Splicing analysis of STAT3 tandem donor suggests non-canonical binding registers for U1 and U6 snRNAs
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
201903
Centre for Cardiovascular Surgery and Transplantation
[MUNI/A/1244/2021
Ministry of Education
FNBr65269705
Ministry of Health
Faculty of Medicine
Masaryk University
PubMed
38426935
PubMed Central
PMC11162779
DOI
10.1093/nar/gkae147
PII: 7617147
Knihovny.cz E-zdroje
- MeSH
- exony * MeSH
- HeLa buňky MeSH
- lidé MeSH
- místa sestřihu RNA * MeSH
- RNA malá jaderná * metabolismus genetika MeSH
- sekvence nukleotidů MeSH
- sestřih RNA MeSH
- transkripční faktor STAT3 * metabolismus genetika MeSH
- vazba proteinů MeSH
- vazebná místa genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- místa sestřihu RNA * MeSH
- RNA malá jaderná * MeSH
- STAT3 protein, human MeSH Prohlížeč
- transkripční faktor STAT3 * MeSH
- U1 small nuclear RNA MeSH Prohlížeč
- U6 small nuclear RNA MeSH Prohlížeč
Tandem donor splice sites (5'ss) are unique regions with at least two GU dinucleotides serving as splicing cleavage sites. The Δ3 tandem 5'ss are a specific subclass of 5'ss separated by 3 nucleotides which can affect protein function by inserting/deleting a single amino acid. One 5'ss is typically preferred, yet factors governing particular 5'ss choice are not fully understood. A highly conserved exon 21 of the STAT3 gene was chosen as a model to study Δ3 tandem 5'ss splicing mechanisms. Based on multiple lines of experimental evidence, endogenous U1 snRNA most likely binds only to the upstream 5'ss. However, the downstream 5'ss is used preferentially, and the splice site choice is not dependent on the exact U1 snRNA binding position. Downstream 5'ss usage was sensitive to exact nucleotide composition and dependent on the presence of downstream regulatory region. The downstream 5'ss usage could be best explained by two novel interactions with endogenous U6 snRNA. U6 snRNA enables the downstream 5'ss usage in STAT3 exon 21 by two mechanisms: (i) binding in a novel non-canonical register and (ii) establishing extended Watson-Crick base pairing with the downstream regulatory region. This study suggests that U6:5'ss interaction is more flexible than previously thought.
Centre for Cardiovascular Surgery and Transplantation 656 91 Brno Czech Republic
Faculty of Medicine Masaryk University 625 00 Brno Czech Republic
Zobrazit více v PubMed
Pan Q., Shai O., Lee L.J., Frey B.J., Blencowe B.J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 2008; 40:1413–1415. PubMed
Wang E.T., Sandberg R., Luo S., Khrebtukova I., Zhang L., Mayr C., Kingsmore S.F., Schroth G.P., Burge C.B. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008; 456:470–476. PubMed PMC
Sheth N., Roca X., Hastings M.L., Roeder T., Krainer A.R., Sachidanandam R. Comprehensive splice-site analysis using comparative genomics. Nucleic Acids Res. 2006; 34:3955–3967. PubMed PMC
Ule J., Blencowe B.J. Alternative splicing regulatory networks: functions, mechanisms, and evolution. Mol. Cell. 2019; 76:329–345. PubMed
Lee Y., Rio D.C. Mechanisms and regulation of alternative pre-mRNA splicing. Annu. Rev. Biochem. 2015; 84:291–323. PubMed PMC
Zhou Z., Fu X.D. Regulation of splicing by SR proteins and SR protein-specific kinases. Chromosoma. 2013; 122:191–207. PubMed PMC
Geuens T., Bouhy D., Timmerman V. The hnRNP family: insights into their role in health and disease. Hum. Genet. 2016; 135:851–867. PubMed PMC
Sammeth M., Foissac S., Guigó R. A general definition and nomenclature for alternative splicing events. PLoS Comput. Biol. 2008; 4:e1000147. PubMed PMC
Chern T.M., Van Nimwegen E., Kai C., Kawai J., Carninci P., Hayashizaki Y., Zavolan M. A simple physical model predicts small exon length variations. PLoS Genet. 2006; 2:e45. PubMed PMC
Séraphin B., Kretzner L., Rosbash M. A U1 snRNA:pre-mRNA base pairing interaction is required early in yeast spliceosome assembly but does not uniquely define the 5′ cleavage site. EMBO J. 1988; 7:2533–2538. PubMed PMC
Siliciano P.G., Guthrie C. 5′ splice site selection in yeast: genetic alterations in base-pairing with U1 reveal additional requirements. Genes Dev. 1988; 2:1258–1267. PubMed
Freund M., Hicks M.J., Konermann C., Otte M., Hertel K.J., Schaal H. Extended base pair complementarity between U1 snRNA and the 5′ splice site does not inhibit splicing in higher eukaryotes, but rather increases 5′ splice site recognition. Nucleic Acids Res. 2005; 33:5112–5119. PubMed PMC
Roca X., Krainer A.R. Recognition of atypical 5′ splice sites by shifted base-pairing to U1 snRNA. Nat. Struct. Mol. Biol. 2009; 16:176–182. PubMed PMC
Roca X., Akerman M., Gaus H., Berdeja A., Bennett C.F., Krainer A.R. Widespread recognition of 5′ splice sites by noncanonical base-pairing to U1 snRNA involving bulged nucleotides. Genes Dev. 2012; 26:1098–1109. PubMed PMC
Tan J., Ho J.X.J., Zhong Z., Luo S., Chen G., Roca X. Noncanonical registers and base pairs in human 5′ splice-site selection. Nucleic Acids Res. 2016; 44:3908–3921. PubMed PMC
Dewilde S., Vercelli A., Chiarle R., Poli V. Of alphas and betas: distinct and overlapping functions of STAT3 isoforms. Front. Biosci. 2008; 13:6501–6514. PubMed
Hu X., li J., Fu M., Zhao X., Wang W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct. Target Ther. 2021; 6:402. PubMed PMC
Aigner P., Just V., Stoiber D. STAT3 isoforms: alternative fates in cancer?. Cytokine. 2019; 118:27–34. PubMed
Zheng M., Turton K.B., Zhu F., Li Y., Grindle K.M., Annis D.S., Lu L., Drennan A.C., Tweardy D.J., Bharadwaj U. et al. . A mix of s and δs variants of stat3 enable survival of activated b-cell-like diffuse large b-cell lymphoma cells in culture. Oncogenesis. 2016; 5:e184. PubMed PMC
Dawes R., Bournazos A.M., Bryen S.J., Bommireddipalli S., Marchant R.G., Joshi H., Cooper S.T. SpliceVault predicts the precise nature of variant-associated mis-splicing. Nat. Genet. 2023; 55:324–332. PubMed PMC
Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003; 31:3406–3415. PubMed PMC
Erkelenz S., Theiss S., Otte M., Widera M., Peter J.O., Schaal H. Genomic HEXploring allows landscaping of novel potential splicing regulatory elements. Nucleic Acids Res. 2014; 42:10681–10697. PubMed PMC
Ke S., Shang S., Kalachikov S.M., Morozova I., Yu L., Russo J.J., Ju J., Chasin L.A. Quantitative evaluation of all hexamers as exonic splicing elements. Genome Res. 2011; 21:13060–13074. PubMed PMC
Souček P., Réblová K., Kramárek M., Radová L., Grymová T., Hujová P., Kováčová T., Lexa M., Grodecká L., Freiberger T. High-throughput analysis revealed mutations’ diverging effects on SMN1 exon 7 splicing. RNA Biol. 2019; 16:13064–13076. PubMed PMC
Case D.A.D.A., Betz R.M.R., Cerutti D.D.S., T.E. C.I., Darden T.A., Duke R.E., Giese T.J., Gohlke H., Goetz A.W., Homeyer N. et al. . Amber 2016. 2016; San Francisco: University of California.
Zgarbová M., Otyepka M., Šponer J., Mládek A., Banáš P., Cheatham T.E., Jurečka P. Refinement of the Cornell et al. Nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J. Chem. Theory Comput. 2011; 7:2886–2902. PubMed PMC
Aduri R., Psciuk B.T., Saro P., Taniga H., Schlegel H.B., SantaLucia J. AMBER force field parameters for the naturally occurring modified nucleosides in RNA. J. Chem. Theory Comput. 2007; 3:1464–1475. PubMed
Lavery R., Zakrzewska K., Beveridge D., Bishop T.C., Case D.A., Cheatham T., Dixit S., Jayaram B., Lankas F., Laughton C. et al. . A systematic molecular dynamics study of nearest-neighbor effects on base pair and base pair step conformations and fluctuations in B-DNA. Nucleic Acids Res. 2009; 38:299–313. PubMed PMC
Humphrey W., Dalke A., Schulten K. VMD: visual molecular dynamics. J. Mol. Graph. 1996; 14:33–38. PubMed
Yeo G., Burge C.B. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J. Comput. Biol. 2004; 11:377–394. PubMed
Kondo Y., Oubridge C., van Roon A.M.M., Nagai K. Crystal structure of human U1 snRNP, a small nuclear ribonucleoprotein particle, reveals the mechanism of 5′ splice site recognition. eLife. 2015; 4:e04986. PubMed PMC
Hansen S.R., White D.S., Scalf M., Corrêa I.R., Smith L.M., Hoskins A.A. Multi-step recognition of potential 5′ splice sites by the Saccharomyces cerevisiae U1 snRNP. eLife. 2022; 11:e70534. PubMed PMC
Crispino J.D., Blencowe B.J., Sharp P.A. Complementation by SR proteins of pre-mRNA splicing reactions depleted of U1 snRNP. Science. 1994; 265:1866–1869. PubMed
Tarn W.Y., Steitz J.A. SR proteins can compensate for the loss of U1 snRNP functions in vitro. Genes Dev. 1994; 8:2704–2717. PubMed
Crispino J.D., Sharp P.A. A U6 snRNA:pre-mRNA interaction can be rate-limiting for U1-independent splicing. Genes Dev. 1995; 9:2314–2323. PubMed
Crispino J.D., Mermoud J.E., Lamond A.I., Sharp P.A. Cis-acting elements distinct from the 5′ splice site promote U1- independent pre-mRNA splicing. RNA. 1996; 2:664–673. PubMed PMC
Fukumura K., Taniguchi I., Sakamoto H., Ohno M., Inoue K. U1-independent pre-mRNA splicing contributes to the regulation of alternative splicing. Nucleic Acids Res. 2009; 37:1907–1914. PubMed PMC
Black C.S., Whelan T.A., Garside E.L., Macmillan A.M., Fast N.M., Rader S.D. Spliceosome assembly and regulation: insights from analysis of highly reduced spliceosomes. RNA. 2023; 29:531–550. PubMed PMC
Charenton C., Wilkinson M.E., Nagai K. Mechanism of 5′ splice site transfer for human spliceosome activation. Science. 2019; 364:362–367. PubMed PMC
Lesser C.F., Guthrie C. Mutations in U6 snRNA that alter splice site specificity: implications for the active site. Science. 1993; 262:1982–1988. PubMed
Kandels-Lewis S., Séraphin B. Role of U6 snRNA in 5′ splice site selection. Science. 1993; 262:2035–2039. PubMed
Zhan X., Yan C., Zhang X., Lei J., Shi Y. Structures of the human pre-catalytic spliceosome and its precursor spliceosome. Cell Res. 2018; 28:1129–1140. PubMed PMC
Bertram K., Agafonov D.E., Dybkov O., Haselbach D., Leelaram M.N., Will C.L., Urlaub H., Kastner B., Lührmann R., Stark H. Cryo-EM structure of a pre-catalytic Human spliceosome primed for activation. Cell. 2017; 170:701–713. PubMed
Bertram K., Agafonov D.E., Liu W.T., Dybkov O., Will C.L., Hartmuth K., Urlaub H., Kastner B., Stark H., Lührmann R. Cryo-EM structure of a human spliceosome activated for step 2 of splicing. Nature. 2017; 542:318–323. PubMed
Zhang X., Yan C., Hang J., Finci L.I., Lei J., Shi Y. An atomic structure of the Human spliceosome. Cell. 2017; 169:918–929. PubMed
Hiller M., Huse K., Szafranski K., Jahn N., Hampe J., Schreiber S., Backofen R., Platzer M. Widespread occurrence of alternative splicing at NAGNAG acceptors contributes to proteome plasticity. Nat. Genet. 2004; 36:1255–1257. PubMed
Hiller M., Szafranski K., Backofen R., Platzer M. Alternative splicing at NAGNAG acceptors: simply noise or noise and more? [1]. PLoS Genet. 2006; 2:e207. PubMed PMC
Zavolan M., Kondo S., Schönbach C., Adachi J., Hume D.A., Arakawa T., Carninci P., Kawai J., Hayashizaki Y., Gaasterland T. Impact of alternative initiation, splicing, and termination on the diversity of the mRNA transcripts encoded by the mouse transcriptome. Genome Res. 2003; 13:1290–1300. PubMed PMC
Hiller M., Platzer M. Widespread and subtle: alternative splicing at short-distance tandem sites. Trends Genet. 2008; 24:246–255. PubMed
Hujová P., Souček P., Radová L., Kramárek M., Kováčová T., Freiberger T. Nucleotides in both donor and acceptor splice sites are responsible for choice in NAGNAG tandem splice sites. Cell. Mol. Life Sci. 2021; 78:6979–6993. PubMed PMC
Hiller M., Huse K., Szafranski K., Rosenstiel P., Schreiber S., Backofen R., Platzer M. Phylogenetically widespread alternative splicing at unusual GYNGYN donors. Genome Biol. 2006; 7:R65. PubMed PMC
Turton K.B., Annis D.S., Rui L., Esnault S., Mosher D.F. Ratios of four STAT3 splice variants in human eosinophils and diffuse large B cell lymphoma cells. PLoS One. 2015; 10:e0127243. PubMed PMC
Sinha R., Lenser T., Jahn N., Gausmann U., Friedel S., Szafranski K., Huse K., Rosenstiel P., Hampe J., Schuster S. et al. . TassDB2 - A comprehensive database of subtle alternative splicing events. BMC Bioinf. 2010; 11:216. PubMed PMC
O’Reilly D., Dienstbier M., Cowley S.A., Vazquez P., Drozdz M., Taylor S., James W.S., Murphy S. Differentially expressed, variant U1 snRNAs regulate gene expression in human cells. Genome Res. 2013; 23:281–291. PubMed PMC
Mabin J.W., Lewis P.W., Brow D.A., Dvinge H. Human spliceosomal snRNA sequence variants generate variant spliceosomes. RNA. 2021; 27:1186–1203. PubMed PMC
Vazquez-Arango P., Vowles J., Browne C., Hartfield E., Fernandes H.J.R., Mandefro B., Sareen D., James W., Wade-Martins R., Cowley S.A. et al. . Variant U1 snRNAs are implicated in human pluripotent stem cell maintenance and neuromuscular disease. Nucleic Acids Res. 2016; 44:10960–10973. PubMed PMC
Hwang D.Y., Cohen J.B. U1 snRNA promotes the selection of nearby 5′ splice sites by U6 snRNA in mammalian cells. Genes Dev. 1996; 10:338–350. PubMed
Brackenridge S., Wilkie A.O.M., Screaton G.R. Efficient use of a ‘dead-end’ GA 5′ splice site in the human fibroblast growth factor receptor genes. EMBO J. 2003; 22:1620–1631. PubMed PMC
Artemyeva-Isman O.V., Porter A.C.G. U5 snRNA interactions with exons ensure splicing precision. Front. Genet. 2021; 12:676971. PubMed PMC
Alanis E.F., Pinotti M., Mas A.D., Balestra D., Cavallari N., Rogalska M.E., Bernardi F., Pagani F. An exon-specific U1 small nuclear RNA (snRNA) strategy to correct splicing defects. Hum. Mol. Genet. 2012; 21:2389–2398. PubMed PMC
Sawa H., Abelson J. Evidence for a base-pairing interaction between U6 small nuclear RNA and the 5′ splice site during the splicing reaction in yeast. Proc. Natl. Acad. Sci. U.S.A. 1992; 89:11269–11273. PubMed PMC
Zhang X., Yan C., Zhan X., Li L., Lei J., Shi Y. Structure of the human activated spliceosome in three conformational states. Cell Res. 2018; 28:307–322. PubMed PMC
Wilkinson M.E., Charenton C., Nagai K. RNA splicing by the spliceosome. Annu. Rev. Biochem. 2020; 89:359–388. PubMed
Wan R., Bai R., Zhan X., Shi Y. How is precursor messenger RNA spliced by the spliceosome?. Annu. Rev. Biochem. 2020; 89:333–358. PubMed
Henning L.M., Santos K.F., Sticht J., Jehle S., Lee C.T., Wittwer M., Urlaub H., Stelzl U., Wahl M.C., Freund C. A new role for FBP21 as regulator of Brr2 helicase activity. Nucleic Acids Res. 2017; 45:7922–7937. PubMed PMC