.S. Lower Extremity Ulcers. Med. Clin. N. Am. 2021;105:663–679. doi: 10.1016/j.mcna.2021.04.006. PubMed DOI
Burgess J.L., Wyant W.A., Abujamra A.B., Kirsner R.S., Jozic I. Diabetic Wound-Healing Science. Medicina. 2021;57:1072. doi: 10.3390/medicina57101072. PubMed DOI PMC
Ovington L.G. Dealing with drainage: The what, why, and how of wound exudate. Home Healthc. Nurse J. Home Care Hosp. Prof. 2002;20:368–374. doi: 10.1097/00004045-200206000-00013. PubMed DOI
Broussard K.C., Powers J.G. Wound dressings: Selecting the most appropriate type. Am. J. Clin. Dermatol. 2013;14:449–459. doi: 10.1007/s40257-013-0046-4. PubMed DOI
Drago F., Gariazzo L., Cioni M., Trave I., Parodi A. The microbiome and its relevance in complex wounds. Eur. J. Dermatol. 2019;29:6–13. doi: 10.1684/ejd.2018.3486. PubMed DOI
Strobel R.M., Leonhardt M., Förster F., Neumann K., Lobbes L.A., Seifarth C., Lee L.D., Schineis C.H.W., Kamphues C., Weixler B., et al. The impact of surgical site infection-a cost analysis. Langenbecks Arch. Surg. 2022;407:819–828. doi: 10.1007/s00423-021-02346-y. PubMed DOI PMC
Jung K., Covington S., Sen K.C., Januszyk M., Kirsner R.S., Gurtner G.C., Shah N.H. Rapid identification of slow healing wounds. Wound Repair Regen. 2016;24:181–188. doi: 10.1111/wrr.12384. PubMed DOI PMC
Daeschlein G. Antimicrobial and antiseptic strategies in wound management. Int. Wound J. 2013;10:9–14. doi: 10.1111/iwj.12175. PubMed DOI PMC
Thornton F.J. Wound healing in sepsis and trauma. Shock. 1997;8:391–401. doi: 10.1097/00024382-199712000-00001. PubMed DOI
Rand B.C.C., Penn-Barwell J.G., Wenke J.C. Combined local and systemic antibiotic delivery improves eradication of wound contamination: An animal experimental model of contaminated fracture. Bone Jt. J. 2015;97:1423–1427. doi: 10.1302/0301-620X.97B10.35651. PubMed DOI
Dunyach-Remy C., Salipante F., Lavigne J.P., Brunaud M., Demattei C., Yahiaoui-Martinez A., Bastide S., Palayer C., Sotto A., Gélis A. Pressure ulcers microbiota dynamics and wound evolution. Sci. Rep. 2021;11:18506. doi: 10.1038/s41598-021-98073-x. PubMed DOI PMC
Zhu T., Liu S., Ying Y., Xu L., Liu Y., Jin J., Ying J., Lu J., Lin X., Li K., et al. Genomic and functional characterization of fecal sample strains of Proteus cibarius carrying two floR antibiotic resistance genes and a multiresistance plasmid-encoded cfr gene. Comp. Immunol. Microbiol. Infect. Dis. 2020;69:101427. doi: 10.1016/j.cimid.2020.101427. PubMed DOI
De Sousa T., Hébraud M., Dapkevicius M.L.N.E., Maltez L., Pereira J.E., Capita R., Alonso-Calleja C., Igrejas G., Poeta P. Genomic and Metabolic Characteristics of the Pathogenicity in Pseudomonas aeruginosa. Int. J. Mol. Sci. 2021;22:12892. doi: 10.3390/ijms222312892. PubMed DOI PMC
Li S., Renick P., Senkowsky J., Nair A., Tang L. Diagnostics for Wound Infections. Adv. Wound Care. 2021;10:317–327. doi: 10.1089/wound.2019.1103. PubMed DOI PMC
Garbuio D.C., Zamarioli C.M., Da Silva N.C.M., De Souza Oliveira-Kumakura A.R., Carvalho E.C. Assessment tools for the healing of wounds: An integrative review. Rev. Eletrônica Enferm. 2018;20:20–40.