Predators control pests and increase yield across crop types and climates: a meta-analysis

. 2024 Mar 13 ; 291 (2018) : 20232522. [epub] 20240306

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu metaanalýza, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38444337

Pesticides have well-documented negative consequences to control crop pests, and natural predators are alternatives and can provide an ecosystem service as biological control agents. However, there remains considerable uncertainty regarding whether such biological control can be a widely applicable solution, especially given ongoing climatic variation and climate change. Here, we performed a meta-analysis focused on field studies with natural predators to explore broadly whether and how predators might control pests and in turn increase yield. We also contrasted across studies pest suppression by a single and multiple predators and how climate influence biological control. Predators reduced pest populations by 73% on average, and increased crop yield by 25% on average. Surprisingly, the impact of predators did not depend on whether there were many or a single predator species. Precipitation seasonality was a key climatic influence on biological control: as seasonality increased, the impact of predators on pest populations increased. Taken together, the positive contribution of predators in controlling pests and increasing yield, and the consistency of such responses in the face of precipitation variability, suggest that biocontrol has the potential to be an important part of pest management and increasing food supplies as the planet precipitation patterns become increasingly variable.

Zobrazit více v PubMed

Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, Vandermeer J, Whitbread A. 2012. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 151, 53-59. (10.1016/j.biocon.2012.01.068) DOI

Hoang NT, et al. 2023. Mapping potential conflicts between global agriculture and terrestrial conservation. Proc. Natl Acad. Sci. USA 120, e2208376120. (10.1073/pnas.2208376120) PubMed DOI PMC

FAO, IFAD, UNICEF, WFP, WHO. 2022. In brief to The state of food security and nutrition in the world 2022. Rome, Italy: FAO. (10.4060/cc0640en) DOI

Oerke E-C. 2006. Crop losses to pests. J. Agric. Sci. 144, 31-43. (10.1017/S0021859605005708) DOI

Stenberg JA, et al. 2021. When is it biological control? A framework of definitions, mechanisms, and classifications. J. Pest Sci. 94, 665-676. (10.1007/s10340-021-01354-7) DOI

Wan N-F, et al. 2018. Increasing plant diversity with border crops reduces insecticide use and increases crop yield in urban agriculture. eLife 7, e35103. (10.7554/eLife.35103) PubMed DOI PMC

Wan N-F, Fu L, Dainese M, Hu YQ, Pødenphant Kiær L, Isbell F, Scherber C. 2022. Plant genetic diversity affects multiple trophic levels and trophic interactions. Nat. Commun. 13, 7312. (10.1038/s41467-022-35087-7) PubMed DOI PMC

Michalko R, Pekár S, Dul'a M, Entling MH. 2019. Global patterns in the biocontrol efficacy of spiders: a meta-analysis. Global Ecol. Biogeogr. 28, 1366-1378. (10.1111/geb.12927) DOI

Díaz-Siefer P, Olmos-Moya N, Fontã°rbel FE, Lavandero B, Pozo R, Celis-Diez JL. et al. 2022. Bird-mediated effects of pest control services on crop productivity: a global synthesis. J. Pest Sci. 95, 567-576. (10.1007/s10340-021-01438-4) DOI

Vance-Chalcraft HD, Rosenheim JA, Vonesh JR, Osenberg CW, Sih A. 2007. The Influence of intraguild predation on prey suppression and prey release: a meta-analysis. Ecology 88, 2689-2696. (10.1890/06-1869.1) PubMed DOI

Garfinkel M, Johnson M. 2015. Pest-removal services provided by birds on small organic farms in northern California. Agric. Ecosyst. Environ. 211, 24-31. (10.1016/j.agee.2015.04.023) DOI

Schmitz OJ, Hambäck PA, Beckerman AP. 2000. Trophic cascades in terrestrial systems: a review of the effects of carnivore removals on plants. Am. Nat. 155, 141-153. (10.1086/303311) PubMed DOI

Wan N-F, et al. 2020. Global synthesis of effects of plant species diversity on trophic groups and interactions. Nat. Plants 6, 503-510. (10.1038/s41477-020-0654-y) PubMed DOI

Suenaga H, Hamamura T. 2015. Effects of manipulated density of the wolf spider, Pardosa astrigera (Araneae: Lycosidae), on pest populations and cabbage yield: a field enclosure experiment. Appl. Entomol. Zool. 50, 89-97. (10.1007/s13355-014-0310-y) DOI

Tylianakis JM, Romo CM. 2010. Natural enemy diversity and biological control: making sense of the context-dependency. Basic Appl. Ecol. 11, 657-668. (10.1016/j.baae.2010.08.005) DOI

Martin EA, Reineking B, Seo B, Steffan-Dewenter I. 2013. Natural enemy interactions constrain pest control in complex agricultural landscapes. Proc. Natl Acad. Sci. USA 110, 5534-5539. (10.1073/pnas.1215725110) PubMed DOI PMC

Liere H, Kim TN, Werling BP, Meehan TD, Landis DA, Gratton C. 2015. Trophic cascades in agricultural landscapes: indirect effects of landscape composition on crop yield. Ecol. Appl. 25, 652-661. (10.1890/14-0570.1) PubMed DOI

Stiling P, Cornelissen T. 2005. What makes a successful biocontrol agent? A meta-analysis of biological control agent performance. Biol. Control 34, 236-246. (10.1016/j.biocontrol.2005.02.017) DOI

Wan N-F, Ji XY, Deng JY, Kiær LP, Cai YM, Jiang JX. 2019. Plant diversification promotes biocontrol services in peach orchards by shaping the ecological niches of insect herbivores and their natural enemies. Ecol. Indic. 99, 387-392. (10.1016/j.ecolind.2017.11.047) DOI

Mendoza JE, Balanza V, Rodríguez-Gómez A, Cifuentes D, Bielza P. 2022. Enhanced biocontrol services in artificially selected strains of Orius laevigatus. J. Pest. Sci. 95, 1597-1608. (10.1007/s10340-022-01539-8) DOI

Griffin JN, Byrnes JEK, Cardinale BJ. 2013. Effects of predator richness on prey suppression: a meta-analysis. Ecology 94, 2180-2187. (10.1890/13-0179.1) PubMed DOI

Jonsson M, Kaartinen R, Straub CS. 2017. Relationships between natural enemy diversity and biological control. Curr. Opin. Insect Sci. 20, 1-6. (10.1016/j.cois.2017.01.001) PubMed DOI

Straub CS, Snyder WE. 2006. Species identity dominates the relationship between predator biodiversity and herbivore suppression. Ecology 87, 277-282. (10.1890/05-0599) PubMed DOI

Letourneau DK, Jedlicka JA, Bothwell SG, Moreno CR. 2009. Effects of natural enemy biodiversity on the suppression of arthropod herbivores in terrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 40, 573-592. (10.1146/annurev.ecolsys.110308.120320) DOI

Wilby A, Villareal SC, Lan LP, Heong KL, Thomas MB. 2005. Functional benefits of predator species diversity depend on prey identity. Ecol. Entomol. 30, 497-501. (10.1111/j.0307-6946.2005.00717.x) DOI

Crowder DW, Jabbour R. 2014. Relationships between biodiversity and biological control in agroecosystems: current status and future challenges. Biol. Control 75, 8-17. (10.1016/j.biocontrol.2013.10.010) DOI

Petchey OL, McPhearson PT, Casey TM, Morin PJ. 1999. Environmental warming alters food-web structure and ecosystem function. Nature 402, 69-72. (10.1038/47023) DOI

Voigt W, et al. 2003. Trophic levels are differentially sensitive to climate. Ecology 84, 2444-2453. (10.1890/02-0266) DOI

Franco ALC, Gherardi LA, De Tomasel CM, Andriuzzi WS, Ankrom KE, Shaw EA, Bach EM, Sala OE, Wall DH. 2019. Drought suppresses soil predators and promotes root herbivores in mesic, but not in xeric grasslands. Proc. Natl Acad. Sci. USA 116, 12 883-12 888. (10.1073/pnas.1900572116) PubMed DOI PMC

Gibert JP, Grady JM, Dell AI. 2022. Food web consequences of thermal asymmetries. Funct. Ecol. 36, 1887-1899. (10.1111/1365-2435.14091) DOI

Da Silva CRB, Beaman JE, Youngblood JP, Kellermann V, Diamond SE. 2023. Vulnerability to climate change increases with trophic level in terrestrial organisms. Sci. Total Environ. 865, 161049. (10.1016/j.scitotenv.2022.161049) PubMed DOI

Thackeray SJ, et al. 2016. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241-245. (10.1038/nature18608) PubMed DOI

Amundrud SL, Srivastava DS. 2015. Drought sensitivity predicts habitat size sensitivity in an aquatic ecosystem. Ecology 96, 1957-1965. (10.1890/14-1828.1) PubMed DOI

Romero GQ, Gonçalves-Souza T, Kratina P, Marino NA, Petry WK, Sobral-Souza T, Roslin T. 2018. Global predation pressure redistribution under future climate change. Nat. Clim. Chang. 8, 1087-1091. (10.1038/s41558-018-0347-y) DOI

Drieu R, Rusch A. 2017. Conserving species-rich predator assemblages strengthens natural pest control in a climate warming context: natural pest control in a climate warming context. Agr. Forest. Entomol. 19, 52-59. (10.1111/afe.12180) DOI

IPCC. 2023. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Core Writing Team, H Lee, J Romero). Geneva, Switzerland: IPCC. (10.59327/IPCC/AR6-9789291691647) DOI

Rodríguez-Castañeda G. 2013. The world and its shades of green: a meta-analysis on trophic cascades across temperature and precipitation gradients: trophic interactions across gradients. Glob. Ecol. Biogeogr. 22, 118-130. (10.1111/j.1466-8238.2012.00795.x) DOI

Barton BT, Beckerman AP, Schmitz OJ. 2009. Climate warming strengthens indirect interactions in an old-field food web. Ecology 90, 2346-2351. (10.1890/08-2254.1) PubMed DOI

Gibert JP. 2019. Temperature directly and indirectly influences food web structure. Sci. Rep. 9, 5312. (10.1038/s41598-019-41783-0) PubMed DOI PMC

Schmitz OJ, Barton BT. 2014. Climate change effects on behavioral and physiological ecology of predator–prey interactions: implications for conservation biological control. Biol. Control 75, 87-96. (10.1016/j.biocontrol.2013.10.001) DOI

Laws AN. 2017. Climate change effects on predator–prey interactions. Curr. Opin. Insect Sci. 23, 28-34. (10.1016/j.cois.2017.06.010) PubMed DOI

Rosenblatt AE, Schmitz OJ. 2016. Climate change, nutrition, and bottom-up and top-down food web processes. Trends Ecol. Evol. 31, 965-975. (10.1016/j.tree.2016.09.009) PubMed DOI

Anjos DV, Tena A, Viana-Junior AB, Carvalho RL, Torezan-Silingardi H, Del-Claro K, Perfecto I. 2022. The effects of ants on pest control: a meta-analysis. Proc. R. Soc. B 289, 20221316. (10.1098/rspb.2022.1316) PubMed DOI PMC

O'Dea RE, et al. 2021. Preferred reporting items for systematic reviews and meta-analyses in ecology and evolutionary biology: a PRISMA extension. Biol. Rev. 96, 1695-1722. (10.1111/brv.12721) PubMed DOI PMC

Liberati A, et al. 2009. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339, b2700. (10.1136/bmj.b2700) PubMed DOI PMC

Zvereva EL, Kozlov MV. 2022. Meta-analysis of elevational changes in the intensity of trophic interactions: similarities and dissimilarities with latitudinal patterns. Ecol. Lett. 25, 2076-2087. (10.1111/ele.14090) PubMed DOI PMC

Fagan WF, Hakim AL, Ariawan H, Yuliyantiningsih S. 1998. Interactions between biological control efforts and insecticide applications in tropical rice agroecosystems: the potential role of intraguild predation. Biol. Control 13, 121-126. (10.1006/bcon.1998.0655) DOI

Forbes SJ, Northfield TD. 2017. Oecophylla smaragdina ants provide pest control in Australian cacao. Biotropica 49, 328-336. (10.1111/btp.12405) DOI

Birkhofer K, Gavish-Regev E, Endlweber K, Lubin YD, Von Berg K, Wise DH, Scheu S. 2008. Cursorial spiders retard initial aphid population growth at low densities in winter wheat. Bull. Entomol. Res. 98, 249-255. (10.1017/S0007485308006019) PubMed DOI

Karp DS, Mendenhall CD, Sandã­ RF, Chaumont N, Ehrlich PR, Hadly EA, Daily GC. 2013. Forest bolsters bird abundance, pest control and coffee yield. Ecol. Lett. 16, 1339-1347. (10.1111/ele.12173) PubMed DOI

Lajeunesse MJ. 2021. juicr: Automated and manual extraction of numerical data from scientific images. See https://CRAN.R-project.org/package=juicr (accessed 27 February 2023).

Fick SE, Hijmans RJ. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol 37, 4302-4315. (10.1002/joc.5086) DOI

Thornthwaite CW. 1948. An approach toward a rational classification of climate. Geogr. Rev. 38, 55. (10.2307/210739) DOI

Clewley GD, Eschen R, Shaw RH, Wright DJ. 2012. The effectiveness of classical biological control of invasive plants. J. Appl. Ecol. 49, 1287-1295. (10.1111/j.1365-2664.2012.02209.x) DOI

Xiao Z, Wang X, Koricheva J, Kergunteuil A, Le Bayon RC, Liu M, Hu F, Rasmann S. et al. 2018. Earthworms affect plant growth and resistance against herbivores: a meta-analysis. Funct. Ecol. 32, 150-160. (10.1111/1365-2435.12969) DOI

R Core Team. 2022. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Viechtbauer W. 2010. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1-48. (10.18637/jss.v036.i03) DOI

Lajeunesse MJ. 2011. On the meta-analysis of response ratios for studies with correlated and multi-group designs. Ecology 92, 2049-2055. (10.1890/11-0423.1) PubMed DOI

De Alcantara Viana JV, Vieira C, Duarte RC, Romero GQ. 2022. Predator responses to prey camouflage strategies: a meta-analysis. Proc. R. Soc. B. 289, 20220980. (10.1098/rspb.2022.0980) PubMed DOI PMC

Nakagawa S, Lagisz M, Jennions MD, Koricheva J, Noble DW, Parker TH, Sánchez-Tójar A, Yang Y, O'Dea RE. 2022. Methods for testing publication bias in ecological and evolutionary meta-analyses. Methods Ecol. Evol. 13, 4-21. (10.1111/2041-210X.13724) DOI

Chamberlain SA, et al. 2012. Does phylogeny matter? Assessing the impact of phylogenetic information in ecological meta-analysis. Ecol. Lett. 15, 627-636. (10.1111/j.1461-0248.2012.01776.x) PubMed DOI

Harrer M, Cuijpers P, Ebert D. 2019. Doing meta-analysis in R. Zenodo. (10.5281/ZENODO.2551803) DOI

Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L. 2008. Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. J. Clin. Epidemiol. 61, 991-996. (10.1016/j.jclinepi.2007.11.010) PubMed DOI

Rosenthal R. 1979. The file drawer problem and tolerance for null results. Psychol. Bull. 86, 638-641. (10.1037/0033-2909.86.3.638) DOI

Vidal MC, Murphy SM. 2018. Bottom-up vs. top-down effects on terrestrial insect herbivores: a meta-analysis. Ecol. Lett. 21, 138-150. (10.1111/ele.12874) PubMed DOI

Roslin T, et al. 2017. Higher predation risk for insect prey at low latitudes and elevations. Science 356, 742-744. (10.1126/science.aaj1631) PubMed DOI

Polis GA, Sears ALW, Huxel GR, Strong DR, Maron J. 2000. When is a trophic cascade a trophic cascade? Trends Ecol. Evol. 15, 473-475. (10.1016/S0169-5347(00)01971-6) PubMed DOI

Root RB. 1973. Organization of a plant–arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol. Monogr. 43, 95-124. (10.2307/1942161) DOI

Russell EP. 1989. Enemies hypothesis: a review of the effect of vegetational diversity on predatory insects and parasitoids. Environ. Entomol. 18, 590-599. (10.1093/ee/18.4.590) DOI

Martin EA, et al. 2019. The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083-1094. (10.1111/ele.13265) PubMed DOI

Ali MP, Clemente-Orta G, Kabir MMM, Haque SS, Biswas M, Landis DA. 2023. Landscape structure influences natural pest suppression in a rice agroecosystem. Sci. Rep. 13, 15726. (10.1038/s41598-023-41786-y) PubMed DOI PMC

McEvoy PB, Coombs EM. 2000. Why things bite back: unintended consequences of biological weed control. In Nontarget effects of biological control (eds Follett PA, Duan JJ), pp. 167-194. New York, NY: Springer Science+Business Media.

Müller CB, Brodeur J. 2002. Intraguild predation in biological control and conservation biology. Biol. Control 25, 216-223. (10.1016/S1049-9644(02)00102-0) DOI

Diehl E, Sereda E, Wolters V, Birkhofer K. 2013. Effects of predator specialization, host plant and climate on biological control of aphids by natural enemies: a meta-analysis. J. Appl. Ecol. 50, 262-270. (10.1111/1365-2664.12032) DOI

McCluney KE, Sabo JL. 2009. Water availability directly determines per capita consumption at two trophic levels. Ecology 90, 1463-1469. (10.1890/08-1626.1) PubMed DOI

McCluney KE. 2017. Implications of animal water balance for terrestrial food webs. Curr. Opin. Insect Sci. 23, 13-21. (10.1016/j.cois.2017.06.007) PubMed DOI

Khoury CK, et al. 2016. Origins of food crops connect countries worldwide. Proc. R. Soc. B 283, 20160792. (10.1098/rspb.2016.0792) DOI

Riccucci M, Lanza B. 2014. Bats and insect pest control: a review. Vespertilio 17, 161-169.

Tuneu-Corral C, Puig-Montserrat X, Riba-Bertolín D, Russo D, Rebelo H, Cabeza M, López-Baucells A. 2023. Pest suppression by bats and management strategies to favour it: a global review. Biol. Rev. 98, 1564-1582. (10.1111/brv.12967) PubMed DOI

Sala E. 2006. Top predators provide insurance against climate change. Trends Ecol. Evol. 21, 479-480. (10.1016/j.tree.2006.07.006) PubMed DOI

Tylianakis JM, Didham RK, Bascompte J, Wardle DA. 2008. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351-1363. (10.1111/j.1461-0248.2008.01250.x) PubMed DOI

Konapala G, Mishra AK, Wada Y, Mann ME. 2020. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 11, 3044. (10.1038/s41467-020-16757-w) PubMed DOI PMC

Wheeler T, Von Braun J. 2013. Climate change impacts on global food security. Science 341, 508-513. (10.1126/science.1239402) PubMed DOI

Ray DK, West PC, Clark M, Gerber JS, Prishchepov AV, Chatterjee S. 2019. Climate change has likely already affected global food production. PLoS ONE 14, e0217148. PubMed PMC

Vignola R, Harvey CA, Bautista-Solis P, Avelino J, Rapidel B, Donatti C, Martinez R. 2015. Ecosystem-based adaptation for smallholder farmers: definitions, opportunities and constraints. Agric. Ecosyst. Environ. 211, 126-132. (10.1016/j.agee.2015.05.013) DOI

Boldorini GX, Mccary MA, Romero GQ, Mills KL, Sanders NJ, Reich PB, Michalko R, Gonçalves-Souza T. 2024. Predators control pests and increase yield across crop types and climates: a meta-analysis. Figshare. (10.6084/m9.figshare.c.7090120) PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Predators control pests and increase yield across crop types and climates: a meta-analysis

. 2024 Mar 13 ; 291 (2018) : 20232522. [epub] 20240306

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...