Impact of population aging on future temperature-related mortality at different global warming levels
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MR/V034162/1
Medical Research Council - United Kingdom
UL1 TR001863
NCATS NIH HHS - United States
PubMed
38413648
PubMed Central
PMC10899213
DOI
10.1038/s41467-024-45901-z
PII: 10.1038/s41467-024-45901-z
Knihovny.cz E-zdroje
- MeSH
- globální oteplování * MeSH
- klimatické změny * MeSH
- mortalita MeSH
- nízká teplota MeSH
- teplota MeSH
- vysoká teplota MeSH
- Publikační typ
- časopisecké články MeSH
Older adults are generally amongst the most vulnerable to heat and cold. While temperature-related health impacts are projected to increase with global warming, the influence of population aging on these trends remains unclear. Here we show that at 1.5 °C, 2 °C, and 3 °C of global warming, heat-related mortality in 800 locations across 50 countries/areas will increase by 0.5%, 1.0%, and 2.5%, respectively; among which 1 in 5 to 1 in 4 heat-related deaths can be attributed to population aging. Despite a projected decrease in cold-related mortality due to progressive warming alone, population aging will mostly counteract this trend, leading to a net increase in cold-related mortality by 0.1%-0.4% at 1.5-3 °C global warming. Our findings indicate that population aging constitutes a crucial driver for future heat- and cold-related deaths, with increasing mortality burden for both heat and cold due to the aging population.
Asian Demographic Research Institute Shanghai University Shanghai China
Chair of Epidemiology Faculty of Medicine LMU Munich Munich Germany
CIBER de Epidemiología y Salud Pública Madrid Spain
Climate Research Foundation Madrid Spain
Department of Economics Ca' Foscari University of Venice Venice Italy
Department of Enviromental Health Instituto Nacional de Saúde Dr Ricardo Jorge Porto Portugal
Department of Environmental Health Sciences Yale School of Public Health New Haven CT USA
Environmental Health Science and Research Bureau Health Canada Ottawa ON Canada
EPIUnit Instituto de Saúde Pública Universidade do Porto Porto Portugal
Faculty of Environmental Sciences Czech University of Life Sciences Prague Czech Republic
Institute of Atmospheric Physics Czech Academy of Sciences Prague Czech Republic
Institute of Social and Preventive Medicine University of Bern Bern Switzerland
ISGlobal Barcelona Institute for Global Health Barcelona Spain
Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional Porto Portugal
Oeschger Center for Climate Change Research University of Bern Bern Switzerland
Population Council New York NY USA
School of Epidemiology and Public Health University of Ottawa Ottawa ON Canada
Yale Center on Climate Change and Health Yale School of Public Health New Haven CT USA
Zobrazit více v PubMed
de Schrijver, E. et al. Nationwide projections of heat- and cold-related mortality impacts under various climate change and population development scenarios in Switzerland. Environ. Res. Lett. 18, 12 (2023). PubMed PMC
Eyring V, et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016;9:1937–1958. doi: 10.5194/gmd-9-1937-2016. DOI
Vicedo-Cabrera AM, Sera F, Gasparrini A. Hands-on tutorial on a modeling framework for projections of climate change impacts on health. Epidemiology. 2019;30:321–329. doi: 10.1097/EDE.0000000000000982. PubMed DOI PMC
Lange S. Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0) Geosci. Model Dev. 2019;12:3055–3070. doi: 10.5194/gmd-12-3055-2019. DOI
Samir K, Lutz W. The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Change. 2017;42:181–192. doi: 10.1016/j.gloenvcha.2014.06.004. PubMed DOI PMC
Gasparrini A, et al. Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet. 2015;386:369–375. doi: 10.1016/S0140-6736(14)62114-0. PubMed DOI PMC
Burkart KG, et al. Estimating the cause-specific relative risks of non-optimal temperature on daily mortality: a two-part modelling approach applied to the Global Burden of Disease Study. Lancet. 2021;398:685–697. doi: 10.1016/S0140-6736(21)01700-1. PubMed DOI PMC
Weinberger KR, et al. Projected temperature-related deaths in ten large U.S. metropolitan areas under different climate change scenarios. Environ. Int. 2017;107:196–204. doi: 10.1016/j.envint.2017.07.006. PubMed DOI PMC
Gasparrini A, et al. Projections of temperature-related excess mortality under climate change scenarios. Lancet Planet Health. 2017;1:e360–e367. doi: 10.1016/S2542-5196(17)30156-0. PubMed DOI PMC
Gu S, et al. Projections of temperature-related cause-specific mortality under climate change scenarios in a coastal city of China. Environ. Int. 2020;143:105889. doi: 10.1016/j.envint.2020.105889. PubMed DOI
Hajat S, Vardoulakis S, Heaviside C, Eggen B. Climate change effects on human health: projections of temperature-related mortality for the UK during the 2020s, 2050s and 2080s. J. Epidemiol. Community Health. 2014;68:641–648. doi: 10.1136/jech-2013-202449. PubMed DOI
Vardoulakis S, et al. Comparative assessment of the effects of climate change on heat- and cold-related mortality in the United Kingdom and Australia. Environ. Health Perspect. 2014;122:1285–1292. doi: 10.1289/ehp.1307524. PubMed DOI PMC
Lee JY, Kim H. Projection of future temperature-related mortality due to climate and demographic changes. Environ. Int. 2016;94:489–494. doi: 10.1016/j.envint.2016.06.007. PubMed DOI
Rai M, et al. Impact of climate and population change on temperature-related mortality burden in Bavaria, Germany. Environ. Res Lett. 2019;14:124080. doi: 10.1088/1748-9326/ab5ca6. DOI
Vicedo-Cabrera AM, et al. Temperature-related mortality impacts under and beyond Paris Agreement climate change scenarios. Clim. Change. 2018;150:391–402. doi: 10.1007/s10584-018-2274-3. PubMed DOI PMC
Ebi, K., Campbell-Lendrum, D. & Wyns, A. The 1.5 Health Report: Synthesis on Health & Climate Science In the IPCC SR1 5 (IPCC, 2018).
Vicedo-Cabrera AM, et al. A multi-country analysis on potential adaptive mechanisms to cold and heat in a changing climate. Environ. Int. 2018;111:239–246. doi: 10.1016/j.envint.2017.11.006. PubMed DOI
Gosling SN, et al. Adaptation to climate change: A comparative analysis of modeling methods for heat-related mortality. Environ. Health Perspect. 2017;125:087008. doi: 10.1289/EHP634. PubMed DOI PMC
Population Division of the Department of Economic and Social Affairs. 2019 Revision of World Population Prospects (Population Division of the Department of Economic and Social Affairs, 2019).
Scovronick N, et al. Impact of population growth and population ethics on climate change mitigation policy. Proc. Natl Acad. Sci. USA. 2017;114:12338–12343. doi: 10.1073/pnas.1618308114. PubMed DOI PMC
United Nations Environment Programme. Emissions Gap Report 2021: The Heat Is On – A World of Climate Promises Not Yet Delivered (Nairobi, 2021).
Höhne N, et al. Wave of net zero emission targets opens window to meeting the Paris Agreement. Nat. Clim. Chang. 2021;11:820–822. doi: 10.1038/s41558-021-01142-2. DOI
Ma Y, Zhou L, Chen K. Burden of cause-specific mortality attributable to heat and cold: A multicity time-series study in Jiangsu Province, China. Environ. Int. 2020;144:105994. doi: 10.1016/j.envint.2020.105994. PubMed DOI
O’Neill BC, et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016;9:3461–3482. doi: 10.5194/gmd-9-3461-2016. DOI
IPCC. Climate Change 2021: The Physical Science Basis Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2021).
Jiang L, O’Neill BC. Global urbanization projections for the Shared Socioeconomic Pathways. Glob. Environ. Change. 2017;42:193–199. doi: 10.1016/j.gloenvcha.2015.03.008. DOI
Gasparrini A, Armstrong B, Kenward MG. Distributed lag non‐linear models. Stat. Med. 2010;29:2224–2234. doi: 10.1002/sim.3940. PubMed DOI PMC
Sera F, Armstrong B, Blangiardo M, Gasparrini A. An extended mixed‐effects framework for meta‐analysis. Stat. Med. 2019;38:5429–5444. doi: 10.1002/sim.8362. PubMed DOI
Kottek M, Grieser J, Beck C, Rudolf B, Rubel F. World map of the Köppen-Geiger climate classification updated. Meteorologische Z. 2006;15:259–263. doi: 10.1127/0941-2948/2006/0130. DOI
Gasparrini A, Armstrong B, Kenward MG. Multivariate meta-analysis for non-linear and other multi-parameter associations. Stat. Med. 2012;31:3821–3839. doi: 10.1002/sim.5471. PubMed DOI PMC
Tobías A, Armstrong B, Gasparrini A. Brief Report: Investigating uncertainty in the minimum mortality temperature: Methods and application to 52 Spanish cities. Epidemiology. 2017;28:72–76. doi: 10.1097/EDE.0000000000000567. PubMed DOI PMC
Gasparrini A, Leone M. Attributable risk from distributed lag models. BMC Med. Res. Methodol. 2014;14:55. doi: 10.1186/1471-2288-14-55. PubMed DOI PMC
Temperature-mortality associations by age and cause: a multi-country multi-city study