Predators control pests and increase yield across crop types and climates: a meta-analysis
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu metaanalýza, časopisecké články
PubMed
38444337
PubMed Central
PMC10915543
DOI
10.1098/rspb.2023.2522
Knihovny.cz E-zdroje
- Klíčová slova
- biocontrol, biological control, natural enemies, natural predators, pest control, resident agents,
- MeSH
- ekosystém * MeSH
- klimatické změny MeSH
- nejistota MeSH
- pesticidy * MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- Názvy látek
- pesticidy * MeSH
Pesticides have well-documented negative consequences to control crop pests, and natural predators are alternatives and can provide an ecosystem service as biological control agents. However, there remains considerable uncertainty regarding whether such biological control can be a widely applicable solution, especially given ongoing climatic variation and climate change. Here, we performed a meta-analysis focused on field studies with natural predators to explore broadly whether and how predators might control pests and in turn increase yield. We also contrasted across studies pest suppression by a single and multiple predators and how climate influence biological control. Predators reduced pest populations by 73% on average, and increased crop yield by 25% on average. Surprisingly, the impact of predators did not depend on whether there were many or a single predator species. Precipitation seasonality was a key climatic influence on biological control: as seasonality increased, the impact of predators on pest populations increased. Taken together, the positive contribution of predators in controlling pests and increasing yield, and the consistency of such responses in the face of precipitation variability, suggest that biocontrol has the potential to be an important part of pest management and increasing food supplies as the planet precipitation patterns become increasingly variable.
Department of Animal Biology Institute of Biology State University of Campinas Campinas Brazil
Department of BioSciences Rice University Houston TX 77005 USA
Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor MI USA
Department of Forest Resources University of Minnesota St Paul MN 55108 USA
Zobrazit více v PubMed
Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, Vandermeer J, Whitbread A. 2012. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 151, 53-59. (10.1016/j.biocon.2012.01.068) DOI
Hoang NT, et al. 2023. Mapping potential conflicts between global agriculture and terrestrial conservation. Proc. Natl Acad. Sci. USA 120, e2208376120. (10.1073/pnas.2208376120) PubMed DOI PMC
FAO, IFAD, UNICEF, WFP, WHO. 2022. In brief to The state of food security and nutrition in the world 2022. Rome, Italy: FAO. (10.4060/cc0640en) DOI
Oerke E-C. 2006. Crop losses to pests. J. Agric. Sci. 144, 31-43. (10.1017/S0021859605005708) DOI
Stenberg JA, et al. 2021. When is it biological control? A framework of definitions, mechanisms, and classifications. J. Pest Sci. 94, 665-676. (10.1007/s10340-021-01354-7) DOI
Wan N-F, et al. 2018. Increasing plant diversity with border crops reduces insecticide use and increases crop yield in urban agriculture. eLife 7, e35103. (10.7554/eLife.35103) PubMed DOI PMC
Wan N-F, Fu L, Dainese M, Hu YQ, Pødenphant Kiær L, Isbell F, Scherber C. 2022. Plant genetic diversity affects multiple trophic levels and trophic interactions. Nat. Commun. 13, 7312. (10.1038/s41467-022-35087-7) PubMed DOI PMC
Michalko R, Pekár S, Dul'a M, Entling MH. 2019. Global patterns in the biocontrol efficacy of spiders: a meta-analysis. Global Ecol. Biogeogr. 28, 1366-1378. (10.1111/geb.12927) DOI
Díaz-Siefer P, Olmos-Moya N, Fontã°rbel FE, Lavandero B, Pozo R, Celis-Diez JL. et al. 2022. Bird-mediated effects of pest control services on crop productivity: a global synthesis. J. Pest Sci. 95, 567-576. (10.1007/s10340-021-01438-4) DOI
Vance-Chalcraft HD, Rosenheim JA, Vonesh JR, Osenberg CW, Sih A. 2007. The Influence of intraguild predation on prey suppression and prey release: a meta-analysis. Ecology 88, 2689-2696. (10.1890/06-1869.1) PubMed DOI
Garfinkel M, Johnson M. 2015. Pest-removal services provided by birds on small organic farms in northern California. Agric. Ecosyst. Environ. 211, 24-31. (10.1016/j.agee.2015.04.023) DOI
Schmitz OJ, Hambäck PA, Beckerman AP. 2000. Trophic cascades in terrestrial systems: a review of the effects of carnivore removals on plants. Am. Nat. 155, 141-153. (10.1086/303311) PubMed DOI
Wan N-F, et al. 2020. Global synthesis of effects of plant species diversity on trophic groups and interactions. Nat. Plants 6, 503-510. (10.1038/s41477-020-0654-y) PubMed DOI
Suenaga H, Hamamura T. 2015. Effects of manipulated density of the wolf spider, Pardosa astrigera (Araneae: Lycosidae), on pest populations and cabbage yield: a field enclosure experiment. Appl. Entomol. Zool. 50, 89-97. (10.1007/s13355-014-0310-y) DOI
Tylianakis JM, Romo CM. 2010. Natural enemy diversity and biological control: making sense of the context-dependency. Basic Appl. Ecol. 11, 657-668. (10.1016/j.baae.2010.08.005) DOI
Martin EA, Reineking B, Seo B, Steffan-Dewenter I. 2013. Natural enemy interactions constrain pest control in complex agricultural landscapes. Proc. Natl Acad. Sci. USA 110, 5534-5539. (10.1073/pnas.1215725110) PubMed DOI PMC
Liere H, Kim TN, Werling BP, Meehan TD, Landis DA, Gratton C. 2015. Trophic cascades in agricultural landscapes: indirect effects of landscape composition on crop yield. Ecol. Appl. 25, 652-661. (10.1890/14-0570.1) PubMed DOI
Stiling P, Cornelissen T. 2005. What makes a successful biocontrol agent? A meta-analysis of biological control agent performance. Biol. Control 34, 236-246. (10.1016/j.biocontrol.2005.02.017) DOI
Wan N-F, Ji XY, Deng JY, Kiær LP, Cai YM, Jiang JX. 2019. Plant diversification promotes biocontrol services in peach orchards by shaping the ecological niches of insect herbivores and their natural enemies. Ecol. Indic. 99, 387-392. (10.1016/j.ecolind.2017.11.047) DOI
Mendoza JE, Balanza V, Rodríguez-Gómez A, Cifuentes D, Bielza P. 2022. Enhanced biocontrol services in artificially selected strains of Orius laevigatus. J. Pest. Sci. 95, 1597-1608. (10.1007/s10340-022-01539-8) DOI
Griffin JN, Byrnes JEK, Cardinale BJ. 2013. Effects of predator richness on prey suppression: a meta-analysis. Ecology 94, 2180-2187. (10.1890/13-0179.1) PubMed DOI
Jonsson M, Kaartinen R, Straub CS. 2017. Relationships between natural enemy diversity and biological control. Curr. Opin. Insect Sci. 20, 1-6. (10.1016/j.cois.2017.01.001) PubMed DOI
Straub CS, Snyder WE. 2006. Species identity dominates the relationship between predator biodiversity and herbivore suppression. Ecology 87, 277-282. (10.1890/05-0599) PubMed DOI
Letourneau DK, Jedlicka JA, Bothwell SG, Moreno CR. 2009. Effects of natural enemy biodiversity on the suppression of arthropod herbivores in terrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 40, 573-592. (10.1146/annurev.ecolsys.110308.120320) DOI
Wilby A, Villareal SC, Lan LP, Heong KL, Thomas MB. 2005. Functional benefits of predator species diversity depend on prey identity. Ecol. Entomol. 30, 497-501. (10.1111/j.0307-6946.2005.00717.x) DOI
Crowder DW, Jabbour R. 2014. Relationships between biodiversity and biological control in agroecosystems: current status and future challenges. Biol. Control 75, 8-17. (10.1016/j.biocontrol.2013.10.010) DOI
Petchey OL, McPhearson PT, Casey TM, Morin PJ. 1999. Environmental warming alters food-web structure and ecosystem function. Nature 402, 69-72. (10.1038/47023) DOI
Voigt W, et al. 2003. Trophic levels are differentially sensitive to climate. Ecology 84, 2444-2453. (10.1890/02-0266) DOI
Franco ALC, Gherardi LA, De Tomasel CM, Andriuzzi WS, Ankrom KE, Shaw EA, Bach EM, Sala OE, Wall DH. 2019. Drought suppresses soil predators and promotes root herbivores in mesic, but not in xeric grasslands. Proc. Natl Acad. Sci. USA 116, 12 883-12 888. (10.1073/pnas.1900572116) PubMed DOI PMC
Gibert JP, Grady JM, Dell AI. 2022. Food web consequences of thermal asymmetries. Funct. Ecol. 36, 1887-1899. (10.1111/1365-2435.14091) DOI
Da Silva CRB, Beaman JE, Youngblood JP, Kellermann V, Diamond SE. 2023. Vulnerability to climate change increases with trophic level in terrestrial organisms. Sci. Total Environ. 865, 161049. (10.1016/j.scitotenv.2022.161049) PubMed DOI
Thackeray SJ, et al. 2016. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241-245. (10.1038/nature18608) PubMed DOI
Amundrud SL, Srivastava DS. 2015. Drought sensitivity predicts habitat size sensitivity in an aquatic ecosystem. Ecology 96, 1957-1965. (10.1890/14-1828.1) PubMed DOI
Romero GQ, Gonçalves-Souza T, Kratina P, Marino NA, Petry WK, Sobral-Souza T, Roslin T. 2018. Global predation pressure redistribution under future climate change. Nat. Clim. Chang. 8, 1087-1091. (10.1038/s41558-018-0347-y) DOI
Drieu R, Rusch A. 2017. Conserving species-rich predator assemblages strengthens natural pest control in a climate warming context: natural pest control in a climate warming context. Agr. Forest. Entomol. 19, 52-59. (10.1111/afe.12180) DOI
IPCC. 2023. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Core Writing Team, H Lee, J Romero). Geneva, Switzerland: IPCC. (10.59327/IPCC/AR6-9789291691647) DOI
Rodríguez-Castañeda G. 2013. The world and its shades of green: a meta-analysis on trophic cascades across temperature and precipitation gradients: trophic interactions across gradients. Glob. Ecol. Biogeogr. 22, 118-130. (10.1111/j.1466-8238.2012.00795.x) DOI
Barton BT, Beckerman AP, Schmitz OJ. 2009. Climate warming strengthens indirect interactions in an old-field food web. Ecology 90, 2346-2351. (10.1890/08-2254.1) PubMed DOI
Gibert JP. 2019. Temperature directly and indirectly influences food web structure. Sci. Rep. 9, 5312. (10.1038/s41598-019-41783-0) PubMed DOI PMC
Schmitz OJ, Barton BT. 2014. Climate change effects on behavioral and physiological ecology of predator–prey interactions: implications for conservation biological control. Biol. Control 75, 87-96. (10.1016/j.biocontrol.2013.10.001) DOI
Laws AN. 2017. Climate change effects on predator–prey interactions. Curr. Opin. Insect Sci. 23, 28-34. (10.1016/j.cois.2017.06.010) PubMed DOI
Rosenblatt AE, Schmitz OJ. 2016. Climate change, nutrition, and bottom-up and top-down food web processes. Trends Ecol. Evol. 31, 965-975. (10.1016/j.tree.2016.09.009) PubMed DOI
Anjos DV, Tena A, Viana-Junior AB, Carvalho RL, Torezan-Silingardi H, Del-Claro K, Perfecto I. 2022. The effects of ants on pest control: a meta-analysis. Proc. R. Soc. B 289, 20221316. (10.1098/rspb.2022.1316) PubMed DOI PMC
O'Dea RE, et al. 2021. Preferred reporting items for systematic reviews and meta-analyses in ecology and evolutionary biology: a PRISMA extension. Biol. Rev. 96, 1695-1722. (10.1111/brv.12721) PubMed DOI PMC
Liberati A, et al. 2009. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339, b2700. (10.1136/bmj.b2700) PubMed DOI PMC
Zvereva EL, Kozlov MV. 2022. Meta-analysis of elevational changes in the intensity of trophic interactions: similarities and dissimilarities with latitudinal patterns. Ecol. Lett. 25, 2076-2087. (10.1111/ele.14090) PubMed DOI PMC
Fagan WF, Hakim AL, Ariawan H, Yuliyantiningsih S. 1998. Interactions between biological control efforts and insecticide applications in tropical rice agroecosystems: the potential role of intraguild predation. Biol. Control 13, 121-126. (10.1006/bcon.1998.0655) DOI
Forbes SJ, Northfield TD. 2017. Oecophylla smaragdina ants provide pest control in Australian cacao. Biotropica 49, 328-336. (10.1111/btp.12405) DOI
Birkhofer K, Gavish-Regev E, Endlweber K, Lubin YD, Von Berg K, Wise DH, Scheu S. 2008. Cursorial spiders retard initial aphid population growth at low densities in winter wheat. Bull. Entomol. Res. 98, 249-255. (10.1017/S0007485308006019) PubMed DOI
Karp DS, Mendenhall CD, Sandã RF, Chaumont N, Ehrlich PR, Hadly EA, Daily GC. 2013. Forest bolsters bird abundance, pest control and coffee yield. Ecol. Lett. 16, 1339-1347. (10.1111/ele.12173) PubMed DOI
Lajeunesse MJ. 2021. juicr: Automated and manual extraction of numerical data from scientific images. See https://CRAN.R-project.org/package=juicr (accessed 27 February 2023).
Fick SE, Hijmans RJ. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol 37, 4302-4315. (10.1002/joc.5086) DOI
Thornthwaite CW. 1948. An approach toward a rational classification of climate. Geogr. Rev. 38, 55. (10.2307/210739) DOI
Clewley GD, Eschen R, Shaw RH, Wright DJ. 2012. The effectiveness of classical biological control of invasive plants. J. Appl. Ecol. 49, 1287-1295. (10.1111/j.1365-2664.2012.02209.x) DOI
Xiao Z, Wang X, Koricheva J, Kergunteuil A, Le Bayon RC, Liu M, Hu F, Rasmann S. et al. 2018. Earthworms affect plant growth and resistance against herbivores: a meta-analysis. Funct. Ecol. 32, 150-160. (10.1111/1365-2435.12969) DOI
R Core Team. 2022. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
Viechtbauer W. 2010. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1-48. (10.18637/jss.v036.i03) DOI
Lajeunesse MJ. 2011. On the meta-analysis of response ratios for studies with correlated and multi-group designs. Ecology 92, 2049-2055. (10.1890/11-0423.1) PubMed DOI
De Alcantara Viana JV, Vieira C, Duarte RC, Romero GQ. 2022. Predator responses to prey camouflage strategies: a meta-analysis. Proc. R. Soc. B. 289, 20220980. (10.1098/rspb.2022.0980) PubMed DOI PMC
Nakagawa S, Lagisz M, Jennions MD, Koricheva J, Noble DW, Parker TH, Sánchez-Tójar A, Yang Y, O'Dea RE. 2022. Methods for testing publication bias in ecological and evolutionary meta-analyses. Methods Ecol. Evol. 13, 4-21. (10.1111/2041-210X.13724) DOI
Chamberlain SA, et al. 2012. Does phylogeny matter? Assessing the impact of phylogenetic information in ecological meta-analysis. Ecol. Lett. 15, 627-636. (10.1111/j.1461-0248.2012.01776.x) PubMed DOI
Harrer M, Cuijpers P, Ebert D. 2019. Doing meta-analysis in R. Zenodo. (10.5281/ZENODO.2551803) DOI
Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L. 2008. Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. J. Clin. Epidemiol. 61, 991-996. (10.1016/j.jclinepi.2007.11.010) PubMed DOI
Rosenthal R. 1979. The file drawer problem and tolerance for null results. Psychol. Bull. 86, 638-641. (10.1037/0033-2909.86.3.638) DOI
Vidal MC, Murphy SM. 2018. Bottom-up vs. top-down effects on terrestrial insect herbivores: a meta-analysis. Ecol. Lett. 21, 138-150. (10.1111/ele.12874) PubMed DOI
Roslin T, et al. 2017. Higher predation risk for insect prey at low latitudes and elevations. Science 356, 742-744. (10.1126/science.aaj1631) PubMed DOI
Polis GA, Sears ALW, Huxel GR, Strong DR, Maron J. 2000. When is a trophic cascade a trophic cascade? Trends Ecol. Evol. 15, 473-475. (10.1016/S0169-5347(00)01971-6) PubMed DOI
Root RB. 1973. Organization of a plant–arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol. Monogr. 43, 95-124. (10.2307/1942161) DOI
Russell EP. 1989. Enemies hypothesis: a review of the effect of vegetational diversity on predatory insects and parasitoids. Environ. Entomol. 18, 590-599. (10.1093/ee/18.4.590) DOI
Martin EA, et al. 2019. The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083-1094. (10.1111/ele.13265) PubMed DOI
Ali MP, Clemente-Orta G, Kabir MMM, Haque SS, Biswas M, Landis DA. 2023. Landscape structure influences natural pest suppression in a rice agroecosystem. Sci. Rep. 13, 15726. (10.1038/s41598-023-41786-y) PubMed DOI PMC
McEvoy PB, Coombs EM. 2000. Why things bite back: unintended consequences of biological weed control. In Nontarget effects of biological control (eds Follett PA, Duan JJ), pp. 167-194. New York, NY: Springer Science+Business Media.
Müller CB, Brodeur J. 2002. Intraguild predation in biological control and conservation biology. Biol. Control 25, 216-223. (10.1016/S1049-9644(02)00102-0) DOI
Diehl E, Sereda E, Wolters V, Birkhofer K. 2013. Effects of predator specialization, host plant and climate on biological control of aphids by natural enemies: a meta-analysis. J. Appl. Ecol. 50, 262-270. (10.1111/1365-2664.12032) DOI
McCluney KE, Sabo JL. 2009. Water availability directly determines per capita consumption at two trophic levels. Ecology 90, 1463-1469. (10.1890/08-1626.1) PubMed DOI
McCluney KE. 2017. Implications of animal water balance for terrestrial food webs. Curr. Opin. Insect Sci. 23, 13-21. (10.1016/j.cois.2017.06.007) PubMed DOI
Khoury CK, et al. 2016. Origins of food crops connect countries worldwide. Proc. R. Soc. B 283, 20160792. (10.1098/rspb.2016.0792) DOI
Riccucci M, Lanza B. 2014. Bats and insect pest control: a review. Vespertilio 17, 161-169.
Tuneu-Corral C, Puig-Montserrat X, Riba-Bertolín D, Russo D, Rebelo H, Cabeza M, López-Baucells A. 2023. Pest suppression by bats and management strategies to favour it: a global review. Biol. Rev. 98, 1564-1582. (10.1111/brv.12967) PubMed DOI
Sala E. 2006. Top predators provide insurance against climate change. Trends Ecol. Evol. 21, 479-480. (10.1016/j.tree.2006.07.006) PubMed DOI
Tylianakis JM, Didham RK, Bascompte J, Wardle DA. 2008. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351-1363. (10.1111/j.1461-0248.2008.01250.x) PubMed DOI
Konapala G, Mishra AK, Wada Y, Mann ME. 2020. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 11, 3044. (10.1038/s41467-020-16757-w) PubMed DOI PMC
Wheeler T, Von Braun J. 2013. Climate change impacts on global food security. Science 341, 508-513. (10.1126/science.1239402) PubMed DOI
Ray DK, West PC, Clark M, Gerber JS, Prishchepov AV, Chatterjee S. 2019. Climate change has likely already affected global food production. PLoS ONE 14, e0217148. PubMed PMC
Vignola R, Harvey CA, Bautista-Solis P, Avelino J, Rapidel B, Donatti C, Martinez R. 2015. Ecosystem-based adaptation for smallholder farmers: definitions, opportunities and constraints. Agric. Ecosyst. Environ. 211, 126-132. (10.1016/j.agee.2015.05.013) DOI
Boldorini GX, Mccary MA, Romero GQ, Mills KL, Sanders NJ, Reich PB, Michalko R, Gonçalves-Souza T. 2024. Predators control pests and increase yield across crop types and climates: a meta-analysis. Figshare. (10.6084/m9.figshare.c.7090120) PubMed DOI PMC
Predators control pests and increase yield across crop types and climates: a meta-analysis