Shift of S-N curves in some fatigue models due to loading cycle asymmetry
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38404836
PubMed Central
PMC10884856
DOI
10.1016/j.heliyon.2024.e26306
PII: S2405-8440(24)02337-5
Knihovny.cz E-zdroje
- Klíčová slova
- Asymmetry of loading cycle, Fatigue modelling, Kohout-Věchet model, Logistic S–N model, Palmgren model, S-N curves,
- Publikační typ
- časopisecké články MeSH
Fatigue (Wöhler's or S-N) curves are usually represented by upper stress of loading cycle in dependence on the logarithm of numbers of cycles to fracture. Increasing mean stress of loading cycle causes a shift of these curves towards higher values of fatigue strength. A successful quantitative description of the high cycle shift was published by Walker. The aim of the paper consists in deriving and verifying the relations describing the shift of fatigue curves in the whole cycle region from ultimate tensile stress to permanent fatigue limit, for the Palmgren, the Kohout-Věchet and the logistic S-N models, using the high-cycle Walker approach.
Zobrazit více v PubMed
Walker K. In: Effects of Environment and Complex Load History on Fatigue Life, ASTM STP 462. Rosenfeld M.S., editor. American Society for Testing and Materials; West Conshohocken, PA: 1970. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum; pp. 1–14. DOI
Mann T., Tveiten B.W., Harkegard G. Fatigue crack growth analysis of welded aluminium RHS T-joints with manipulated residual stress level. Fatig. Fract. Eng. Mater. Struct. 2006;29:113–122. doi: 10.1111/j.1460-2695.2006.00970.x. DOI
Atkins A.G., Jeronimidis G., Arndt S. Biaxial monotonic and fatigue fracture of some commercial ABS and PVC sheets. J. Mater. Sci. 1998;33:4349–4356. doi: 10.1023/A:1004428730407. DOI
Lovrich N.R., Neu R.W. Effect of mean stress on fretting fatigue of Ti–6Al–4V on Ti–6Al–4V. Fatig. Fract. Eng. Mater. Struct. 2009;29:41–55. doi: 10.1111/j.1460-2695.2006.00959.x. DOI
Kwofie S. An exponential stress function for predicting fatigue strength and life due to mean stresses. Int. J. Fatig. 2001;23:829–836. doi: 10.1016/S0142-1123(01)00044-5. DOI
Pan J., Nicholas T. Effect of mean stress on multiaxial fatigue life prediction based on fracture mechanics. Int. J. Fatig. 2001;23:887–892. doi: 10.1016/S0142-1123(01)00129-3. DOI
Chandran KS Ravi. Mechanical fatigue of polymers: a new approach to characterize the SN behavior on the basis of macroscopic crack growth mechanism. Polymer. 2016;91:222–238.
Chandran KS Ravi. A physical model and constitutive equations for complete characterization of SN fatigue behavior of metals. Acta Mater. 2016;121:85–103. doi: 10.1016/j.actamat.2016.09.001. DOI
Stüssi F. Die Theorie der Dauerfestigkeit und die Versuche von August Wöhler. Mitteilungen der T.K.V.S.B., Heft 13. Zürich: V.S.B. Verlag; 1955.
Stüssi F. Springer; Berlin: 1955. Tragwerke aus Aluminium. DOI
Correia J.A.F.O., Calvente M., Blasón S., Lesiuk G., Brás I.M.C., De Jesus A.M.P., Moreira P.M.G.P., Fernández-Canteli A. Fatigue life response of P355NL1 steel under uniaxial loading using Kohout-Věchet model. Procedia Eng. 2016;160:109–116. doi: 10.1016/j.proeng.2016.08.869. DOI
Correia J.A.F.O., Raposo P., Muniz-Calvente M., Blasón S., Lesiuk G., De Jesus A.M.P., Moreira P.M.G.P., Calçada R.A.B., Fernández-Canteli A. A generalization of the fatigue Kohout-Věchet model for several fatigue damage parameters. Eng. Fract. Mech. 2017;185:284–300. doi: 10.1016/j.engfracmech.2017.06.009. DOI
Barbosa J.F., Correia J.A.F.O., Montenegro P.A., Júnior R.C.S.F., Lesiuk G., De Jesus A.M.P., Calçada R.A.B. A comparison between SN Logistic and Kohout-Věchet formulations applied to the fatigue data of old metallic bridges materials. Frat. Integrita Strutt. 2019;13(48):400–410. doi: 10.3221/IGF-ESIS.48.38. DOI
Kohout J., Věchet S. A new function for description of fatigue curves and its multiple merits. Int. J. Fatig. 2001;23:175–183. doi: 10.1016/S0142-1123(00)00082-7. DOI
Fernández-Canteli A., Castillo E., Blasón S., Correia J.A.F.O., De Jesus A.M.P. Generalization of the Weibull probabilistic compatible model to assess fatigue data into three domains: LCF, HCF and VHCF. Int. J. Fatig. 2022;159 doi: 10.1016/j.ijfatigue.2022.106771. DOI
Stromeyer C.E. The determination of fatigue limits under alternating stress conditions. Proc. Roy. Soc. 1914;A90:411–425. doi: 10.1098/rspa.1914.0066. DOI
Weibull W. Pergamon Press; Oxford: 1961. Fatigue Testing and Analysis of Results.
Kohout J., Věchet S. Shift of S-N curves of ferritic nodular cast iron due to loading cycle asymmetry. Arabian J. Sci. Eng. 2008;33:213–222. https://search.emarefa.net/detail/BIM-358952
Věchet S., Kohout J., Bokůvka O. University of Žilina; 2001. Fatigue Properties of Nodular Cast Iron. Žilina (Slovakia) (in Czech)
Kohout J. Comparison of the logistic S-N model with the Stüssi model for S-N curves description and its advantages over some other models. J. Braz. Soc. Mech. Sci. 2022;44:526. doi: 10.1007/s40430-022-03854-8. DOI
Lazan B.J., Blatherwick A.A. MCIC; December 1952. Fatigue Properties of Aluminum Alloys at Various Direct Stress Ratios, Part 1 – Rolled Alloys. WADC Technical Report 52307.
Metallic Materials Properties Development and Standardization MMPDS-11. Battelle Memorial Institute; Columbus (OH): 2016.
de Krijger J., Rans C., Van Hooreweder B., Lietaert K., Pouran B., Zadpoor A.A. Effects of applied stress ratio on the fatigue behavior of additively manufactured porous biomaterials under compressive loading. J. Mech. Behav. Biomed. Mater. 2017;70:7–16. doi: 10.1016/j.jmbbm.2016.11.022. PubMed DOI
Klesnil M., Lukáš P. Effect of stress cycle asymmetry on fatigue crack growth. Mater. Sci. Eng. 1972;9:231–240. doi: 10.1016/0025-5416(72)90038-9. DOI
Toasa Caiza P.D., Sire S., Ummenhofer T., Uematsu Y. Low cost estimation of Wöhler and Goodman–Haigh curves of Ti-6Al-4V samples by considering the stress ratio effect. Fatig. Fract. Eng. Mater. Struct. 2022;45:441–450. doi: 10.1111/ffe.13607. DOI